1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
|
from Numeric import *
from cluster import *
def _treesort(order, nodeorder, nodecounts, tree):
nNodes = len(tree)
nElements = nNodes + 1
neworder = zeros(nElements,'d')
clusterids = range(nElements)
for i in range(nNodes):
i1 = tree[i].left
i2 = tree[i].right
if i1 < 0:
order1 = nodeorder[-i1-1]
count1 = nodecounts[-i1-1]
else:
order1 = order[i1]
count1 = 1
if i2 < 0:
order2 = nodeorder[-i2-1]
count2 = nodecounts[-i2-1]
else:
order2 = order[i2]
count2 = 1
# If order1 and order2 are equal, their order is determined by the order in which they were clustered
if i1 < i2:
if order1 < order2:
increase = count1
else:
increase = count2
for j in range(nElements):
clusterid = clusterids[j]
if clusterid==i1 and order1>=order2: neworder[j] += increase
if clusterid==i2 and order1<order2: neworder[j] += increase
if clusterid==i1 or clusterid==i2: clusterids[j] = -i-1
else:
if order1<=order2:
increase = count1
else:
increase = count2
for j in range(nElements):
clusterid = clusterids[j]
if clusterid==i1 and order1>order2: neworder[j] += increase
if clusterid==i2 and order1<=order2: neworder[j] += increase
if clusterid==i1 or clusterid==i2: clusterids[j] = -i-1
return argsort(neworder)
def _savetree(jobname, tree, order, transpose):
if transpose==0:
extension = ".gtr"
keyword = "GENE"
else:
extension = ".atr"
keyword = "ARRY"
nnodes = len(tree)
outputfile = open(jobname+extension, "w");
nodeindex = 0
nodeID = [''] * (nnodes)
nodecounts = zeros(nnodes)
nodeorder = zeros(nnodes,'d')
nodedist = array([node.distance for node in tree])
for nodeindex in range(nnodes):
min1 = tree[nodeindex].left
min2 = tree[nodeindex].right
nodeID[nodeindex] = "NODE%dX" % (nodeindex+1)
outputfile.write(nodeID[nodeindex])
outputfile.write("\t")
if min1 < 0:
index1 = -min1-1
order1 = nodeorder[index1]
counts1 = nodecounts[index1]
outputfile.write(nodeID[index1]+"\t")
nodedist[nodeindex] = max(nodedist[nodeindex],nodedist[index1])
else:
order1 = order[min1]
counts1 = 1
outputfile.write("%s%dX\t" % (keyword, min1))
if min2 < 0:
index2 = -min2-1
order2 = nodeorder[index2]
counts2 = nodecounts[index2]
outputfile.write(nodeID[index2]+"\t")
nodedist[nodeindex] = max(nodedist[nodeindex],nodedist[index2])
else:
order2 = order[min2];
counts2 = 1;
outputfile.write("%s%dX\t" % (keyword, min2))
outputfile.write(str(1.0-nodedist[nodeindex]))
outputfile.write("\n")
nodecounts[nodeindex] = counts1 + counts2
nodeorder[nodeindex] = (counts1*order1+counts2*order2) / (counts1+counts2)
outputfile.close()
# Now set up order based on the tree structure
index = _treesort(order, nodeorder, nodecounts, tree)
return index
class DataFile:
"""DataFile reads a file containing gene expression data following
Michael Eisen's format for Cluster/TreeView. A DataFile object
has the following members:
data: a matrix containing the gene expression data
mask: a matrix containing only 1's and 0's, denoting which values are
present (1) or missing (0). If all elements of mask are one
(no missing data), then None is returned instead of the mask
geneid: a list containing a unique identifier for each gene
(e.g., ORF name)
genename: a list containing an additional description for each gene
(e.g., gene name)
gweight: the weight to be used for each gene when calculating the distance
gorder: an array of real numbers indicating the preferred order of the
genes in the output file
expid: a list containing a unique identifier for each experimental
condition
eweight: the weight to be used for each experimental condition when
calculating the distance
eorder: an array of real numbers indication the preferred order in the
output file of the experimental conditions
uniqid: the string that was used instead of UNIQID in the input file."""
