File: test_views.py

package info (click to toggle)
python-anndata 0.12.0~rc1-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 2,704 kB
  • sloc: python: 19,721; makefile: 22; sh: 14
file content (850 lines) | stat: -rw-r--r-- 28,326 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
from __future__ import annotations

from contextlib import ExitStack
from copy import deepcopy
from operator import mul
from typing import TYPE_CHECKING

import joblib
import numpy as np
import pandas as pd
import pytest
from dask.base import tokenize
from packaging.version import Version
from scipy import sparse

import anndata as ad
from anndata._core.index import _normalize_index
from anndata._core.views import (
    ArrayView,
    SparseCSCArrayView,
    SparseCSCMatrixView,
    SparseCSRArrayView,
    SparseCSRMatrixView,
)
from anndata.compat import CupyCSCMatrix, DaskArray
from anndata.tests.helpers import (
    BASE_MATRIX_PARAMS,
    CUPY_MATRIX_PARAMS,
    DASK_MATRIX_PARAMS,
    GEN_ADATA_DASK_ARGS,
    assert_equal,
    gen_adata,
    single_subset,
    slice_subset,
    subset_func,
)
from anndata.utils import asarray

if TYPE_CHECKING:
    from types import EllipsisType

IGNORE_SPARSE_EFFICIENCY_WARNING = pytest.mark.filterwarnings(
    "ignore:Changing the sparsity structure:scipy.sparse.SparseEfficiencyWarning"
)

# ------------------------------------------------------------------------------
# Some test data
# ------------------------------------------------------------------------------

# data matrix of shape n_obs x n_vars
X_list = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
# annotation of observations / rows
obs_dict = dict(
    row_names=["name1", "name2", "name3"],  # row annotation
    oanno1=["cat1", "cat2", "cat2"],  # categorical annotation
    oanno2=["o1", "o2", "o3"],  # string annotation
    oanno3=[2.1, 2.2, 2.3],  # float annotation
)
# annotation of variables / columns
var_dict = dict(vanno1=[3.1, 3.2, 3.3])
# unstructured annotation
uns_dict = dict(oanno1_colors=["#000000", "#FFFFFF"], uns2=["some annotation"])

subset_func2 = subset_func


class NDArraySubclass(np.ndarray):
    def view(self, dtype=None, typ=None):
        return self


@pytest.fixture
def adata():
    adata = ad.AnnData(np.zeros((100, 100)))
    adata.obsm["o"] = np.zeros((100, 50))
    adata.varm["o"] = np.zeros((100, 50))
    return adata


@pytest.fixture(
    params=BASE_MATRIX_PARAMS + DASK_MATRIX_PARAMS + CUPY_MATRIX_PARAMS,
)
def matrix_type(request):
    return request.param


@pytest.fixture(params=BASE_MATRIX_PARAMS + DASK_MATRIX_PARAMS)
def matrix_type_no_gpu(request):
    return request.param


@pytest.fixture(params=BASE_MATRIX_PARAMS)
def matrix_type_base(request):
    return request.param


@pytest.fixture(params=["layers", "obsm", "varm"])
def mapping_name(request):
    return request.param


# ------------------------------------------------------------------------------
# The test functions
# ------------------------------------------------------------------------------


def test_views():
    X = np.array(X_list, dtype="int32")
    adata = ad.AnnData(X, obs=obs_dict, var=var_dict, uns=uns_dict)

    assert adata[:, 0].is_view
    assert adata[:, 0].X.tolist() == np.reshape([1, 4, 7], (3, 1)).tolist()

    adata[:2, 0].X = [0, 0]

    assert adata[:, 0].X.tolist() == np.reshape([0, 0, 7], (3, 1)).tolist()

    adata_subset = adata[:2, [0, 1]]

    assert adata_subset.is_view
    # now transition to actual object
    with pytest.warns(ad.ImplicitModificationWarning, match=r".*\.obs.*"):
        adata_subset.obs["foo"] = range(2)
    assert not adata_subset.is_view

    assert adata_subset.obs["foo"].tolist() == list(range(2))


def test_convert_error():
    adata = ad.AnnData(np.array([[1, 2], [3, 0]]))
    no_array = [[1], []]

