1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
|
from __future__ import annotations
from contextlib import ExitStack
from copy import deepcopy
from operator import mul
from typing import TYPE_CHECKING
import joblib
import numpy as np
import pandas as pd
import pytest
from dask.base import tokenize
from packaging.version import Version
from scipy import sparse
import anndata as ad
from anndata._core.index import _normalize_index
from anndata._core.views import (
ArrayView,
SparseCSCArrayView,
SparseCSCMatrixView,
SparseCSRArrayView,
SparseCSRMatrixView,
)
from anndata.compat import CupyCSCMatrix, DaskArray
from anndata.tests.helpers import (
BASE_MATRIX_PARAMS,
CUPY_MATRIX_PARAMS,
DASK_MATRIX_PARAMS,
GEN_ADATA_DASK_ARGS,
assert_equal,
gen_adata,
single_subset,
slice_subset,
subset_func,
)
from anndata.utils import asarray
if TYPE_CHECKING:
from types import EllipsisType
IGNORE_SPARSE_EFFICIENCY_WARNING = pytest.mark.filterwarnings(
"ignore:Changing the sparsity structure:scipy.sparse.SparseEfficiencyWarning"
)
# ------------------------------------------------------------------------------
# Some test data
# ------------------------------------------------------------------------------
# data matrix of shape n_obs x n_vars
X_list = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
# annotation of observations / rows
obs_dict = dict(
row_names=["name1", "name2", "name3"], # row annotation
oanno1=["cat1", "cat2", "cat2"], # categorical annotation
oanno2=["o1", "o2", "o3"], # string annotation
oanno3=[2.1, 2.2, 2.3], # float annotation
)
# annotation of variables / columns
var_dict = dict(vanno1=[3.1, 3.2, 3.3])
# unstructured annotation
uns_dict = dict(oanno1_colors=["#000000", "#FFFFFF"], uns2=["some annotation"])
subset_func2 = subset_func
class NDArraySubclass(np.ndarray):
def view(self, dtype=None, typ=None):
return self
@pytest.fixture
def adata():
adata = ad.AnnData(np.zeros((100, 100)))
adata.obsm["o"] = np.zeros((100, 50))
adata.varm["o"] = np.zeros((100, 50))
return adata
@pytest.fixture(
params=BASE_MATRIX_PARAMS + DASK_MATRIX_PARAMS + CUPY_MATRIX_PARAMS,
)
def matrix_type(request):
return request.param
@pytest.fixture(params=BASE_MATRIX_PARAMS + DASK_MATRIX_PARAMS)
def matrix_type_no_gpu(request):
return request.param
@pytest.fixture(params=BASE_MATRIX_PARAMS)
def matrix_type_base(request):
return request.param
@pytest.fixture(params=["layers", "obsm", "varm"])
def mapping_name(request):
return request.param
# ------------------------------------------------------------------------------
# The test functions
# ------------------------------------------------------------------------------
def test_views():
X = np.array(X_list, dtype="int32")
adata = ad.AnnData(X, obs=obs_dict, var=var_dict, uns=uns_dict)
assert adata[:, 0].is_view
assert adata[:, 0].X.tolist() == np.reshape([1, 4, 7], (3, 1)).tolist()
adata[:2, 0].X = [0, 0]
assert adata[:, 0].X.tolist() == np.reshape([0, 0, 7], (3, 1)).tolist()
adata_subset = adata[:2, [0, 1]]
assert adata_subset.is_view
# now transition to actual object
with pytest.warns(ad.ImplicitModificationWarning, match=r".*\.obs.*"):
adata_subset.obs["foo"] = range(2)
assert not adata_subset.is_view
