1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
|
import sys
import numpy as np
from math import factorial
from pytest import approx, fixture
from ase.build import molecule
from ase.calculators.emt import EMT
from ase.optimize import BFGS
from ase.vibrations import Vibrations
from ase.vibrations.franck_condon import (FranckCondonOverlap,
FranckCondonRecursive,
FranckCondon)
def test_franck_condon():
def equal(x, y, tolerance=0, fail=True, msg=''):
"""Compare x and y."""
if not np.isfinite(x - y).any() or (np.abs(x - y) > tolerance).any():
msg = (msg + '%s != %s (error: |%s| > %.9g)' %
(x, y, x - y, tolerance))
if fail:
raise AssertionError(msg)
else:
sys.stderr.write('WARNING: %s\n' % msg)
# FCOverlap
fco = FranckCondonOverlap()
fcr = FranckCondonRecursive()
# check factorial
assert(fco.factorial(8) == factorial(8))
# the second test is useful according to the implementation
assert(fco.factorial(5) == factorial(5))
assert(fco.factorial.inv(5) == 1. / factorial(5))
# check T=0 and n=0 equality
S = np.array([1, 2.1, 34])
m = 5
assert(((fco.directT0(m, S) - fco.direct(0, m, S)) / fco.directT0(m, S) <
1e-15).all())
# check symmetry
S = 2
n = 3
assert(fco.direct(n, m, S) == fco.direct(m, n, S))
# ---------------------------
# specials
S = np.array([0, 1.5])
delta = np.sqrt(2 * S)
for m in [2, 7]:
equal(fco.direct0mm1(m, S)**2,
fco.direct(1, m, S) * fco.direct(m, 0, S), 1.e-17)
equal(fco.direct0mm1(m, S), fcr.ov0mm1(m, delta), 1.e-15)
equal(fcr.ov0mm1(m, delta),
fcr.ov0m(m, delta) * fcr.ov1m(m, delta), 1.e-15)
equal(fcr.ov0mm1(m, -delta), fcr.direct0mm1(m, -delta), 1.e-15)
equal(fcr.ov0mm1(m, delta), - fcr.direct0mm1(m, -delta), 1.e-15)
equal(fco.direct0mm2(m, S)**2,
fco.direct(2, m, S) * fco.direct(m, 0, S), 1.e-17)
equal(fco.direct0mm2(m, S), fcr.ov0mm2(m, delta), 1.e-15)
equal(fcr.ov0mm2(m, delta),
fcr.ov0m(m, delta) * fcr.ov2m(m, delta), 1.e-15)
equal(fco.direct0mm2(m, S), fcr.direct0mm2(m, delta), 1.e-15)
equal(fcr.direct0mm3(m, delta),
fcr.ov0m(m, delta) * fcr.ov3m(m, delta), 1.e-15)
equal(fcr.ov1mm2(m, delta),
fcr.ov1m(m, delta) * fcr.ov2m(m, delta), 1.e-15)
equal(fcr.direct1mm2(m, delta), fcr.ov1mm2(m, delta), 1.e-15)
@fixture(scope='module')
def unrelaxed():
atoms = molecule('CH4')
atoms.calc = EMT()
return atoms
@fixture(scope='module')
def forces_a(unrelaxed):
# evaluate forces in this configuration
return unrelaxed.get_forces()
@fixture(scope='module')
def relaxed(unrelaxed):
atoms = unrelaxed.copy()
atoms.calc = unrelaxed.calc
opt = BFGS(atoms, logfile=None)
opt.run(fmax=0.01)
return atoms
@fixture()
def vibname(relaxed):
atoms = relaxed.copy()
atoms.calc = relaxed.calc
name = 'vib'
vib = Vibrations(atoms, name=name)
vib.run()
return name
def test_ch4_all(forces_a, relaxed, vibname):
"""Evaluate Franck-Condon overlaps in
a molecule suddenly exposed to a different potential"""
# FC factor for all frequencies
fc = FranckCondon(relaxed, vibname)
ndof = 3 * len(relaxed)
# by symmetry only one frequency has a non-vanishing contribution
HR_a, f_a = fc.get_Huang_Rhys_factors(forces_a)
assert len(HR_a) == ndof
assert HR_a[:-1] == approx(0, abs=1e-10)
assert HR_a[-1] == approx(0.859989171)
FC, freq = fc.get_Franck_Condon_factors(293, forces_a)
assert len(FC[0]) == 2 * ndof + 1
assert len(freq[0]) == 2 * ndof + 1
def test_ch4_minfreq(forces_a, relaxed, vibname):
# FC factor for relevant frequencies only
fc = FranckCondon(relaxed, vibname, minfreq=2000)
nrel = 4
# single excitations
FC, freq = fc.get_Franck_Condon_factors(293, forces_a)
assert len(FC[0]) == 2 * nrel + 1
assert len(freq[0]) == 2 * nrel + 1
# include double excitations
FC, freq = fc.get_Franck_Condon_factors(293, forces_a, 2)
assert len(FC[1]) == 2 * nrel
# assert len(FC[2]) == 22 # XXX why? - gives 20 in oldlibs???
for i in range(3):
assert len(freq[i]) == len(FC[i])
|