    if Version(np.__version__) >= Version("1.24"):
        stack = pytest.raises(ValueError, match=r"Failed to convert")
    else:
        stack = ExitStack()
        stack.enter_context(
            pytest.warns(
                np.VisibleDeprecationWarning,
                match=r"ndarray from ragged.*is deprecated",
            )
        )
        stack.enter_context(
            pytest.raises(ValueError, match=r"setting an array element with a sequence")
        )
    with stack:
        adata[:, 0].X = no_array


def test_view_subset_shapes():
    adata = gen_adata((20, 10), **GEN_ADATA_DASK_ARGS)

    view = adata[:, ::2]
    assert view.var.shape == (5, 8)
    assert {k: v.shape[0] for k, v in view.varm.items()} == {k: 5 for k in view.varm}


def test_modify_view_component(matrix_type, mapping_name, request):
    adata = ad.AnnData(
        np.zeros((10, 10)),
        **{mapping_name: dict(m=matrix_type(asarray(sparse.random(10, 10))))},
    )
    # Fix if and when dask supports tokenizing GPU arrays
    # https://github.com/dask/dask/issues/6718
    if isinstance(matrix_type(np.zeros((1, 1))), DaskArray):
        hash_func = tokenize
    else:
        hash_func = joblib.hash

    init_hash = hash_func(adata)

    subset = adata[:5, :][:, :5]
    assert subset.is_view
    m = getattr(subset, mapping_name)["m"]
    with pytest.warns(ad.ImplicitModificationWarning, match=rf".*\.{mapping_name}.*"):
        m[0, 0] = 100
    assert not subset.is_view
    assert getattr(subset, mapping_name)["m"][0, 0] == 100

    assert init_hash == hash_func(adata)

    if "sparse_array_dask_array" in request.node.callspec.id:
        msg = "sparse arrays in dask are generally expected to fail but in this case they do not"
        pytest.fail(msg)


@pytest.mark.parametrize("attr", ["obsm", "varm"])
def test_set_obsm_key(adata, attr):
    init_hash = joblib.hash(adata)

    orig_val = getattr(adata, attr)["o"].copy()
    subset = adata[:50] if attr == "obsm" else adata[:, :50]

    assert subset.is_view

    with pytest.warns(ad.ImplicitModificationWarning, match=rf".*\.{attr}\['o'\].*"):
        getattr(subset, attr)["o"] = new_val = np.ones((50, 20))

    assert not subset.is_view
    assert np.all(getattr(adata, attr)["o"] == orig_val)
    assert np.any(getattr(subset, attr)["o"] == new_val)

    assert init_hash == joblib.hash(adata)


def test_set_obs(adata, subset_func):
    init_hash = joblib.hash(adata)

    subset = adata[subset_func(adata.obs_names), :]

    new_obs = pd.DataFrame(
        dict(a=np.ones(subset.n_obs), b=np.ones(subset.n_obs)),
        index=subset.obs_names,
    )

    assert subset.is_view
    subset.obs = new_obs
    assert not subset.is_view
    assert np.all(subset.obs == new_obs)

    assert joblib.hash(adata) == init_hash


def test_set_var(adata, subset_func):
    init_hash = joblib.hash(adata)

    subset = adata[:, subset_func(adata.var_names)]

    new_var = pd.DataFrame(
        dict(a=np.ones(subset.n_vars), b=np.ones(subset.n_vars)),
        index=subset.var_names,
    )

    assert subset.is_view
    subset.var = new_var
    assert not subset.is_view
    assert np.all(subset.var == new_var)

    assert joblib.hash(adata) == init_hash


def test_drop_obs_column():
    adata = ad.AnnData(np.array(X_list, dtype="int32"), obs=obs_dict)

    subset = adata[:2]
    assert subset.is_view
    # returns a copy of obs
    assert subset.obs.drop(columns=["oanno1"]).columns.tolist() == ["oanno2", "oanno3"]
    assert subset.is_view
    # would modify obs, so it should actualize subset and not modify adata
    subset.obs.drop(columns=["oanno1"], inplace=True)
    assert not subset.is_view
    assert subset.obs.columns.tolist() == ["oanno2", "oanno3"]

