1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
|
#include "KDTree.h"
float KDTREE_dist(float *coord1, float *coord2, int dim)
{
// returns the SQUARE of the distance between two points
int i;
float sum=0, dif=0;
for (i=0; i<dim; i++)
{
dif=coord1[i]-coord2[i];
sum+=dif*dif;
}
return sum;
}
// DataPoint
int DataPoint::current_dim=0;
int DataPoint::dim=3;
int operator<(const DataPoint &self, const DataPoint &other)
{
float a, b;
a=self._coord[DataPoint::current_dim];
b=other._coord[DataPoint::current_dim];
return a<b;
}
int operator==(const DataPoint &self, const DataPoint &other)
{
float a, b;
a=self._coord[DataPoint::current_dim];
b=other._coord[DataPoint::current_dim];
return a==b;
}
void DataPoint::set_data(long int index, float *coord)
{
_index=index;
_coord=coord;
}
float *DataPoint::get_coord(void)
{
return _coord;
}
long int DataPoint::get_index(void)
{
return _index;
}
// Node
Node::Node(float cut_value, int cut_dim, long int start, long int end)
{
_left=NULL;
_right=NULL;
_cut_value=cut_value;
_cut_dim=cut_dim;
// start and end index in _data_point_list
_start=start;
_end=end;
}
Node::~Node()
{
delete _left;
delete _right;
}
void Node::set_left_node(Node *node)
{
_left=node;
}
void Node::set_right_node(Node *node)
{
_right=node;
}
Node *Node::get_left_node(void)
{
return _left;
}
Node *Node::get_right_node(void)
{
return _right;
}
long int Node::get_start(void)
{
return _start;
}
long int Node::get_end(void)
{
return _end;
}
float Node::get_cut_value(void)
{
return _cut_value;
}
int Node::get_cut_dim(void)
{
return _cut_dim;
}
int Node::is_leaf(void)
{
if (_left==NULL && _right==NULL)
{
return 1;
}
else
{
return 0;
}
}
int Node::is_bucket(void)
{
if (_start==_end+1)
{
// Node contains a single point
return 0;
}
else
{
// Node contains several points
return 1;
}
}
// Region
int Region::dim=3;
Region::Region(float *left, float *right)
{
_left=new float[Region::dim];
_right=new float[Region::dim];
if (left==NULL || right==NULL)
{
// [-INF, INF]
int i;
for (i=0; i<Region::dim; i++)
{
_left[i]=-INF;
_right[i]=INF;
}
}
else
{
int i;
for (i=0; i<Region::dim; i++)
{
_left[i]=left[i];
_right[i]=right[i];
}
}
}
Region::~Region()
{
delete [] _left;
delete [] _right;
}
Region *Region::intersect_right(float split_coord, int current_dim)
{
float l, r;
r=_right[current_dim];
l=_left[current_dim];
if (split_coord<=l)
{
// split point lies to the left
return new Region(_left, _right);
}
else
{
if (split_coord<=r)
{
// split point in interval
// adjust left
int i;
float new_left[Region::dim];
for (i=0; i<Region::dim; i++)
{
new_left[i]=_left[i];
}
new_left[current_dim]=split_coord;
return new Region(new_left, _right);
}
else
{
// interval lies to the left of split point
return NULL;
}
}
}
Region *Region::intersect_left(float split_coord, int current_dim)
{
float l, r;
r=_right[current_dim];
l=_left[current_dim];
if (split_coord<l)
{
// nothing to the left
return NULL;
}
else
{
if (split_coord<r)
{
// split point in interval
// adjust right
int i;
float new_right[Region::dim];
for (i=0; i<Region::dim; i++)
{
new_right[i]=_right[i];
}
new_right[current_dim]=split_coord;
return new Region(_left, new_right);
}
else
{
return new Region(_left, _right);
}
}
}
int Region::encloses(float *coord)
{
int i;
for (i=0; i<Region::dim; i++)
{
if (!(coord[i]>=_left[i] && coord[i]<=_right[i]))
{
return 0;
}
}
return 1;
}
float *Region::get_left(void)
{
return _left;
}
float *Region::get_right(void)
{
return _right;
}
int Region::test_intersection(Region *query_region, float radius)
