File: SWAlignImpl.hpp

package info (click to toggle)
pbseqlib 5.3.1%2Bdfsg-2.1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 7,136 kB
  • sloc: cpp: 77,246; python: 570; makefile: 312; sh: 111; ansic: 9
file content (360 lines) | stat: -rw-r--r-- 15,288 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
#include <algorithm>
#include <cstdint>
#include <iostream>
#include <ostream>
#include <vector>

#include <alignment/datastructures/alignment/Path.h>
#include <pbdata/Types.h>
#include <pbdata/defs.h>
#include <alignment/algorithms/alignment/AlignmentUtils.hpp>
#include <alignment/algorithms/alignment/SWAlign.hpp>
#include <alignment/datastructures/alignment/Alignment.hpp>
#include <alignment/datastructures/alignment/AlignmentMap.hpp>
#include <alignment/datastructures/alignment/AlignmentStats.hpp>
#include <pbdata/DNASequence.hpp>
#include <pbdata/matrix/FlatMatrix.hpp>

template <typename T_QuerySequence, typename T_TargetSequence, typename T_Alignment,
          typename T_ScoreFn>
int SWAlign(T_QuerySequence &qSeq, T_TargetSequence &tSeq, std::vector<int> &scoreMat,
            std::vector<Arrow> &pathMat, T_Alignment &alignment, T_ScoreFn &scoreFn,
            AlignmentType alignType, bool trustSequences, bool printMatrix)
{
    (void)(trustSequences);
    VectorIndex nRows = qSeq.length + 1;
    VectorIndex nCols = tSeq.length + 1;

    VectorIndex totalMatSize = nRows * nCols;
    if (scoreMat.size() < totalMatSize) {
        scoreMat.resize(totalMatSize);
        pathMat.resize(totalMatSize);
    }

    //
    // Initialze matrices
    std::fill(scoreMat.begin(), scoreMat.begin() + totalMatSize, 0);
    std::fill(pathMat.begin(), pathMat.begin() + totalMatSize, NoArrow);

    //
    // Initialize boundary conditions.
    //
    int r = 0, c = 0;
    if (alignType == Global or alignType == ScoreGlobal or alignType == FrontAnchored or
        alignType == ScoreFrontAnchored) {
        //
        // Global alignments penalize gaps at the beginning of both
        // sequences.
        //
        for (c = 0; c < (int)tSeq.length + 1; c++) {
            scoreMat[rc2index(0, c, tSeq.length + 1)] = scoreFn.del * c;
            pathMat[rc2index(0, c, tSeq.length + 1)] = Left;
        }