    assert adata.obs.columns.tolist() == ["oanno1", "oanno2", "oanno3"]


def test_set_obsm(adata):
    init_hash = joblib.hash(adata)

    dim0_size = np.random.randint(2, adata.shape[0] - 1)
    dim1_size = np.random.randint(1, 99)
    orig_obsm_val = adata.obsm["o"].copy()
    subset_idx = np.random.choice(adata.obs_names, dim0_size, replace=False)

    subset = adata[subset_idx, :]
    assert subset.is_view
    subset.obsm = dict(o=np.ones((dim0_size, dim1_size)))
    assert not subset.is_view
    assert np.all(orig_obsm_val == adata.obsm["o"])  # Checking for mutation
    assert np.all(subset.obsm["o"] == np.ones((dim0_size, dim1_size)))

    subset = adata[subset_idx, :]
    subset_hash = joblib.hash(subset)
    with pytest.raises(ValueError, match=r"incorrect shape"):
        subset.obsm = dict(o=np.ones((dim0_size + 1, dim1_size)))
    with pytest.raises(ValueError, match=r"incorrect shape"):
        subset.varm = dict(o=np.ones((dim0_size - 1, dim1_size)))
    assert subset_hash == joblib.hash(subset)

    # Only modification have been made to a view
    assert init_hash == joblib.hash(adata)


def test_set_varm(adata):
    init_hash = joblib.hash(adata)

    dim0_size = np.random.randint(2, adata.shape[1] - 1)
    dim1_size = np.random.randint(1, 99)
    orig_varm_val = adata.varm["o"].copy()
    subset_idx = np.random.choice(adata.var_names, dim0_size, replace=False)

    subset = adata[:, subset_idx]
    assert subset.is_view
    subset.varm = dict(o=np.ones((dim0_size, dim1_size)))
    assert not subset.is_view
    assert np.all(orig_varm_val == adata.varm["o"])  # Checking for mutation
    assert np.all(subset.varm["o"] == np.ones((dim0_size, dim1_size)))

    subset = adata[:, subset_idx]
    subset_hash = joblib.hash(subset)
    with pytest.raises(ValueError, match=r"incorrect shape"):
        subset.varm = dict(o=np.ones((dim0_size + 1, dim1_size)))
    with pytest.raises(ValueError, match=r"incorrect shape"):
        subset.varm = dict(o=np.ones((dim0_size - 1, dim1_size)))
    # subset should not be changed by failed setting
    assert subset_hash == joblib.hash(subset)
    assert init_hash == joblib.hash(adata)


# TODO: Determine if this is the intended behavior,
#       or just the behaviour we’ve had for a while
@IGNORE_SPARSE_EFFICIENCY_WARNING
def test_not_set_subset_X(matrix_type_base, subset_func):
    adata = ad.AnnData(matrix_type_base(asarray(sparse.random(20, 20))))
    init_hash = joblib.hash(adata)
    orig_X_val = adata.X.copy()
    while True:
        subset_idx = slice_subset(adata.obs_names)
        if len(adata[subset_idx, :]) > 2:
            break
    subset = adata[subset_idx, :]

    subset = adata[:, subset_idx]

    internal_idx = _normalize_index(
        subset_func(np.arange(subset.X.shape[1])), subset.var_names
    )
    assert subset.is_view
    with pytest.warns(ad.ImplicitModificationWarning, match=r".*X.*"):
        subset.X[:, internal_idx] = 1
    assert not subset.is_view
    assert not np.any(asarray(adata.X != orig_X_val))

    assert init_hash == joblib.hash(adata)
    assert isinstance(subset.X, type(adata.X))


