1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
|
#include "ranlib.h"
#include <stdio.h>
#include <stdlib.h>
void advnst(long k)
/*
**********************************************************************
void advnst(long k)
ADV-a-N-ce ST-ate
Advances the state of the current generator by 2^K values and
resets the initial seed to that value.
This is a transcription from Pascal to Fortran of routine
Advance_State from the paper
L'Ecuyer, P. and Cote, S. "Implementing a Random Number Package
with Splitting Facilities." ACM Transactions on Mathematical
Software, 17:98-111 (1991)
Arguments
k -> The generator is advanced by2^K values
**********************************************************************
*/
{
#define numg 32L
extern void gsrgs(long getset,long *qvalue);
extern void gscgn(long getset,long *g);
extern long Xm1,Xm2,Xa1,Xa2,Xcg1[],Xcg2[];
static long g,i,ib1,ib2;
static long qrgnin;
/*
Abort unless random number generator initialized
*/
gsrgs(0L,&qrgnin);
if(qrgnin) goto S10;
fputs(" ADVNST called before random generator initialized - ABORT",stderr);
exit(1);
S10:
gscgn(0L,&g);
ib1 = Xa1;
ib2 = Xa2;
for(i=1; i<=k; i++) {
ib1 = mltmod(ib1,ib1,Xm1);
ib2 = mltmod(ib2,ib2,Xm2);
}
setsd(mltmod(ib1,*(Xcg1+g-1),Xm1),mltmod(ib2,*(Xcg2+g-1),Xm2));
/*
NOW, IB1 = A1**K AND IB2 = A2**K
*/
#undef numg
}
void getsd(long *iseed1,long *iseed2)
/*
**********************************************************************
void getsd(long *iseed1,long *iseed2)
GET SeeD
Returns the value of two integer seeds of the current generator
This is a transcription from Pascal to Fortran of routine
Get_State from the paper
L'Ecuyer, P. and Cote, S. "Implementing a Random Number Package
with Splitting Facilities." ACM Transactions on Mathematical
Software, 17:98-111 (1991)
Arguments
iseed1 <- First integer seed of generator G
iseed2 <- Second integer seed of generator G
**********************************************************************
*/
{
#define numg 32L
extern void gsrgs(long getset,long *qvalue);
extern void gscgn(long getset,long *g);
extern long Xcg1[],Xcg2[];
static long g;
static long qrgnin;
/*
Abort unless random number generator initialized
*/
gsrgs(0L,&qrgnin);
if(qrgnin) goto S10;
fprintf(stderr,"%s\n",
" GETSD called before random number generator initialized -- abort!");
exit(0);
S10:
gscgn(0L,&g);
*iseed1 = *(Xcg1+g-1);
*iseed2 = *(Xcg2+g-1);
#undef numg
}
long ignlgi(void)
/*
**********************************************************************
long ignlgi(void)
GeNerate LarGe Integer
Returns a random integer following a uniform distribution over
(1, 2147483562) using the current generator.
This is a transcription from Pascal to Fortran of routine
Random from the paper
L'Ecuyer, P. and Cote, S. "Implementing a Random Number Package
with Splitting Facilities." ACM Transactions on Mathematical
Software, 17:98-111 (1991)
**********************************************************************
*/
{
#define numg 32L
extern void gsrgs(long getset,long *qvalue);
extern void gssst(long getset,long *qset);
extern void gscgn(long getset,long *g);
extern void inrgcm(void);
extern long Xm1,Xm2,Xa1,Xa2,Xcg1[],Xcg2[];
extern long Xqanti[];
static long ignlgi,curntg,k,s1,s2,z;
static long qqssd,qrgnin;
/*
IF THE RANDOM NUMBER PACKAGE HAS NOT BEEN INITIALIZED YET, DO SO.
IT CAN BE INITIALIZED IN ONE OF TWO WAYS : 1) THE FIRST CALL TO
THIS ROUTINE 2) A CALL TO SETALL.