assert adata_subset.obs["foo"].tolist() == list(range(2))
def test_convert_error():
adata = ad.AnnData(np.array([[1, 2], [3, 0]]))
no_array = [[1], []]
if Version(np.__version__) >= Version("1.24"):
stack = pytest.raises(ValueError, match=r"Failed to convert")
else:
stack = ExitStack()
stack.enter_context(
pytest.warns(
np.VisibleDeprecationWarning,
match=r"ndarray from ragged.*is deprecated",
)
)
stack.enter_context(
pytest.raises(ValueError, match=r"setting an array element with a sequence")
)
with stack:
adata[:, 0].X = no_array
def test_view_subset_shapes():
adata = gen_adata((20, 10), **GEN_ADATA_DASK_ARGS)
view = adata[:, ::2]
assert view.var.shape == (5, 8)
assert {k: v.shape[0] for k, v in view.varm.items()} == {k: 5 for k in view.varm}
def test_modify_view_component(matrix_type, mapping_name, request):
adata = ad.AnnData(
np.zeros((10, 10)),
**{mapping_name: dict(m=matrix_type(asarray(sparse.random(10, 10))))},
)
# Fix if and when dask supports tokenizing GPU arrays
# https://github.com/dask/dask/issues/6718
if isinstance(matrix_type(np.zeros((1, 1))), DaskArray):
hash_func = tokenize
else:
hash_func = joblib.hash
init_hash = hash_func(adata)
subset = adata[:5, :][:, :5]
assert subset.is_view
m = getattr(subset, mapping_name)["m"]
with pytest.warns(ad.ImplicitModificationWarning, match=rf".*\.{mapping_name}.*"):
m[0, 0] = 100
assert not subset.is_view
assert getattr(subset, mapping_name)["m"][0, 0] == 100
assert init_hash == hash_func(adata)
if "sparse_array_dask_array" in request.node.callspec.id:
msg = "sparse arrays in dask are generally expected to fail but in this case they do not"
pytest.fail(msg)
@pytest.mark.parametrize("attr", ["obsm", "varm"])
def test_set_obsm_key(adata, attr):
init_hash = joblib.hash(adata)
orig_val = getattr(adata, attr)["o"].copy()
subset = adata[:50] if attr == "obsm" else adata[:, :50]
assert subset.is_view
with pytest.warns(ad.ImplicitModificationWarning, match=rf".*\.{attr}\['o'\].*"):
getattr(subset, attr)["o"] = new_val = np.ones((50, 20))
assert not subset.is_view
assert np.all(getattr(adata, attr)["o"] == orig_val)
assert np.any(getattr(subset, attr)["o"] == new_val)
assert init_hash == joblib.hash(adata)
def test_set_obs(adata, subset_func):
init_hash = joblib.hash(adata)
subset = adata[subset_func(adata.obs_names), :]
new_obs = pd.DataFrame(
dict(a=np.ones(subset.n_obs), b=np.ones(subset.n_obs)),
index=subset.obs_names,
)
assert subset.is_view
subset.obs = new_obs
assert not subset.is_view
assert np.all(subset.obs == new_obs)
assert joblib.hash(adata) == init_hash
def test_set_var(adata, subset_func):
init_hash = joblib.hash(adata)
subset = adata[:, subset_func(adata.var_names)]
new_var = pd.DataFrame(
dict(a=np.ones(subset.n_vars), b=np.ones(subset.n_vars)),
index=subset.var_names,
)
assert subset.is_view
subset.var = new_var
assert not subset.is_view
assert np.all(subset.var == new_var)
assert joblib.hash(adata) == init_hash
def test_drop_obs_column():
adata = ad.AnnData(np.array(X_list, dtype="int32"), obs=obs_dict)
subset = adata[:2]
assert subset.is_view
# returns a copy of obs
assert subset.obs.drop(columns=["oanno1"]).columns.tolist() == ["oanno2", "oanno3"]
assert subset.is_view