# TODO: Determine if this is the intended behavior,
#       or just the behaviour we’ve had for a while
@IGNORE_SPARSE_EFFICIENCY_WARNING
def test_not_set_subset_X_dask(matrix_type_no_gpu, subset_func):
    adata = ad.AnnData(matrix_type_no_gpu(asarray(sparse.random(20, 20))))
    init_hash = tokenize(adata)
    orig_X_val = adata.X.copy()
    while True:
        subset_idx = slice_subset(adata.obs_names)
        if len(adata[subset_idx, :]) > 2:
            break
    subset = adata[subset_idx, :]

    subset = adata[:, subset_idx]

    internal_idx = _normalize_index(
        subset_func(np.arange(subset.X.shape[1])), subset.var_names
    )
    assert subset.is_view
    with pytest.warns(ad.ImplicitModificationWarning, match=r".*X.*"):
        subset.X[:, internal_idx] = 1
    assert not subset.is_view
    assert not np.any(asarray(adata.X != orig_X_val))

    assert init_hash == tokenize(adata)
    assert isinstance(subset.X, type(adata.X))


@IGNORE_SPARSE_EFFICIENCY_WARNING
def test_set_scalar_subset_X(matrix_type, subset_func):
    adata = ad.AnnData(matrix_type(np.zeros((10, 10))))
    orig_X_val = adata.X.copy()
    subset_idx = subset_func(adata.obs_names)

    adata_subset = adata[subset_idx, :]

    adata_subset.X = 1

    assert adata_subset.is_view
    assert np.all(asarray(adata[subset_idx, :].X) == 1)
    if isinstance(adata.X, CupyCSCMatrix):
        # Comparison broken for CSC matrices
        # https://github.com/cupy/cupy/issues/7757
        assert asarray(orig_X_val.tocsr() != adata.X.tocsr()).sum() == mul(
            *adata_subset.shape
        )
    else:
        assert asarray(orig_X_val != adata.X).sum() == mul(*adata_subset.shape)


# TODO: Use different kind of subsetting for adata and view
def test_set_subset_obsm(adata, subset_func):
    init_hash = joblib.hash(adata)
    orig_obsm_val = adata.obsm["o"].copy()

    while True:
        subset_idx = slice_subset(adata.obs_names)
        if len(adata[subset_idx, :]) > 2:
            break
    subset = adata[subset_idx, :]

    internal_idx = _normalize_index(
        subset_func(np.arange(subset.obsm["o"].shape[0])), subset.obs_names
    )

    assert subset.is_view
    with pytest.warns(ad.ImplicitModificationWarning, match=r".*obsm.*"):
        subset.obsm["o"][internal_idx] = 1
    assert not subset.is_view
    assert np.all(adata.obsm["o"] == orig_obsm_val)

    assert init_hash == joblib.hash(adata)


def test_set_subset_varm(adata, subset_func):
    init_hash = joblib.hash(adata)
    orig_varm_val = adata.varm["o"].copy()

    while True:
        subset_idx = slice_subset(adata.var_names)
        if (adata[:, subset_idx]).shape[1] > 2:
            break
    subset = adata[:, subset_idx]

    internal_idx = _normalize_index(
        subset_func(np.arange(subset.varm["o"].shape[0])), subset.var_names
    )

    assert subset.is_view
    with pytest.warns(ad.ImplicitModificationWarning, match=r".*varm.*"):
        subset.varm["o"][internal_idx] = 1
    assert not subset.is_view
    assert np.all(adata.varm["o"] == orig_varm_val)

    assert init_hash == joblib.hash(adata)


@pytest.mark.parametrize("attr", ["obsm", "varm", "obsp", "varp", "layers"])
def test_view_failed_delitem(attr):
    adata = gen_adata((10, 10), **GEN_ADATA_DASK_ARGS)
    view = adata[5:7, :][:, :5]
    adata_hash = joblib.hash(adata)
    view_hash = joblib.hash(view)

    with pytest.raises(KeyError):
        getattr(view, attr).__delitem__("not a key")

    assert view.is_view
    assert adata_hash == joblib.hash(adata)
    assert view_hash == joblib.hash(view)


@pytest.mark.parametrize("attr", ["obsm", "varm", "obsp", "varp", "layers"])
def test_view_delitem(attr):
    adata = gen_adata((10, 10), **GEN_ADATA_DASK_ARGS)
    getattr(adata, attr)["to_delete"] = np.ones((10, 10))
    # Shouldn’t be a subclass, should be an ndarray
    assert type(getattr(adata, attr)["to_delete"]) is np.ndarray
    view = adata[5:7, :][:, :5]
    adata_hash = joblib.hash(adata)
    view_hash = joblib.hash(view)

    with pytest.warns(
        ad.ImplicitModificationWarning, match=rf".*\.{attr}\['to_delete'\].*"
    ):
        getattr(view, attr).__delitem__("to_delete")

    assert not view.is_view
    assert "to_delete" not in getattr(view, attr)
    assert "to_delete" in getattr(adata, attr)
    assert adata_hash == joblib.hash(adata)
    assert view_hash != joblib.hash(view)