*/
gsrgs(0L,&qrgnin);
if(!qrgnin) inrgcm();
gssst(0,&qqssd);
if(!qqssd) setall(1234567890L,123456789L);
/*
Get Current Generator
*/
gscgn(0L,&curntg);
s1 = *(Xcg1+curntg-1);
s2 = *(Xcg2+curntg-1);
k = s1/53668L;
s1 = Xa1*(s1-k*53668L)-k*12211;
if(s1 < 0) s1 += Xm1;
k = s2/52774L;
s2 = Xa2*(s2-k*52774L)-k*3791;
if(s2 < 0) s2 += Xm2;
*(Xcg1+curntg-1) = s1;
*(Xcg2+curntg-1) = s2;
z = s1-s2;
if(z < 1) z += (Xm1-1);
if(*(Xqanti+curntg-1)) z = Xm1-z;
ignlgi = z;
return ignlgi;
#undef numg
}
void initgn(long isdtyp)
/*
**********************************************************************
void initgn(long isdtyp)
INIT-ialize current G-e-N-erator
Reinitializes the state of the current generator
This is a transcription from Pascal to Fortran of routine
Init_Generator from the paper
L'Ecuyer, P. and Cote, S. "Implementing a Random Number Package
with Splitting Facilities." ACM Transactions on Mathematical
Software, 17:98-111 (1991)
Arguments
isdtyp -> The state to which the generator is to be set
isdtyp = -1 => sets the seeds to their initial value
isdtyp = 0 => sets the seeds to the first value of
the current block
isdtyp = 1 => sets the seeds to the first value of
the next block
**********************************************************************
*/
{
#define numg 32L
extern void gsrgs(long getset,long *qvalue);
extern void gscgn(long getset,long *g);
extern long Xm1,Xm2,Xa1w,Xa2w,Xig1[],Xig2[],Xlg1[],Xlg2[],Xcg1[],Xcg2[];
static long g;
static long qrgnin;
/*
Abort unless random number generator initialized
*/
gsrgs(0L,&qrgnin);
if(qrgnin) goto S10;
fprintf(stderr,"%s\n",
" INITGN called before random number generator initialized -- abort!");
exit(1);
S10:
gscgn(0L,&g);
if(-1 != isdtyp) goto S20;
*(Xlg1+g-1) = *(Xig1+g-1);
*(Xlg2+g-1) = *(Xig2+g-1);
goto S50;
S20:
if(0 != isdtyp) goto S30;
goto S50;
S30:
/*
do nothing
*/
if(1 != isdtyp) goto S40;
*(Xlg1+g-1) = mltmod(Xa1w,*(Xlg1+g-1),Xm1);
*(Xlg2+g-1) = mltmod(Xa2w,*(Xlg2+g-1),Xm2);
goto S50;
S40:
fprintf(stderr,"%s\n","isdtyp not in range in INITGN");
exit(1);
S50:
*(Xcg1+g-1) = *(Xlg1+g-1);
*(Xcg2+g-1) = *(Xlg2+g-1);
#undef numg
}
void inrgcm(void)
/*
**********************************************************************
void inrgcm(void)
INitialize Random number Generator CoMmon
Function
Initializes common area for random number generator. This saves
the nuisance of a BLOCK DATA routine and the difficulty of
assuring that the routine is loaded with the other routines.
**********************************************************************
*/
{
#define numg 32L
extern void gsrgs(long getset,long *qvalue);
extern long Xm1,Xm2,Xa1,Xa2,Xa1w,Xa2w,Xa1vw,Xa2vw;
extern long Xqanti[];
static long T1;
static long i;
/*
V=20; W=30;
A1W = MOD(A1**(2**W),M1) A2W = MOD(A2**(2**W),M2)
A1VW = MOD(A1**(2**(V+W)),M1) A2VW = MOD(A2**(2**(V+W)),M2)
If V or W is changed A1W, A2W, A1VW, and A2VW need to be recomputed.
An efficient way to precompute a**(2*j) MOD m is to start with
a and square it j times modulo m using the function MLTMOD.
*/
Xm1 = 2147483563L;
Xm2 = 2147483399L;
Xa1 = 40014L;
Xa2 = 40692L;
Xa1w = 1033780774L;
Xa2w = 1494757890L;
Xa1vw = 2082007225L;
Xa2vw = 784306273L;
for(i=0; i<numg; i++) *(Xqanti+i) = 0;
T1 = 1;
/*
Tell the world that common has been initialized
*/
gsrgs(1L,&T1);
#undef numg
}
void setall(long iseed1,long iseed2)
/*
**********************************************************************
void setall(long iseed1,long iseed2)
SET ALL random number generators
Sets the initial seed of generator 1 to ISEED1 and ISEED2. The
initial seeds of the other generators are set accordingly, and
all generators states are set to these seeds.
