File: plot_crossentropy.py

package info (click to toggle)
openturns 1.26-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 67,708 kB
  • sloc: cpp: 261,605; python: 67,030; ansic: 4,378; javascript: 406; sh: 185; xml: 164; makefile: 101
file content (362 lines) | stat: -rw-r--r-- 12,079 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
"""
Cross Entropy Importance Sampling
=================================
"""

# %%
#
# The objective is to evaluate a failure probability using Cross Entropy Importance Sampling.
# Two versions in the standard or physical spaces are implemented.
# See :class:`~openturns.StandardSpaceCrossEntropyImportanceSampling` and :class:`~openturns.PhysicalSpaceCrossEntropyImportanceSampling`.
# We consider the simple stress beam example: :ref:`axial stressed beam <use-case-stressed-beam>`.


# %%
# First, we import the python modules:

# %%
import openturns as ot
import openturns.viewer as otv
from openturns.usecases import stressed_beam

# %%
# Create the probabilistic model
# ------------------------------

# %%
axialBeam = stressed_beam.AxialStressedBeam()
distribution = axialBeam.distribution
print("Initial distribution:", distribution)

# %%
# Draw the limit state function :math:`g` to help to understand the shape of the limit state.

# %%
g = axialBeam.model
graph = ot.Graph("Simple stress beam", "R", "F", True, "upper right")
drawfunction = g.draw([1.8e6, 600], [4e6, 950.0], [100] * 2)
graph.add(drawfunction)
view = otv.View(graph)

# %%
# Create the output random vector :math:`Y = g(\vect{X})` with :math:`\vect{X} = (R,F)`.

# %%
X = ot.RandomVector(distribution)
Y = ot.CompositeRandomVector(g, X)

# %%
# Create the event :math:`\{ Y = g(\vect{X}) \leq 0 \}`
# -----------------------------------------------------

# %%
threshold = 0.0
event = ot.ThresholdEvent(Y, ot.Less(), 0.0)

# %%
# Evaluate the probability with the Standard Space Cross Entropy
# --------------------------------------------------------------

# %%
# We choose to set the intermediate quantile level to 0.35.

# %%
standardSpaceIS = ot.StandardSpaceCrossEntropyImportanceSampling(event, 0.35)

# %%
# The sample size at each iteration can be changed by the following accessor:

# %%
standardSpaceIS.setMaximumOuterSampling(1000)

# %%
# Now we can run the algorithm and get the results.

# %%
standardSpaceIS.run()
standardSpaceISResult = standardSpaceIS.getResult()
proba = standardSpaceISResult.getProbabilityEstimate()
print("Proba Standard Space Cross Entropy IS = ", proba)
print(
    "Current coefficient of variation = ",
    standardSpaceISResult.getCoefficientOfVariation(),
)

# %%
# The length of the confidence interval of level :math:`95\%` is:

# %%
length95 = standardSpaceISResult.getConfidenceLength()
print("Confidence length (0.95) = ", standardSpaceISResult.getConfidenceLength())

# %%
# which enables to build the confidence interval.

# %%
print(
    "Confidence interval (0.95) = [",
    proba - length95 / 2,
    ", ",
    proba + length95 / 2,
    "]",
)

# %%
# We can analyze the simulation budget.

# %%
print(
    "Numerical budget: ",
    standardSpaceISResult.getBlockSize() * standardSpaceISResult.getOuterSampling(),
)

# %%
# We can also retrieve the optimal auxiliary distribution in the standard space.

# %%
print(
    "Auxiliary distribution in Standard space: ",
    standardSpaceISResult.getAuxiliaryDistribution(),
)


# %%
# Draw initial samples and final samples
# --------------------------------------
#

# %%
# First we get the auxiliary samples in the standard space and we project them in physical space.

# %%
auxiliaryInputSamples = standardSpaceISResult.getAuxiliaryInputSample()
auxiliaryInputSamplesPhysicalSpace = (
    distribution.getInverseIsoProbabilisticTransformation()(auxiliaryInputSamples)
)