@pytest.mark.parametrize(
    "attr", ["X", "obs", "var", "obsm", "varm", "obsp", "varp", "layers", "uns"]
)
def test_view_delattr(attr, subset_func):
    base = gen_adata((10, 10), **GEN_ADATA_DASK_ARGS)
    orig_hash = tokenize(base)
    subset = base[subset_func(base.obs_names), subset_func(base.var_names)]
    empty = ad.AnnData(obs=subset.obs[[]], var=subset.var[[]])

    delattr(subset, attr)

    assert not subset.is_view
    # Should now have same value as default
    assert_equal(getattr(subset, attr), getattr(empty, attr))
    assert orig_hash == tokenize(base)  # Original should not be modified


@pytest.mark.parametrize(
    "attr", ["obs", "var", "obsm", "varm", "obsp", "varp", "layers", "uns"]
)
def test_view_setattr_machinery(attr, subset_func, subset_func2):
    # Tests that setting attributes on a view doesn't mess anything up too bad
    adata = gen_adata((10, 10), **GEN_ADATA_DASK_ARGS)
    view = adata[subset_func(adata.obs_names), subset_func2(adata.var_names)]

    actual = view.copy()
    setattr(view, attr, getattr(actual, attr))
    assert_equal(actual, view, exact=True)


def test_layers_view():
    X = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
    L = np.array([[10, 11, 12], [13, 14, 15], [16, 17, 18]])
    real_adata = ad.AnnData(X)
    real_adata.layers["L"] = L
    view_adata = real_adata[1:, 1:]
    real_hash = joblib.hash(real_adata)
    view_hash = joblib.hash(view_adata)

    assert view_adata.is_view

    with pytest.raises(ValueError, match=r"incorrect shape"):
        view_adata.layers["L2"] = L + 2

    assert view_adata.is_view  # Failing to set layer item makes adata not view
    assert real_hash == joblib.hash(real_adata)
    assert view_hash == joblib.hash(view_adata)

    with pytest.warns(ad.ImplicitModificationWarning, match=r".*layers.*"):
        view_adata.layers["L2"] = L[1:, 1:] + 2

    assert not view_adata.is_view
    assert real_hash == joblib.hash(real_adata)
    assert view_hash != joblib.hash(view_adata)


# TODO: This can be flaky. Make that stop
def test_view_of_view(matrix_type, subset_func, subset_func2):
    adata = gen_adata((30, 15), X_type=matrix_type)
    adata.raw = adata.copy()
    if subset_func is single_subset:
        pytest.xfail("Other subset generating functions have trouble with this")
    var_s1 = subset_func(adata.var_names, min_size=4)
    var_view1 = adata[:, var_s1]
    adata[:, var_s1].X
    var_s2 = subset_func2(var_view1.var_names)
    var_view2 = var_view1[:, var_s2]
    assert var_view2._adata_ref is adata
    assert isinstance(var_view2.X, type(adata.X))
    obs_s1 = subset_func(adata.obs_names, min_size=4)
    obs_view1 = adata[obs_s1, :]
    obs_s2 = subset_func2(obs_view1.obs_names)
    assert adata[obs_s1, :][:, var_s1][obs_s2, :]._adata_ref is adata
    assert isinstance(obs_view1.X, type(adata.X))

    view_of_actual_copy = adata[:, var_s1].copy()[obs_s1, :].copy()[:, var_s2].copy()

    view_of_view_copy = adata[:, var_s1][obs_s1, :][:, var_s2].copy()

    assert_equal(view_of_actual_copy, view_of_view_copy, exact=True)
    assert isinstance(view_of_actual_copy.X, type(adata.X))
    assert isinstance(view_of_view_copy.X, type(adata.X))