# would modify obs, so it should actualize subset and not modify adata
subset.obs.drop(columns=["oanno1"], inplace=True)
assert not subset.is_view
assert subset.obs.columns.tolist() == ["oanno2", "oanno3"]
assert adata.obs.columns.tolist() == ["oanno1", "oanno2", "oanno3"]
def test_set_obsm(adata):
init_hash = joblib.hash(adata)
dim0_size = np.random.randint(2, adata.shape[0] - 1)
dim1_size = np.random.randint(1, 99)
orig_obsm_val = adata.obsm["o"].copy()
subset_idx = np.random.choice(adata.obs_names, dim0_size, replace=False)
subset = adata[subset_idx, :]
assert subset.is_view
subset.obsm = dict(o=np.ones((dim0_size, dim1_size)))
assert not subset.is_view
assert np.all(orig_obsm_val == adata.obsm["o"]) # Checking for mutation
assert np.all(subset.obsm["o"] == np.ones((dim0_size, dim1_size)))
subset = adata[subset_idx, :]
subset_hash = joblib.hash(subset)
with pytest.raises(ValueError, match=r"incorrect shape"):
subset.obsm = dict(o=np.ones((dim0_size + 1, dim1_size)))
with pytest.raises(ValueError, match=r"incorrect shape"):
subset.varm = dict(o=np.ones((dim0_size - 1, dim1_size)))
assert subset_hash == joblib.hash(subset)
# Only modification have been made to a view
assert init_hash == joblib.hash(adata)
def test_set_varm(adata):
init_hash = joblib.hash(adata)
dim0_size = np.random.randint(2, adata.shape[1] - 1)
dim1_size = np.random.randint(1, 99)
orig_varm_val = adata.varm["o"].copy()
subset_idx = np.random.choice(adata.var_names, dim0_size, replace=False)
subset = adata[:, subset_idx]
assert subset.is_view
subset.varm = dict(o=np.ones((dim0_size, dim1_size)))
assert not subset.is_view
assert np.all(orig_varm_val == adata.varm["o"]) # Checking for mutation
assert np.all(subset.varm["o"] == np.ones((dim0_size, dim1_size)))
subset = adata[:, subset_idx]
subset_hash = joblib.hash(subset)
with pytest.raises(ValueError, match=r"incorrect shape"):
subset.varm = dict(o=np.ones((dim0_size + 1, dim1_size)))
with pytest.raises(ValueError, match=r"incorrect shape"):
subset.varm = dict(o=np.ones((dim0_size - 1, dim1_size)))
# subset should not be changed by failed setting
assert subset_hash == joblib.hash(subset)
assert init_hash == joblib.hash(adata)
# TODO: Determine if this is the intended behavior,
# or just the behaviour we’ve had for a while
@IGNORE_SPARSE_EFFICIENCY_WARNING
def test_not_set_subset_X(matrix_type_base, subset_func):
adata = ad.AnnData(matrix_type_base(asarray(sparse.random(20, 20))))
init_hash = joblib.hash(adata)
orig_X_val = adata.X.copy()
while True:
subset_idx = slice_subset(adata.obs_names)
if len(adata[subset_idx, :]) > 2:
break
subset = adata[subset_idx, :]
subset = adata[:, subset_idx]
internal_idx = _normalize_index(
subset_func(np.arange(subset.X.shape[1])), subset.var_names
)
assert subset.is_view
with pytest.warns(ad.ImplicitModificationWarning, match=r".*X.*"):
subset.X[:, internal_idx] = 1
assert not subset.is_view
assert not np.any(asarray(adata.X != orig_X_val))
assert init_hash == joblib.hash(adata)
assert isinstance(subset.X, type(adata.X))
# TODO: Determine if this is the intended behavior,
# or just the behaviour we’ve had for a while
@IGNORE_SPARSE_EFFICIENCY_WARNING