        for (r = 0; r < (int)qSeq.length + 1; r++) {
            scoreMat[rc2index(r, 0, tSeq.length + 1)] = scoreFn.ins * r;
            pathMat[rc2index(r, 0, tSeq.length + 1)] = Up;
        }
    } else if (alignType == Local or alignType == ScoreLocal or alignType == LocalBoundaries
               // end anchoring requires free gap penalties at the
               // beginning of sequences.
               or alignType == EndAnchored or alignType == ScoreEndAnchored) {
        //
        // Local alignments may shave off the beginning of either read.
        // No penalties at the starts of reads.
        //
        for (c = 0; c < (int)tSeq.length + 1; c++) {
            scoreMat[rc2index(0, c, tSeq.length + 1)] = 0;
            pathMat[rc2index(0, c, tSeq.length + 1)] = NoArrow;
        }
        for (r = 0; r < (int)qSeq.length + 1; r++) {
            scoreMat[rc2index(r, 0, tSeq.length + 1)] = 0;
            pathMat[rc2index(r, 0, tSeq.length + 1)] = NoArrow;
        }
    } else if (alignType == QueryFit or alignType == ScoreQueryFit) {
        //
        // Query fit allows free gaps at the beginning and end
        // of the target sequence.
        //
        for (c = 0; c < (int)tSeq.length + 1; c++) {
            scoreMat[rc2index(0, c, tSeq.length + 1)] = 0;
            pathMat[rc2index(0, c, tSeq.length + 1)] = Left;
        }
        for (r = 0; r < (int)qSeq.length + 1; r++) {
            scoreMat[rc2index(r, 0, tSeq.length + 1)] = scoreFn.ins * r;
            pathMat[rc2index(r, 0, tSeq.length + 1)] = Up;
        }
    } else if (alignType == TargetFit or alignType == ScoreTargetFit) {
        //
        // Query fit allows free gaps at the beginning and end
        // of the target sequence.
        //
        for (c = 0; c < (int)tSeq.length + 1; c++) {
            scoreMat[rc2index(0, c, tSeq.length + 1)] = scoreFn.del * c;
            pathMat[rc2index(0, c, tSeq.length + 1)] = Left;
        }
        for (r = 0; r < (int)qSeq.length + 1; r++) {
            scoreMat[rc2index(r, 0, tSeq.length + 1)] = 0;
            pathMat[rc2index(r, 0, tSeq.length + 1)] = Up;
        }
    } else if (alignType == Overlap or alignType == ScoreOverlap or alignType == TSuffixQPrefix or
               alignType == ScoreTSuffixQPrefix) {
        //
        // Overlap alignments allow a gap at the beginning of the
        // query, and at the end of the target.
        //
        for (r = 0; r < (int)qSeq.length + 1; r++) {
            scoreMat[rc2index(r, 0, tSeq.length + 1)] = scoreFn.ins * r;
            pathMat[rc2index(r, 0, tSeq.length + 1)] = Up;
        }
        for (c = 0; c < (int)tSeq.length + 1; c++) {
            scoreMat[rc2index(0, c, tSeq.length + 1)] = 0;
            pathMat[rc2index(0, c, tSeq.length + 1)] = Left;
        }
    } else if (alignType == TPrefixQSuffix or alignType == ScoreTPrefixQSuffix) {
        //
        // Overlap alignments allow a gap at the beginning of the
        // query, and at the end of the target.
        //
        for (c = 0; c < (int)tSeq.length + 1; c++) {
            scoreMat[rc2index(0, c, tSeq.length + 1)] = scoreFn.del * c;
            pathMat[rc2index(0, c, tSeq.length + 1)] = Left;
        }
        for (r = 0; r < (int)qSeq.length + 1; r++) {
            scoreMat[rc2index(r, 0, tSeq.length + 1)] = 0;
            pathMat[rc2index(r, 0, tSeq.length + 1)] = Up;
        }
    }

    pathMat[0] = Diagonal;

    int match, qGap, tGap;

    //
    // Begin matrix pointers after the
    int *matchScorePtr = &scoreMat[0];
    int *gapQScorePtr = &scoreMat[1];
    int *gapTScorePtr = &scoreMat[tSeq.length + 1];
    int *curScorePtr = &scoreMat[tSeq.length + 2];
    Arrow *optPathPtr = &pathMat[tSeq.length + 2];
    int minScore;

    int localMinScore = 0;
    int localMinRow = 0;
    int localMinCol = 0;
    for (r = 0; r < (int)qSeq.length; r++) {
        for (c = 0; c < (int)tSeq.length; c++) {
            //
            // r+1, c+1 is the current row /col in the score and path mat.
            //

            //match = matchMat[TwoBit[qSeq.seq[r]]][TwoBit[tSeq.seq[c]]] + *matchScorePtr;
            //			qGap  = *gapQScorePtr + gap;
            //			tGap  = *gapTScorePtr + gap;
            match = scoreFn.Match(tSeq, c, qSeq, r) + scoreMat[rc2index(r, c, nCols)];
            qGap = scoreMat[rc2index(r, c + 1, nCols)] + scoreFn.Insertion(tSeq, r + 1, qSeq, c);
            tGap = scoreMat[rc2index(r + 1, c, nCols)] + scoreFn.Deletion(tSeq, r, qSeq, c + 1);
            minScore = MIN(match, MIN(qGap, tGap));
            if (minScore < localMinScore) {
                localMinScore = minScore;
                localMinRow = r;
                localMinCol = c;
            }