# %%
graph = ot.Graph("Cloud of samples and failure domain", "R", "F", True, "upper right")
# Generation of samples with initial distribution
initialSamples = ot.Cloud(
    distribution.getSample(1000), "blue", "plus", "Initial samples"
)
auxiliarySamples = ot.Cloud(
    auxiliaryInputSamplesPhysicalSpace, "orange", "fsquare", "Auxiliary samples"
)
# Plot failure domain
nx, ny = 50, 50
xx = ot.Box([nx], ot.Interval([1.80e6], [4e6])).generate()
yy = ot.Box([ny], ot.Interval([600.0], [950.0])).generate()
inputData = ot.Box([nx, ny], ot.Interval([1.80e6, 600.0], [4e6, 950.0])).generate()
outputData = g(inputData)
mycontour = ot.Contour(xx, yy, outputData)
mycontour.setLevels([0.0])
mycontour.setLabels(["0.0"])
mycontour.setLegend("Failure domain")
graph.add(initialSamples)
graph.add(auxiliarySamples)
graph.add(mycontour)
view = otv.View(graph)

# %%
# In the previous graph, the blue crosses stand for samples drawn with the initial distribution and the orange squares stand for the samples drawn at the final iteration.

# %%
# Estimation of the probability with the Physical Space Cross Entropy
# -------------------------------------------------------------------

# %%
# For a more advanced usage, it is possible to work in the physical space to specify the auxiliary distribution.
# In this second example, we take the auxiliary distribution in the same family as the initial distribution and we want to optimize all the parameters.

# %%
# The parameters to be optimized are the parameters of the native distribution.
# It is necessary to define among all the distribution parameters, which ones will be optimized through the indices of the parameters.
# In this case, all the parameters will be optimized.

# %%
# Be careful that the native parameters of the auxiliary distribution will be considered.
# Here for the :class:`~openturns.LogNormalMuSigma` distribution, this corresponds
# to `muLog`, `sigmaLog` and `gamma`.

# %%
# The user can use `getParameterDescription()` method to access to the parameters of the auxiliary distribution.

# %%
ot.RandomGenerator.SetSeed(0)
marginR = ot.LogNormalMuSigma().getDistribution()
marginF = ot.Normal()
auxiliaryMarginals = [marginR, marginF]
auxiliaryDistribution = ot.JointDistribution(auxiliaryMarginals)
# Definition of parameters to be optimized
activeParameters = ot.Indices(5)
activeParameters.fill()
# WARNING : native parameters of distribution have to be considered
bounds = ot.Interval([14, 0.01, 0.0, 500, 20], [16, 0.2, 0.1, 1000, 70])
initialParameters = distribution.getParameter()
desc = auxiliaryDistribution.getParameterDescription()
p = auxiliaryDistribution.getParameter()
print(
    "Parameters of the auxiliary distribution:",
    ", ".join([f"{param}: {value:.3f}" for param, value in zip(desc, p)]),
)

physicalSpaceIS1 = ot.PhysicalSpaceCrossEntropyImportanceSampling(
    event, auxiliaryDistribution, activeParameters, initialParameters, bounds
)

# %%
# Custom optimization algorithm can be also specified for the auxiliary distribution parameters optimization, here for example we choose :class:`~openturns.TNC`.

# %%
physicalSpaceIS1.setOptimizationAlgorithm(ot.TNC())

# %%
# The number of samples per step can also be specified.

# %%
physicalSpaceIS1.setMaximumOuterSampling(1000)

# %%
# Finally, we run the algorithm and get the results.

# %%
physicalSpaceIS1.run()
physicalSpaceISResult1 = physicalSpaceIS1.getResult()
print("Probability of failure:", physicalSpaceISResult1.getProbabilityEstimate())
print("Coefficient of variation:", physicalSpaceISResult1.getCoefficientOfVariation())

# %%
# We can also decide to optimize only the means of the marginals and keep the other parameters identical to the initial distribution.

# %%
ot.RandomGenerator.SetSeed(0)
marginR = ot.LogNormalMuSigma(3e6, 3e5, 0.0).getDistribution()
marginF = ot.Normal(750.0, 50.0)
auxiliaryMarginals = [marginR, marginF]
auxiliaryDistribution = ot.JointDistribution(auxiliaryMarginals)
print("Parameters of initial distribution", auxiliaryDistribution.getParameter())

# Definition of parameters to be optimized
activeParameters = ot.Indices([0, 3])
# WARNING : native parameters of distribution have to be considered
bounds = ot.Interval([14, 500], [16, 1000])
initialParameters = [15, 750]
physicalSpaceIS2 = ot.PhysicalSpaceCrossEntropyImportanceSampling(
    event, auxiliaryDistribution, activeParameters, initialParameters, bounds
)
physicalSpaceIS2.run()
physicalSpaceISResult2 = physicalSpaceIS2.getResult()
print("Probability of failure:", physicalSpaceISResult2.getProbabilityEstimate())
print("Coefficient of variation:", physicalSpaceISResult2.getCoefficientOfVariation())

# %%
# Let us analyze the auxiliary output samples for the two previous simulations.
# We can plot initial (in blue) and auxiliary samples in physical space (orange
# for the first simulation and black for the second simulation).