def test_not_set_subset_X_dask(matrix_type_no_gpu, subset_func):
adata = ad.AnnData(matrix_type_no_gpu(asarray(sparse.random(20, 20))))
init_hash = tokenize(adata)
orig_X_val = adata.X.copy()
while True:
subset_idx = slice_subset(adata.obs_names)
if len(adata[subset_idx, :]) > 2:
break
subset = adata[subset_idx, :]
subset = adata[:, subset_idx]
internal_idx = _normalize_index(
subset_func(np.arange(subset.X.shape[1])), subset.var_names
)
assert subset.is_view
with pytest.warns(ad.ImplicitModificationWarning, match=r".*X.*"):
subset.X[:, internal_idx] = 1
assert not subset.is_view
assert not np.any(asarray(adata.X != orig_X_val))
assert init_hash == tokenize(adata)
assert isinstance(subset.X, type(adata.X))
@IGNORE_SPARSE_EFFICIENCY_WARNING
def test_set_scalar_subset_X(matrix_type, subset_func):
adata = ad.AnnData(matrix_type(np.zeros((10, 10))))
orig_X_val = adata.X.copy()
subset_idx = subset_func(adata.obs_names)
adata_subset = adata[subset_idx, :]
adata_subset.X = 1
assert adata_subset.is_view
assert np.all(asarray(adata[subset_idx, :].X) == 1)
if isinstance(adata.X, CupyCSCMatrix):
# Comparison broken for CSC matrices
# https://github.com/cupy/cupy/issues/7757
assert asarray(orig_X_val.tocsr() != adata.X.tocsr()).sum() == mul(
*adata_subset.shape
)
else:
assert asarray(orig_X_val != adata.X).sum() == mul(*adata_subset.shape)
# TODO: Use different kind of subsetting for adata and view
def test_set_subset_obsm(adata, subset_func):
init_hash = joblib.hash(adata)
orig_obsm_val = adata.obsm["o"].copy()
while True:
subset_idx = slice_subset(adata.obs_names)
if len(adata[subset_idx, :]) > 2:
break
subset = adata[subset_idx, :]
internal_idx = _normalize_index(
subset_func(np.arange(subset.obsm["o"].shape[0])), subset.obs_names
)
assert subset.is_view
with pytest.warns(ad.ImplicitModificationWarning, match=r".*obsm.*"):
subset.obsm["o"][internal_idx] = 1
assert not subset.is_view
assert np.all(adata.obsm["o"] == orig_obsm_val)
assert init_hash == joblib.hash(adata)
def test_set_subset_varm(adata, subset_func):
init_hash = joblib.hash(adata)
orig_varm_val = adata.varm["o"].copy()
while True:
subset_idx = slice_subset(adata.var_names)
if (adata[:, subset_idx]).shape[1] > 2:
break
subset = adata[:, subset_idx]
internal_idx = _normalize_index(
subset_func(np.arange(subset.varm["o"].shape[0])), subset.var_names
)
assert subset.is_view
with pytest.warns(ad.ImplicitModificationWarning, match=r".*varm.*"):
subset.varm["o"][internal_idx] = 1
assert not subset.is_view
assert np.all(adata.varm["o"] == orig_varm_val)
assert init_hash == joblib.hash(adata)
@pytest.mark.parametrize("attr", ["obsm", "varm", "obsp", "varp", "layers"])
def test_view_failed_delitem(attr):
adata = gen_adata((10, 10), **GEN_ADATA_DASK_ARGS)
view = adata[5:7, :][:, :5]
adata_hash = joblib.hash(adata)
view_hash = joblib.hash(view)
with pytest.raises(KeyError):
getattr(view, attr).__delitem__("not a key")
assert view.is_view
assert adata_hash == joblib.hash(adata)
assert view_hash == joblib.hash(view)
@pytest.mark.parametrize("attr", ["obsm", "varm", "obsp", "varp", "layers"])
def test_view_delitem(attr):
adata = gen_adata((10, 10), **GEN_ADATA_DASK_ARGS)
getattr(adata, attr)["to_delete"] = np.ones((10, 10))