            if (minScore > 0 and
                (alignType == Local or alignType == ScoreLocal or alignType == LocalBoundaries or
                 alignType == EndAnchored or alignType == ScoreEndAnchored)) {
                *curScorePtr = 0;
                *optPathPtr = NoArrow;
            }
            // This staement will get easier when the alignTypes are bitfields.
            // Not sure why this explicitly checks all conditions.
            else if (alignType == Local or alignType == Global or alignType == QueryFit or
                     alignType == Overlap or alignType == TargetFit or
                     alignType == ScoreTargetFit or alignType == ScoreLocal or
                     alignType == ScoreGlobal or alignType == ScoreQueryFit or
                     alignType == ScoreOverlap or alignType == FrontAnchored or
                     alignType == ScoreFrontAnchored or alignType == EndAnchored or
                     alignType == ScoreEndAnchored or alignType == LocalBoundaries or
                     alignType == TPrefixQSuffix or alignType == ScoreTPrefixQSuffix or
                     alignType == TSuffixQPrefix or alignType == ScoreTSuffixQPrefix) {
                *curScorePtr = minScore;
                //		scoreMat[rc2index(r+1,c+1, tl)] = minScore;
                if (minScore == match) {
                    *optPathPtr = Diagonal;
                    //pathMat[rc2index(r+1,c+1,tl)] = Diagonal;
                } else if (minScore == qGap) {
                    *optPathPtr = Up;
                    //pathMat[rc2index(r+1,c+1, tl)] = Up;
                } else if (minScore == tGap) {
                    *optPathPtr = Left;
                    //pathMat[rc2index(r+1,c+1, tl)] = Left;
                }
            }
            ++matchScorePtr;
            ++gapTScorePtr;
            ++gapQScorePtr;
            ++curScorePtr;
            ++optPathPtr;
        }
        // Done processing a row.
        // This leaves the pointers starting at the first column in the next row
        // which is a boundary column. Advance one more.
        //
        ++matchScorePtr;
        ++gapTScorePtr;
        ++gapQScorePtr;
        ++curScorePtr;
        ++optPathPtr;
    }
    //
    // Now trace back in the pairwise alignment.
    //

    // The location of the trace back depends on the type of alignment that is done.
    int minRow = 0, minCol = 0;
    if (alignType == Global or alignType == ScoreGlobal or alignType == EndAnchored or
        alignType == ScoreEndAnchored) {
        // start at bottom right of matrix.
        r = qSeq.length;
        c = tSeq.length;
        minRow = r;
        minCol = c;
    } else if (alignType == Local or alignType == ScoreLocal or alignType == FrontAnchored or
               alignType == ScoreFrontAnchored or alignType == LocalBoundaries) {
        // start at cell that gives the highest score.
        r = localMinRow;
        c = localMinCol;
        minRow = r;
        minCol = c;
    } else if (alignType == QueryFit or alignType == Overlap or alignType == ScoreQueryFit or
               alignType == ScoreOverlap) {
        // Start at the point at the end of the target that gives the highest score, but has the
        // end query sequence alignment.

        r = nRows - 1;
        int minScore = scoreMat[rc2index(nRows - 1, 1, nCols)];
        minCol = 1;
        for (c = 2; c < (int)nCols; c++) {
            if (scoreMat[rc2index(nRows - 1, c, nCols)] < minScore) {
                minScore = scoreMat[rc2index(nRows - 1, c, nCols)];
                minCol = c;
            }
        }
        c = minCol;
        minRow = nRows - 1;
    } else if (alignType == TargetFit or alignType == ScoreTargetFit) {
        // Start at the point at the end of the target that gives the highest score, but has the
        // end query sequence alignment.

        //
        // Always trace back from the end of the target.
        //
        minCol = nCols - 1;
        c = nCols - 1;
        r = 0;
        int minScore = scoreMat[rc2index(1, nCols - 1, nCols)];
        for (r = 2; r < (int)nRows; r++) {
            if (scoreMat[rc2index(r, nCols - 1, nCols)] < minScore) {
                minScore = scoreMat[rc2index(r, nCols - 1, nCols)];
                minRow = r;
            }
        }
        // store where to trace back from in the query.
        r = minRow;
    } else if (alignType == TSuffixQPrefix or alignType == ScoreTSuffixQPrefix) {
        // Start at the point at the end of the target that gives the highest score, but has the
        // end query sequence alignment.
        c = nCols - 1;
        r = 1;