def __init__(self, filename=None):
"""Reads a data file in the format corresponding to Michael Eisen's Cluster/TreeView program, and stores the data in a DataFile object"""
self.data = None
self.mask = None
self.geneid = None
self.genename = None
self.gweight = None
self.gorder = None
self.expid = None
self.eweight = None
self.eorder = None
self.uniqid = None
if not filename: return
inputfile = open(filename)
lines = inputfile.readlines()
inputfile.close()
lines = [line.strip("\r\n").split("\t") for line in lines]
line = lines[0]
n = len(line)
self.uniqid = line[0]
self.expid = []
cols = {0: "GENEID"}
for word in line[1:]:
if word=="NAME":
cols[line.index(word)] = word
self.genename = []
elif word=="GWEIGHT":
cols[line.index(word)] = word
self.gweight = []
elif word=="GORDER":
cols[line.index(word)] = word
self.gorder = []
else: self.expid.append(word)
self.geneid = []
self.data = []
self.mask = []
needmask = 0
for line in lines[1:]:
assert len(line)==n, "Line with %d columns found (expected %d)" % (len(line), n)
if line[0]=="EWEIGHT":
i = max(cols) + 1
self.eweight = map(float, line[i:])
continue
if line[0]=="EORDER":
i = max(cols) + 1
self.eorder = map(float, line[i:])
continue
rowdata = []
rowmask = []
n = len(line)
for i in range(n):
word = line[i]
if i in cols:
if cols[i]=="GENEID": self.geneid.append(word)
if cols[i]=="NAME": self.genename.append(word)
if cols[i]=="GWEIGHT": self.gweight.append(float(word))
if cols[i]=="GORDER": self.gorder.append(float(word))
continue
if not word:
rowdata.append(0.0)
rowmask.append(0)
needmask = 1
else:
rowdata.append(float(word))
rowmask.append(1)
self.data.append(rowdata)
self.mask.append(rowmask)
self.data = array(self.data)
if needmask: self.mask = array(self.mask)
else: self.mask = None
if self.gweight: self.gweight = array(self.gweight)
if self.gorder: self.gorder = array(self.gorder)
def treecluster(self, transpose=0, method='m', dist='e'):
if transpose==0: weight = self.eweight
else: weight = self.gweight
return treecluster(self.data, self.mask, weight, transpose, method, dist)
def kcluster(self, nclusters=2, transpose=0, npass=1, method='a', dist='e', initialid=None):
if transpose==0: weight = self.eweight
else: weight = self.gweight
clusterid, error, nfound = kcluster(self.data, nclusters, self.mask, weight, transpose, npass, method, dist, initialid)
return clusterid, error, nfound
def somcluster(self, transpose=0, nxgrid=2, nygrid=1, inittau=0.02, niter=1, dist='e'):
if transpose==0: weight = self.eweight
else: weight = self.gweight
clusterid, celldata = somcluster(self.data, self.mask, weight, transpose, nxgrid, nygrid, inittau, niter, dist)
return clusterid, celldata
def clustercentroids(self, clusterid=None, method='a', transpose=0):
cdata, cmask = clustercentroids(self.data, self.mask, clusterid, method, transpose)
return cdata, cmask
def clusterdistance(self, index1=[0], index2=[0], method='a', dist='e', transpose=0):
if transpose==0: weight = self.eweight
else: weight = self.gweight
return clusterdistance(self.data, self.mask, weight, index1, index2, method, dist, transpose)
def distancematrix(self, transpose=0, dist='e'):
if transpose==0: weight = self.eweight
else: weight = self.gweight
return distancematrix(self.data, self.mask, weight, transpose, dist)
def save(self, jobname, geneclusters=None, expclusters=None):
"""save(jobname, geneclusters=None, expclusters=None)
saves the clustering results. The saved files follow the convention for
Java TreeView program, which can therefore be used to view the clustering
result.
Arguments:
jobname: The base name of the files to be saved. The filenames are
jobname.cdt, jobname.gtr, and jobname.atr for hierarchical
clustering, and jobname-K*.cdt, jobname-K*.kgg, jobname-K*.kag
for k-means clustering results
geneclusters=None: For hierarchical clustering results, geneclusters
is an (ngenes-1 x 2) array that describes the hierarchical
clustering result for genes. This array can be calculated
by the hierarchical clustering methods implemented in
treecluster.