def test_view_of_view_modification():
    adata = ad.AnnData(np.zeros((10, 10)))
    adata[0, :][:, 5:].X = np.ones(5)
    assert np.all(adata.X[0, 5:] == np.ones(5))
    adata[[1, 2], :][:, [1, 2]].X = np.ones((2, 2))
    assert np.all(adata.X[1:3, 1:3] == np.ones((2, 2)))

    adata.X = sparse.csr_matrix(adata.X)
    adata[0, :][:, 5:].X = np.ones(5) * 2
    assert np.all(asarray(adata.X)[0, 5:] == np.ones(5) * 2)
    adata[[1, 2], :][:, [1, 2]].X = np.ones((2, 2)) * 2
    assert np.all(asarray(adata.X)[1:3, 1:3] == np.ones((2, 2)) * 2)


def test_double_index(subset_func, subset_func2):
    adata = gen_adata((10, 10), **GEN_ADATA_DASK_ARGS)
    obs_subset = subset_func(adata.obs_names)
    var_subset = subset_func2(adata.var_names)
    v1 = adata[obs_subset, var_subset]
    v2 = adata[obs_subset, :][:, var_subset]

    assert np.all(asarray(v1.X) == asarray(v2.X))
    assert np.all(v1.obs == v2.obs)
    assert np.all(v1.var == v2.var)


def test_view_different_type_indices(matrix_type):
    orig = gen_adata((30, 30), X_type=matrix_type)
    boolean_array_mask = np.random.randint(0, 2, 30).astype("bool")
    boolean_list_mask = boolean_array_mask.tolist()
    integer_array_mask = np.where(boolean_array_mask)[0]
    integer_list_mask = integer_array_mask.tolist()

    assert_equal(orig[integer_array_mask, :], orig[boolean_array_mask, :])
    assert_equal(orig[integer_list_mask, :], orig[boolean_list_mask, :])
    assert_equal(orig[integer_list_mask, :], orig[integer_array_mask, :])
    assert_equal(orig[:, integer_array_mask], orig[:, boolean_array_mask])
    assert_equal(orig[:, integer_list_mask], orig[:, boolean_list_mask])
    assert_equal(orig[:, integer_list_mask], orig[:, integer_array_mask])
    # check that X element is same independent of access
    assert_equal(orig[:, integer_list_mask].X, orig.X[:, integer_list_mask])
    assert_equal(orig[:, boolean_list_mask].X, orig.X[:, boolean_list_mask])
    assert_equal(orig[:, integer_array_mask].X, orig.X[:, integer_array_mask])
    assert_equal(orig[:, integer_list_mask].X, orig.X[:, integer_list_mask])
    assert_equal(orig[integer_list_mask, :].X, orig.X[integer_list_mask, :])
    assert_equal(orig[boolean_list_mask, :].X, orig.X[boolean_list_mask, :])
    assert_equal(orig[integer_array_mask, :].X, orig.X[integer_array_mask, :])
    assert_equal(orig[integer_list_mask, :].X, orig.X[integer_list_mask, :])


def test_view_retains_ndarray_subclass():
    adata = ad.AnnData(np.zeros((10, 10)))
    adata.obsm["foo"] = np.zeros((10, 5)).view(NDArraySubclass)

    view = adata[:5, :]

    assert isinstance(view.obsm["foo"], NDArraySubclass)
    assert view.obsm["foo"].shape == (5, 5)


def test_modify_uns_in_copy():
    # https://github.com/scverse/anndata/issues/571
    adata = ad.AnnData(np.ones((5, 5)), uns={"parent": {"key": "value"}})
    adata_copy = adata[:3].copy()
    adata_copy.uns["parent"]["key"] = "new_value"
    assert adata.uns["parent"]["key"] != adata_copy.uns["parent"]["key"]


@pytest.mark.parametrize("index", [-101, 100, (slice(None), -101), (slice(None), 100)])
def test_invalid_scalar_index(adata, index):
    # https://github.com/scverse/anndata/issues/619
    with pytest.raises(IndexError, match=r".*index.* out of range\."):
        _ = adata[index]