        int minScore = scoreMat[rc2index(1, nCols - 1, nCols)];
        minRow = 1;
        for (r = 2; r < (int)nRows; r++) {
            if (scoreMat[rc2index(r, nCols - 1, nCols)] < minScore) {
                minScore = scoreMat[rc2index(r, nCols - 1, nCols)];
                minRow = r;
            }
        }
        r = minRow;
        minCol = nCols - 1;
    } else if (alignType == TPrefixQSuffix or alignType == ScoreTPrefixQSuffix) {
        r = nRows - 1;
        int minScore = scoreMat[rc2index(nRows - 1, 1, nCols)];
        minCol = 1;
        for (c = 2; c < (int)nCols; c++) {
            if (scoreMat[rc2index(nRows - 1, c, nCols)] < minScore) {
                minScore = scoreMat[rc2index(nRows - 1, c, nCols)];
                minCol = c;
            }
        }
        c = minCol;
        minRow = nRows - 1;
    }
    /*
       PrintFlatMatrix(&scoreMat[0], nRows, nCols, std::cout);
       PrintFlatMatrix(&pathMat[0], nRows,nCols, std::cout);
       */
    if (alignType != ScoreGlobal and alignType != ScoreLocal and alignType != ScoreQueryFit and
        alignType != ScoreOverlap and alignType != ScoreTPrefixQSuffix and
        alignType != ScoreTSuffixQPrefix) {
        std::vector<Arrow> optAlignment;
        Arrow arrow;
        while (((alignType == Global or alignType == FrontAnchored) and
                (r > 0 or c > 0)) or  // global alignment stops at top corner
               ((alignType == QueryFit or alignType == Overlap or alignType == TSuffixQPrefix) and
                r > 0) or
               ((alignType == TPrefixQSuffix) and c > 0) or (alignType == TargetFit and c > 0) or
               // local alignment stops at top corner -or- when new local alignment started.
               ((alignType == Local or alignType == EndAnchored or alignType == LocalBoundaries) and
                r > 0 and c > 0 and pathMat[r * nCols + c] != NoArrow)) {
            arrow = pathMat[rc2index(r, c, nCols)];

            //
            // When the alignment type is localBoundaries, it is not necessary to store
            // the actual alignment.  Only the starting positions and lengts will be stored.
            //
            if (alignType != LocalBoundaries) {
                optAlignment.push_back(arrow);
            }
            if (arrow == Diagonal) {
                r--;
                c--;
            } else if (arrow == Up) {
                r--;
            } else if (arrow == Left) {
                c--;
            }
        }
        // remove the boundary condition that is added for global alignment.
        if (alignType == LocalBoundaries and alignType != Local and alignType != EndAnchored and
            optAlignment.size() > 0)
            optAlignment.pop_back();
        if (optAlignment.size() > 1) std::reverse(optAlignment.begin(), optAlignment.end());
        if (optAlignment.size() > 0) alignment.ArrowPathToAlignment(optAlignment);

        //
        // If running a local alignment, the alignment does not
        // explicityly encode the gaps at the beginning and ending of the
        // alignment.  These are stored in the qPos and tPos fields.
        //
        if (alignType == TSuffixQPrefix or alignType == TPrefixQSuffix) {
            alignment.qPos = r;
            alignment.tPos = c;
        } else if (alignType == Local or alignType == EndAnchored or alignType == LocalBoundaries) {
            alignment.qPos = r;
            alignment.tPos = c;
            alignment.qLength = localMinRow - alignment.qPos + 1;
            alignment.tLength = localMinCol - alignment.tPos + 1;
        } else if (alignType == QueryFit or alignType == TargetFit) {
            alignment.qPos = r;
            alignment.tPos = c;
        }
    }
    if (printMatrix) {
        PrintFlatMatrix(&scoreMat[0], qSeq.length + 1, tSeq.length + 1, std::cout);
        std::cout << std::endl;
        PrintFlatMatrix(&pathMat[0], qSeq.length + 1, tSeq.length + 1, std::cout);
    }
    return scoreMat[rc2index(minRow, minCol, nCols)];
}