For k-means clustering results, geneclusters is a vector
containing ngenes integers, describing to which cluster a
given gene belongs. This vector can be calculated by kcluster.
expclusters=None: For hierarchical clustering results, expclusters
is an (nexps-1 x 2) array that describes the hierarchical
clustering result for experimental conditions. This array can
be calculated by the hierarchical clustering methods implemented
in treecluster.
For k-means clustering results, expclusters is a vector
containing nexps integers, describing to which cluster a
given experimental condition belongs. This vector can be
calculated by kcluster.
"""
(ngenes,nexps) = shape(self.data)
if self.gorder==None: gorder = arange(ngenes)
else: gorder = self.gorder
if self.eorder==None: eorder = arange(nexps)
else: eorder = self.eorder
if geneclusters and expclusters:
assert type(geneclusters)==type(expclusters), "found one k-means and one hierarchical clustering solution in geneclusters and expclusters"
gid = 0
aid = 0
filename = jobname
postfix = ""
if type(geneclusters)==Tree:
# Hierarchical clustering result
geneindex = _savetree(jobname, geneclusters, gorder, 0)
gid = 1
elif geneclusters:
# k-means clustering result
filename = jobname + "_K"
k = max(geneclusters+1)
kggfilename = "%s_K_G%d.kgg" % (jobname, k)
geneindex = self._savekmeans(kggfilename, geneclusters, gorder, 0)
postfix = "_G%d" % k
else:
geneindex = argsort(gorder)
if type(expclusters)==Tree:
# Hierarchical clustering result
expindex = _savetree(jobname, expclusters, eorder, 1)
aid = 1
elif expclusters:
# k-means clustering result
filename = jobname + "_K"
k = max(expclusters+1)
kagfilename = "%s_K_A%d.kag" % (jobname, k)
expindex = self._savekmeans(kagfilename, expclusters, eorder, 1)
postfix += "_A%d" % k
else:
expindex = argsort(eorder)
filename = filename + postfix
self._savedata(filename,gid,aid,geneindex,expindex)
def _savekmeans(self, filename, clusterids, order, transpose):
if transpose==0:
label = self.uniqid
names = self.geneid
else:
label = "ARRAY"
names = self.expid
outputfile = open(filename, "w");
if not outputfile: raise "Error: Unable to open output file"
outputfile.write(label + "\tGROUP\n")
index = argsort(order)
n = len(names)
sortedindex = zeros(n)
counter = 0
cluster = 0
while counter < n:
for j in index:
if clusterids[j]==cluster:
outputfile.write("%s\t%s\n" % (names[j], cluster))
sortedindex[counter] = j
counter+=1
cluster+=1
outputfile.close();
return index
def _savedata(self, jobname, gid, aid, geneindex, expindex):
if self.genename==None: genename = self.geneid
else: genename = self.genename
(ngenes, nexps) = shape(self.data)
outputfile = open(jobname+'.cdt', 'w')
if not outputfile: return "Error: Unable to open output file"
if self.mask: mask = self.mask
else: mask = ones((ngenes,nexps))
if self.gweight: gweight = self.gweight
else: gweight = ones(ngenes)
if self.eweight: eweight = self.eweight
else: eweight = ones(nexps)
if gid: outputfile.write ('GID\t')
outputfile.write(self.uniqid)
outputfile.write('\tNAME\tGWEIGHT')
# Now add headers for data columns
for j in expindex: outputfile.write('\t%s' % self.expid[j])
outputfile.write('\n')
if aid:
outputfile.write("AID")
if gid: outputfile.write('\t')
outputfile.write("\t\t")
for j in expindex: outputfile.write ('\tARRY%dX' % j)
outputfile.write('\n')
outputfile.write('EWEIGHT')
if gid: outputfile.write('\t')
outputfile.write('\t\t')
for j in expindex: outputfile.write('\t%f' % eweight[j])
outputfile.write('\n')
for i in geneindex:
if gid: outputfile.write('GENE%dX\t' % i)
outputfile.write("%s\t%s\t%f" % (self.geneid[i], genename[i], gweight[i]))
for j in expindex:
outputfile.write('\t')
if mask[i][j]: outputfile.write(str(self.data[i][j]))
outputfile.write('\n')
outputfile.close()
|