@pytest.mark.parametrize("obs", [False, True])
@pytest.mark.parametrize("index", [-100, -50, -1])
def test_negative_scalar_index(*, adata, index: int, obs: bool):
    pos_index = index + (adata.n_obs if obs else adata.n_vars)

    if obs:
        adata_pos_subset = adata[pos_index]
        adata_neg_subset = adata[index]
    else:
        adata_pos_subset = adata[:, pos_index]
        adata_neg_subset = adata[:, index]

    np.testing.assert_array_equal(
        adata_pos_subset.obs_names, adata_neg_subset.obs_names
    )
    np.testing.assert_array_equal(
        adata_pos_subset.var_names, adata_neg_subset.var_names
    )


def test_viewness_propagation_nan():
    """Regression test for https://github.com/scverse/anndata/issues/239"""
    adata = ad.AnnData(np.random.random((10, 10)))
    adata = adata[:, [0, 2, 4]]
    v = adata.X.var(axis=0)
    assert not isinstance(v, ArrayView), type(v).mro()
    # this used to break
    v[np.isnan(v)] = 0


def test_viewness_propagation_allclose(adata):
    """Regression test for https://github.com/scverse/anndata/issues/191"""
    adata.varm["o"][4:10] = np.tile(np.nan, (10 - 4, adata.varm["o"].shape[1]))
    a = adata[:50].copy()
    b = adata[:50]

    # .copy() turns view to ndarray, so this was fine:
    assert np.allclose(a.varm["o"], b.varm["o"].copy(), equal_nan=True)
    # Next line triggered the mutation:
    assert np.allclose(a.varm["o"], b.varm["o"], equal_nan=True)
    # Showing that the mutation didn’t happen:
    assert np.allclose(a.varm["o"], b.varm["o"].copy(), equal_nan=True)


spmat = [sparse.csr_matrix, sparse.csc_matrix, sparse.csr_array, sparse.csc_array]


@pytest.mark.parametrize("spmat", spmat)
def test_deepcopy_subset(adata, spmat: type):
    adata.obsp["arr"] = np.zeros((adata.n_obs, adata.n_obs))
    adata.obsp["spmat"] = spmat((adata.n_obs, adata.n_obs))

    adata = deepcopy(adata[:10].copy())

    assert isinstance(adata.obsp["arr"], np.ndarray)
    assert not isinstance(adata.obsp["arr"], ArrayView)
    np.testing.assert_array_equal(adata.obsp["arr"].shape, (10, 10))

    assert isinstance(adata.obsp["spmat"], spmat)
    view_type = (
        SparseCSRMatrixView if spmat is sparse.csr_matrix else SparseCSCMatrixView
    )
    view_type = SparseCSRArrayView if spmat is sparse.csr_array else SparseCSCArrayView
    assert not isinstance(
        adata.obsp["spmat"],
        view_type,
    )
    np.testing.assert_array_equal(adata.obsp["spmat"].shape, (10, 10))


array_type = [
    asarray,
    sparse.csr_matrix,
    sparse.csc_matrix,
    sparse.csr_array,
    sparse.csc_array,
]


# https://github.com/scverse/anndata/issues/680
@pytest.mark.parametrize("array_type", array_type)
@pytest.mark.parametrize("attr", ["X", "layers", "obsm", "varm", "obsp", "varp"])
def test_view_mixin_copies_data(adata, array_type: type, attr):
    N = 100
    adata = ad.AnnData(
        obs=pd.DataFrame(index=np.arange(N).astype(str)),
        var=pd.DataFrame(index=np.arange(N).astype(str)),
    )

    X = array_type(sparse.eye(N, N).multiply(np.arange(1, N + 1)))
    if attr == "X":
        adata.X = X
    else:
        getattr(adata, attr)["arr"] = X

    view = adata[:50]

    if attr == "X":
        arr_view = view.X
    else:
        arr_view = getattr(view, attr)["arr"]

    arr_view_copy = arr_view.copy()

    if sparse.issparse(X):
        assert not np.shares_memory(arr_view.indices, arr_view_copy.indices)
        assert not np.shares_memory(arr_view.indptr, arr_view_copy.indptr)
        assert not np.shares_memory(arr_view.data, arr_view_copy.data)