# Shouldn’t be a subclass, should be an ndarray
assert type(getattr(adata, attr)["to_delete"]) is np.ndarray
view = adata[5:7, :][:, :5]
adata_hash = joblib.hash(adata)
view_hash = joblib.hash(view)
with pytest.warns(
ad.ImplicitModificationWarning, match=rf".*\.{attr}\['to_delete'\].*"
):
getattr(view, attr).__delitem__("to_delete")
assert not view.is_view
assert "to_delete" not in getattr(view, attr)
assert "to_delete" in getattr(adata, attr)
assert adata_hash == joblib.hash(adata)
assert view_hash != joblib.hash(view)
@pytest.mark.parametrize(
"attr", ["X", "obs", "var", "obsm", "varm", "obsp", "varp", "layers", "uns"]
)
def test_view_delattr(attr, subset_func):
base = gen_adata((10, 10), **GEN_ADATA_DASK_ARGS)
orig_hash = tokenize(base)
subset = base[subset_func(base.obs_names), subset_func(base.var_names)]
empty = ad.AnnData(obs=subset.obs[[]], var=subset.var[[]])
delattr(subset, attr)
assert not subset.is_view
# Should now have same value as default
assert_equal(getattr(subset, attr), getattr(empty, attr))
assert orig_hash == tokenize(base) # Original should not be modified
@pytest.mark.parametrize(
"attr", ["obs", "var", "obsm", "varm", "obsp", "varp", "layers", "uns"]
)
def test_view_setattr_machinery(attr, subset_func, subset_func2):
# Tests that setting attributes on a view doesn't mess anything up too bad
adata = gen_adata((10, 10), **GEN_ADATA_DASK_ARGS)
view = adata[subset_func(adata.obs_names), subset_func2(adata.var_names)]
actual = view.copy()
setattr(view, attr, getattr(actual, attr))
assert_equal(actual, view, exact=True)
def test_layers_view():
X = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
L = np.array([[10, 11, 12], [13, 14, 15], [16, 17, 18]])
real_adata = ad.AnnData(X)
real_adata.layers["L"] = L
view_adata = real_adata[1:, 1:]
real_hash = joblib.hash(real_adata)
view_hash = joblib.hash(view_adata)
assert view_adata.is_view
with pytest.raises(ValueError, match=r"incorrect shape"):
view_adata.layers["L2"] = L + 2
assert view_adata.is_view # Failing to set layer item makes adata not view
assert real_hash == joblib.hash(real_adata)
assert view_hash == joblib.hash(view_adata)
with pytest.warns(ad.ImplicitModificationWarning, match=r".*layers.*"):
view_adata.layers["L2"] = L[1:, 1:] + 2
assert not view_adata.is_view
assert real_hash == joblib.hash(real_adata)
assert view_hash != joblib.hash(view_adata)
# TODO: This can be flaky. Make that stop
def test_view_of_view(matrix_type, subset_func, subset_func2):
adata = gen_adata((30, 15), X_type=matrix_type)
adata.raw = adata.copy()
if subset_func is single_subset:
pytest.xfail("Other subset generating functions have trouble with this")
var_s1 = subset_func(adata.var_names, min_size=4)
var_view1 = adata[:, var_s1]
adata[:, var_s1].X
var_s2 = subset_func2(var_view1.var_names)
var_view2 = var_view1[:, var_s2]
assert var_view2._adata_ref is adata
assert isinstance(var_view2.X, type(adata.X))
obs_s1 = subset_func(adata.obs_names, min_size=4)
obs_view1 = adata[obs_s1, :]
obs_s2 = subset_func2(obs_view1.obs_names)
assert adata[obs_s1, :][:, var_s1][obs_s2, :]._adata_ref is adata
assert isinstance(obs_view1.X, type(adata.X))