This is a transcription from Pascal to Fortran of routine
Set_Initial_Seed from the paper
L'Ecuyer, P. and Cote, S. "Implementing a Random Number Package
with Splitting Facilities." ACM Transactions on Mathematical
Software, 17:98-111 (1991)
Arguments
iseed1 -> First of two integer seeds
iseed2 -> Second of two integer seeds
**********************************************************************
*/
{
#define numg 32L
extern void gsrgs(long getset,long *qvalue);
extern void gssst(long getset,long *qset);
extern void gscgn(long getset,long *g);
extern long Xm1,Xm2,Xa1vw,Xa2vw,Xig1[],Xig2[];
static long T1;
static long g,ocgn;
static long qrgnin;
T1 = 1;
/*
TELL IGNLGI, THE ACTUAL NUMBER GENERATOR, THAT THIS ROUTINE
HAS BEEN CALLED.
*/
gssst(1,&T1);
gscgn(0L,&ocgn);
/*
Initialize Common Block if Necessary
*/
gsrgs(0L,&qrgnin);
if(!qrgnin) inrgcm();
*Xig1 = iseed1;
*Xig2 = iseed2;
initgn(-1L);
for(g=2; g<=numg; g++) {
*(Xig1+g-1) = mltmod(Xa1vw,*(Xig1+g-2),Xm1);
*(Xig2+g-1) = mltmod(Xa2vw,*(Xig2+g-2),Xm2);
gscgn(1L,&g);
initgn(-1L);
}
gscgn(1L,&ocgn);
#undef numg
}
void setant(long qvalue)
/*
**********************************************************************
void setant(long qvalue)
SET ANTithetic
Sets whether the current generator produces antithetic values. If
X is the value normally returned from a uniform [0,1] random
number generator then 1 - X is the antithetic value. If X is the
value normally returned from a uniform [0,N] random number
generator then N - 1 - X is the antithetic value.
All generators are initialized to NOT generate antithetic values.
This is a transcription from Pascal to Fortran of routine
Set_Antithetic from the paper
L'Ecuyer, P. and Cote, S. "Implementing a Random Number Package
with Splitting Facilities." ACM Transactions on Mathematical
Software, 17:98-111 (1991)
Arguments
qvalue -> nonzero if generator G is to generating antithetic
values, otherwise zero
**********************************************************************
*/
{
#define numg 32L
extern void gsrgs(long getset,long *qvalue);
extern void gscgn(long getset,long *g);
extern long Xqanti[];
static long g;
static long qrgnin;
/*
Abort unless random number generator initialized
*/
gsrgs(0L,&qrgnin);
if(qrgnin) goto S10;
fprintf(stderr,"%s\n",
" SETANT called before random number generator initialized -- abort!");
exit(1);
S10:
gscgn(0L,&g);
Xqanti[g-1] = qvalue;
#undef numg
}
void setsd(long iseed1,long iseed2)
/*
**********************************************************************
void setsd(long iseed1,long iseed2)
SET S-ee-D of current generator
Resets the initial seed of the current generator to ISEED1 and
ISEED2. The seeds of the other generators remain unchanged.
This is a transcription from Pascal to Fortran of routine
Set_Seed from the paper
L'Ecuyer, P. and Cote, S. "Implementing a Random Number Package
with Splitting Facilities." ACM Transactions on Mathematical
Software, 17:98-111 (1991)
Arguments
iseed1 -> First integer seed
iseed2 -> Second integer seed
**********************************************************************
*/
{
#define numg 32L
extern void gsrgs(long getset,long *qvalue);
extern void gscgn(long getset,long *g);
extern long Xig1[],Xig2[];
static long g;
static long qrgnin;
/*
Abort unless random number generator initialized
*/
gsrgs(0L,&qrgnin);
if(qrgnin) goto S10;
fprintf(stderr,"%s\n",
" SETSD called before random number generator initialized -- abort!");
exit(1);
S10:
gscgn(0L,&g);
*(Xig1+g-1) = iseed1;
*(Xig2+g-1) = iseed2;
initgn(-1L);
#undef numg
}
long Xm1,Xm2,Xa1,Xa2,Xcg1[32],Xcg2[32],Xa1w,Xa2w,Xig1[32],Xig2[32],Xlg1[32],
Xlg2[32],Xa1vw,Xa2vw;
long Xqanti[32];
|