# %%
graph = ot.Graph("Cloud of samples and failure domain", "R", "F", True, "upper right")
auxiliarySamples1 = ot.Cloud(
    physicalSpaceISResult1.getAuxiliaryInputSample(),
    "orange",
    "fsquare",
    "Auxiliary samples, first case",
)
auxiliarySamples2 = ot.Cloud(
    physicalSpaceISResult2.getAuxiliaryInputSample(),
    "black",
    "bullet",
    "Auxiliary samples, second case",
)
graph.add(initialSamples)
graph.add(auxiliarySamples1)
graph.add(auxiliarySamples2)
graph.add(mycontour)
view = otv.View(graph)

# %%
# By analyzing the failure samples, one may want to include correlation parameters in the auxiliary distribution.
# In this last example, we add a Normal copula. The correlation parameter will be optimized with associated interval between 0 and 1.

# %%
ot.RandomGenerator.SetSeed(0)
marginR = ot.LogNormalMuSigma(3e6, 3e5, 0.0).getDistribution()
marginF = ot.Normal(750.0, 50.0)
auxiliaryMarginals = [marginR, marginF]
copula = ot.NormalCopula()
auxiliaryDistribution = ot.JointDistribution(auxiliaryMarginals, copula)
desc = auxiliaryDistribution.getParameterDescription()
p = auxiliaryDistribution.getParameter()
print(
    "Initial parameters of the auxiliary distribution:",
    ", ".join([f"{param}: {value:.3f}" for param, value in zip(desc, p)]),
)

# Definition of parameters to be optimized
activeParameters = ot.Indices(6)
activeParameters.fill()

bounds = ot.Interval(
    [14, 0.01, 0.0, 500.0, 20.0, 0.0], [16, 0.2, 0.1, 1000.0, 70.0, 1.0]
)
initialParameters = auxiliaryDistribution.getParameter()

physicalSpaceIS3 = ot.PhysicalSpaceCrossEntropyImportanceSampling(
    event, auxiliaryDistribution, activeParameters, initialParameters, bounds
)
physicalSpaceIS3.run()
physicalSpaceISResult3 = physicalSpaceIS3.getResult()
desc = physicalSpaceISResult3.getAuxiliaryDistribution().getParameterDescription()
p = physicalSpaceISResult3.getAuxiliaryDistribution().getParameter()
print(
    "Optimized parameters of the auxiliary distribution:",
    ", ".join([f"{param}: {value:.3f}" for param, value in zip(desc, p)]),
)
print("Probability of failure: ", physicalSpaceISResult3.getProbabilityEstimate())
print("Coefficient of variation: ", physicalSpaceISResult3.getCoefficientOfVariation())

# %%
# Finally, we plot the new auxiliary samples in black.

# %%
graph = ot.Graph("Cloud of samples and failure domain", "R", "F", True, "upper right")
auxiliarySamples1 = ot.Cloud(
    physicalSpaceISResult1.getAuxiliaryInputSample(),
    "orange",
    "fsquare",
    "Auxiliary samples, first case",
)
auxiliarySamples3 = ot.Cloud(
    physicalSpaceISResult3.getAuxiliaryInputSample(),
    "black",
    "bullet",
    "Auxiliary samples, second case",
)
graph.add(initialSamples)
graph.add(auxiliarySamples1)
graph.add(auxiliarySamples3)
graph.add(mycontour)

# sphinx_gallery_thumbnail_number = 4
view = otv.View(graph)

# %%
# The `quantileLevel` parameter can be also changed using the :class:`~openturns.ResourceMap` key : `CrossEntropyImportanceSampling-DefaultQuantileLevel`.
# Be careful that this key changes the value number of both :class:`~openturns.StandardSpaceCrossEntropyImportanceSampling`
# and :class:`~openturns.PhysicalSpaceCrossEntropyImportanceSampling`.

# %%
ot.ResourceMap.SetAsScalar("CrossEntropyImportanceSampling-DefaultQuantileLevel", 0.4)
physicalSpaceIS4 = ot.PhysicalSpaceCrossEntropyImportanceSampling(
    event, auxiliaryDistribution, activeParameters, initialParameters, bounds
)
print("Modified quantile level:", physicalSpaceIS4.getQuantileLevel())


# %%
# The optimized auxiliary distribution with a dependency between the two marginals allows one to better fit the failure domain, resulting in a lower coefficient of variation.

# %%
otv.View.ShowAll()