view_of_actual_copy = adata[:, var_s1].copy()[obs_s1, :].copy()[:, var_s2].copy()
view_of_view_copy = adata[:, var_s1][obs_s1, :][:, var_s2].copy()
assert_equal(view_of_actual_copy, view_of_view_copy, exact=True)
assert isinstance(view_of_actual_copy.X, type(adata.X))
assert isinstance(view_of_view_copy.X, type(adata.X))
def test_view_of_view_modification():
adata = ad.AnnData(np.zeros((10, 10)))
adata[0, :][:, 5:].X = np.ones(5)
assert np.all(adata.X[0, 5:] == np.ones(5))
adata[[1, 2], :][:, [1, 2]].X = np.ones((2, 2))
assert np.all(adata.X[1:3, 1:3] == np.ones((2, 2)))
adata.X = sparse.csr_matrix(adata.X)
adata[0, :][:, 5:].X = np.ones(5) * 2
assert np.all(asarray(adata.X)[0, 5:] == np.ones(5) * 2)
adata[[1, 2], :][:, [1, 2]].X = np.ones((2, 2)) * 2
assert np.all(asarray(adata.X)[1:3, 1:3] == np.ones((2, 2)) * 2)
def test_double_index(subset_func, subset_func2):
adata = gen_adata((10, 10), **GEN_ADATA_DASK_ARGS)
obs_subset = subset_func(adata.obs_names)
var_subset = subset_func2(adata.var_names)
v1 = adata[obs_subset, var_subset]
v2 = adata[obs_subset, :][:, var_subset]
assert np.all(asarray(v1.X) == asarray(v2.X))
assert np.all(v1.obs == v2.obs)
assert np.all(v1.var == v2.var)
def test_view_different_type_indices(matrix_type):
orig = gen_adata((30, 30), X_type=matrix_type)
boolean_array_mask = np.random.randint(0, 2, 30).astype("bool")
boolean_list_mask = boolean_array_mask.tolist()
integer_array_mask = np.where(boolean_array_mask)[0]
integer_list_mask = integer_array_mask.tolist()
assert_equal(orig[integer_array_mask, :], orig[boolean_array_mask, :])
assert_equal(orig[integer_list_mask, :], orig[boolean_list_mask, :])
assert_equal(orig[integer_list_mask, :], orig[integer_array_mask, :])
assert_equal(orig[:, integer_array_mask], orig[:, boolean_array_mask])
assert_equal(orig[:, integer_list_mask], orig[:, boolean_list_mask])
assert_equal(orig[:, integer_list_mask], orig[:, integer_array_mask])
# check that X element is same independent of access
assert_equal(orig[:, integer_list_mask].X, orig.X[:, integer_list_mask])
assert_equal(orig[:, boolean_list_mask].X, orig.X[:, boolean_list_mask])
assert_equal(orig[:, integer_array_mask].X, orig.X[:, integer_array_mask])
assert_equal(orig[:, integer_list_mask].X, orig.X[:, integer_list_mask])
assert_equal(orig[integer_list_mask, :].X, orig.X[integer_list_mask, :])
assert_equal(orig[boolean_list_mask, :].X, orig.X[boolean_list_mask, :])
assert_equal(orig[integer_array_mask, :].X, orig.X[integer_array_mask, :])
assert_equal(orig[integer_list_mask, :].X, orig.X[integer_list_mask, :])
def test_view_retains_ndarray_subclass():
adata = ad.AnnData(np.zeros((10, 10)))
adata.obsm["foo"] = np.zeros((10, 5)).view(NDArraySubclass)
view = adata[:5, :]
assert isinstance(view.obsm["foo"], NDArraySubclass)
assert view.obsm["foo"].shape == (5, 5)
def test_modify_uns_in_copy():
# https://github.com/scverse/anndata/issues/571
adata = ad.AnnData(np.ones((5, 5)), uns={"parent": {"key": "value"}})
adata_copy = adata[:3].copy()
adata_copy.uns["parent"]["key"] = "new_value"
assert adata.uns["parent"]["key"] != adata_copy.uns["parent"]["key"]
@pytest.mark.parametrize("index", [-101, 100, (slice(None), -101), (slice(None), 100)])
def test_invalid_scalar_index(adata, index):