        arr_view_copy.data[0] = -5
        assert not np.array_equal(arr_view_copy.data, arr_view.data)
    else:
        assert not np.shares_memory(arr_view, arr_view_copy)

        arr_view_copy[0, 0] = -5
        assert not np.array_equal(arr_view_copy, arr_view)


def test_copy_X_dtype():
    adata = ad.AnnData(sparse.eye(50, dtype=np.float64, format="csr"))
    adata_c = adata[::2].copy()
    assert adata_c.X.dtype == adata.X.dtype


def test_x_none():
    orig = ad.AnnData(obs=pd.DataFrame(index=np.arange(50)))
    assert orig.shape == (50, 0)
    view = orig[2:4]
    assert view.shape == (2, 0)
    assert view.obs_names.tolist() == ["2", "3"]
    new = view.copy()
    assert new.shape == (2, 0)
    assert new.obs_names.tolist() == ["2", "3"]


def test_empty_list_subset():
    orig = gen_adata((10, 10))
    subset = orig[:, []]
    assert subset.X.shape == (10, 0)
    assert subset.obsm["sparse"].shape == (10, 100)
    assert subset.varm["sparse"].shape == (0, 100)


def test_dataframe_view_index_setting():
    a1 = ad.AnnData(
        X=np.array([[1, 2, 3], [4, 5, 6]]),
        obs={"obs_names": ["aa", "bb"], "property": [True, True]},
        var={"var_names": ["c", "d", "e"]},
    )
    a2 = a1[:, ["c", "d"]]
    with pytest.warns(
        ad.ImplicitModificationWarning, match=r"Trying to modify index.*"
    ):
        a2.obs.index = a2.obs.index.map(lambda x: x[-1])
    assert not isinstance(a2.obs, ad._core.views.DataFrameView)
    assert isinstance(a2.obs, pd.DataFrame)
    assert a1.obs.index.values.tolist() == ["aa", "bb"]
    assert a2.obs.index.values.tolist() == ["a", "b"]


def test_ellipsis_index(
    ellipsis_index: tuple[EllipsisType | slice, ...] | EllipsisType,
    equivalent_ellipsis_index: tuple[slice, slice],
    matrix_type,
):
    adata = gen_adata((10, 10), X_type=matrix_type, **GEN_ADATA_DASK_ARGS)
    subset_ellipsis = adata[ellipsis_index]
    subset = adata[equivalent_ellipsis_index]
    assert_equal(subset_ellipsis, subset)


@pytest.mark.parametrize(
    ("index", "expected_error"),
    [
        ((..., 0, ...), r"only have a single ellipsis"),
        ((0, 0, 0), r"Received a length 3 index"),
    ],
    ids=["ellipsis-int-ellipsis", "int-int-int"],
)
def test_index_3d_errors(index: tuple[int | EllipsisType, ...], expected_error: str):
    with pytest.raises(IndexError, match=expected_error):
        gen_adata((10, 10))[index]


@pytest.mark.parametrize(
    "index",
    [
        pytest.param(sparse.csr_matrix(np.random.random((1, 10))), id="sparse"),
        pytest.param([1.2, 3.4], id="list"),
        *(
            pytest.param(np.array([1.2, 2.3], dtype=dtype), id=f"ndarray-{dtype}")
            for dtype in [np.float32, np.float64]
        ),
    ],
)
def test_index_float_sequence_raises_error(index):
    with pytest.raises(IndexError, match=r"has floating point values"):
        gen_adata((10, 10))[index]


# @pytest.mark.parametrize("dim", ["obs", "var"])
# @pytest.mark.parametrize(
#     ("idx", "pat"),
#     [
#         pytest.param(
#             [1, "cell_c"], r"Mixed type list indexers not supported", id="mixed"
#         ),
#         pytest.param(
#             [[1, 2], [2]], r"setting an array element with a sequence", id="nested"
#         ),
#     ],
# )
# def test_subset_errors(dim, idx, pat):
#     orig = gen_adata((10, 10))
#     with pytest.raises(ValueError, match=pat):
#         if dim == "obs":
#             orig[idx, :].X
#         elif dim == "var":
#             orig[:, idx].X