# https://github.com/scverse/anndata/issues/619
with pytest.raises(IndexError, match=r".*index.* out of range\."):
_ = adata[index]
@pytest.mark.parametrize("obs", [False, True])
@pytest.mark.parametrize("index", [-100, -50, -1])
def test_negative_scalar_index(*, adata, index: int, obs: bool):
pos_index = index + (adata.n_obs if obs else adata.n_vars)
if obs:
adata_pos_subset = adata[pos_index]
adata_neg_subset = adata[index]
else:
adata_pos_subset = adata[:, pos_index]
adata_neg_subset = adata[:, index]
np.testing.assert_array_equal(
adata_pos_subset.obs_names, adata_neg_subset.obs_names
)
np.testing.assert_array_equal(
adata_pos_subset.var_names, adata_neg_subset.var_names
)
def test_viewness_propagation_nan():
"""Regression test for https://github.com/scverse/anndata/issues/239"""
adata = ad.AnnData(np.random.random((10, 10)))
adata = adata[:, [0, 2, 4]]
v = adata.X.var(axis=0)
assert not isinstance(v, ArrayView), type(v).mro()
# this used to break
v[np.isnan(v)] = 0
def test_viewness_propagation_allclose(adata):
"""Regression test for https://github.com/scverse/anndata/issues/191"""
adata.varm["o"][4:10] = np.tile(np.nan, (10 - 4, adata.varm["o"].shape[1]))
a = adata[:50].copy()
b = adata[:50]
# .copy() turns view to ndarray, so this was fine:
assert np.allclose(a.varm["o"], b.varm["o"].copy(), equal_nan=True)
# Next line triggered the mutation:
assert np.allclose(a.varm["o"], b.varm["o"], equal_nan=True)
# Showing that the mutation didn’t happen:
assert np.allclose(a.varm["o"], b.varm["o"].copy(), equal_nan=True)
spmat = [sparse.csr_matrix, sparse.csc_matrix, sparse.csr_array, sparse.csc_array]
@pytest.mark.parametrize("spmat", spmat)
def test_deepcopy_subset(adata, spmat: type):
adata.obsp["arr"] = np.zeros((adata.n_obs, adata.n_obs))
adata.obsp["spmat"] = spmat((adata.n_obs, adata.n_obs))
adata = deepcopy(adata[:10].copy())
assert isinstance(adata.obsp["arr"], np.ndarray)
assert not isinstance(adata.obsp["arr"], ArrayView)
np.testing.assert_array_equal(adata.obsp["arr"].shape, (10, 10))
assert isinstance(adata.obsp["spmat"], spmat)
view_type = (
SparseCSRMatrixView if spmat is sparse.csr_matrix else SparseCSCMatrixView
)
view_type = SparseCSRArrayView if spmat is sparse.csr_array else SparseCSCArrayView
assert not isinstance(
adata.obsp["spmat"],
view_type,
)
np.testing.assert_array_equal(adata.obsp["spmat"].shape, (10, 10))
array_type = [
asarray,
sparse.csr_matrix,
sparse.csc_matrix,
sparse.csr_array,
sparse.csc_array,
]
# https://github.com/scverse/anndata/issues/680
@pytest.mark.parametrize("array_type", array_type)
@pytest.mark.parametrize("attr", ["X", "layers", "obsm", "varm", "obsp", "varp"])
def test_view_mixin_copies_data(adata, array_type: type, attr):
N = 100
adata = ad.AnnData(
obs=pd.DataFrame(index=np.arange(N).astype(str)),
var=pd.DataFrame(index=np.arange(N).astype(str)),
)
X = array_type(sparse.eye(N, N).multiply(np.arange(1, N + 1)))
if attr == "X":
adata.X = X
else:
getattr(adata, attr)["arr"] = X
view = adata[:50]
if attr == "X":
arr_view = view.X
else:
arr_view = getattr(view, attr)["arr"]
arr_view_copy = arr_view.copy()
if sparse.issparse(X):
assert not np.shares_memory(arr_view.indices, arr_view_copy.indices)
assert not np.shares_memory(arr_view.indptr, arr_view_copy.indptr)
assert not np.shares_memory(arr_view.data, arr_view_copy.data)
arr_view_copy.data[0] = -5
assert not np.array_equal(arr_view_copy.data, arr_view.data)
else:
assert not np.shares_memory(arr_view, arr_view_copy)
arr_view_copy[0, 0] = -5
assert not np.array_equal(arr_view_copy, arr_view)
def test_copy_X_dtype():
adata = ad.AnnData(sparse.eye(50, dtype=np.float64, format="csr"))
adata_c = adata[::2].copy()
assert adata_c.X.dtype == adata.X.dtype
def test_x_none():
orig = ad.AnnData(obs=pd.DataFrame(index=np.arange(50)))
assert orig.shape == (50, 0)
view = orig[2:4]
assert view.shape == (2, 0)
assert view.obs_names.tolist() == ["2", "3"]
new = view.copy()
assert new.shape == (2, 0)
assert new.obs_names.tolist() == ["2", "3"]
def test_empty_list_subset():
orig = gen_adata((10, 10))
subset = orig[:, []]
assert subset.X.shape == (10, 0)
assert subset.obsm["sparse"].shape == (10, 100)
assert subset.varm["sparse"].shape == (0, 100)
def test_dataframe_view_index_setting():
a1 = ad.AnnData(
X=np.array([[1, 2, 3], [4, 5, 6]]),
obs={"obs_names": ["aa", "bb"], "property": [True, True]},
var={"var_names": ["c", "d", "e"]},
)
a2 = a1[:, ["c", "d"]]
with pytest.warns(
ad.ImplicitModificationWarning, match=r"Trying to modify index.*"
):
a2.obs.index = a2.obs.index.map(lambda x: x[-1])
assert not isinstance(a2.obs, ad._core.views.DataFrameView)
assert isinstance(a2.obs, pd.DataFrame)
assert a1.obs.index.values.tolist() == ["aa", "bb"]
assert a2.obs.index.values.tolist() == ["a", "b"]
def test_ellipsis_index(
ellipsis_index: tuple[EllipsisType | slice, ...] | EllipsisType,
equivalent_ellipsis_index: tuple[slice, slice],
matrix_type,
):
adata = gen_adata((10, 10), X_type=matrix_type, **GEN_ADATA_DASK_ARGS)
subset_ellipsis = adata[ellipsis_index]
subset = adata[equivalent_ellipsis_index]
assert_equal(subset_ellipsis, subset)
@pytest.mark.parametrize(
("index", "expected_error"),
[
((..., 0, ...), r"only have a single ellipsis"),
((0, 0, 0), r"Received a length 3 index"),
],
ids=["ellipsis-int-ellipsis", "int-int-int"],
)
def test_index_3d_errors(index: tuple[int | EllipsisType, ...], expected_error: str):
with pytest.raises(IndexError, match=expected_error):
gen_adata((10, 10))[index]
@pytest.mark.parametrize(
"index",
[
pytest.param(sparse.csr_matrix(np.random.random((1, 10))), id="sparse"),
pytest.param([1.2, 3.4], id="list"),
*(
pytest.param(np.array([1.2, 2.3], dtype=dtype), id=f"ndarray-{dtype}")
for dtype in [np.float32, np.float64]
),
],
)
def test_index_float_sequence_raises_error(index):
with pytest.raises(IndexError, match=r"has floating point values"):
gen_adata((10, 10))[index]
# @pytest.mark.parametrize("dim", ["obs", "var"])
# @pytest.mark.parametrize(
# ("idx", "pat"),
# [
# pytest.param(
# [1, "cell_c"], r"Mixed type list indexers not supported", id="mixed"
# ),
# pytest.param(
# [[1, 2], [2]], r"setting an array element with a sequence", id="nested"
# ),
# ],
# )
# def test_subset_errors(dim, idx, pat):
# orig = gen_adata((10, 10))
# with pytest.raises(ValueError, match=pat):
# if dim == "obs":
# orig[idx, :].X
# elif dim == "var":
# orig[:, idx].X
|