{
int status=2;
int i;
for (i=0; i<Region::dim; i++)
{
float rs, rq, ls, lq;
rs=_right[i];
ls=_left[i];
rq=query_region->get_right()[i];
lq=query_region->get_left()[i];
if (ls-rq>radius)
{
// outside
return 0;
}
else if (lq-rs>radius)
{
// outside
return 0;
}
else if (rs<=rq && ls>=lq)
{
// inside (at least in dim i)
status=min(status, 2);
}
else
{
// overlap (at least in dim i)
status=1;
}
}
return status;
}
// KDTree
KDTree::KDTree(int dim, int bucket_size)
{
// set dimension
this->dim=dim;
DataPoint::dim=dim;
Region::dim=dim;
_center_coord=new float[dim];
_query_region=NULL;
_root=NULL;
_coords=NULL;
_count=0;
_neighbor_count=0;
_bucket_size=bucket_size;
}
KDTree::~KDTree()
{
// clean up KD tree
delete _root;
delete _query_region;
delete [] _center_coord;
delete [] _coords;
}
Node *KDTree::_build_tree(long int offset_begin, long int offset_end, int depth)
{
int localdim;
if (depth==0)
{
// start with [begin, end+1[
offset_begin=0;
offset_end=_data_point_list.size();
localdim=0;
}
else
{
localdim=depth%dim;
}
if ((offset_end-offset_begin)<=_bucket_size)
{
// leaf node
return new Node(-1, localdim, offset_begin, offset_end);
}
else
{
long int offset_split;
long int left_offset_begin, left_offset_end;
long int right_offset_begin, right_offset_end;
long int d;
float cut_value;
DataPoint data_point;
Node *left_node, *right_node, *new_node;
// set sort dimension
DataPoint::current_dim=localdim;
// sort method sorts [first, last[
sort(_data_point_list.begin()+offset_begin, _data_point_list.begin()+offset_end);
// calculate index of split point
d=offset_end-offset_begin;
offset_split=d/2+d%2;
data_point=_data_point_list[offset_begin+offset_split-1];
cut_value=(data_point.get_coord())[localdim];
// create new node and bind to left & right nodes
new_node=new Node(cut_value, localdim, offset_begin, offset_end);
// left
left_offset_begin=offset_begin;
left_offset_end=offset_begin+offset_split;
left_node=_build_tree(left_offset_begin, left_offset_end, depth+1);
// right
right_offset_begin=left_offset_end;
right_offset_end=offset_end;
right_node=_build_tree(right_offset_begin, right_offset_end, depth+1);
new_node->set_left_node(left_node);
new_node->set_right_node(right_node);
return new_node;
}
}
void KDTree::_add_point(long int index, float *coord)
{
DataPoint data_point;
data_point.set_data(index, coord);
// add to list of points
_data_point_list.push_back(data_point);
}
void KDTree::_set_query_region(float *left, float *right)
{
delete _query_region;
_query_region=new Region(left, right);
}
void KDTree::_search(Region *region, Node *node, int depth)
{
int current_dim;
if(depth==0)
{
// start with [-INF, INF] region
region=new Region();
// start with root node
node=_root;
}
current_dim=depth%dim;
if(node->is_leaf())
{
long int i;
for (i=node->get_start(); i<node->get_end(); i++)
{
DataPoint data_point;
data_point=_data_point_list[i];
if (_query_region->encloses(data_point.get_coord()))
{
// point is enclosed in query region - report & stop
_report_point(data_point.get_index(), data_point.get_coord());
}
}
}
else
{
Node *left_node, *right_node;
Region *left_region, *right_region;
left_node=node->get_left_node();
// LEFT HALF PLANE
// new region
left_region=region->intersect_left(node->get_cut_value(), current_dim);
// left_region is NULL if no overlap
if(left_region)
{
_test_region(left_node, left_region, depth);
}
// RIGHT HALF PLANE
right_node=node->get_right_node();
// new region
right_region=region->intersect_right(node->get_cut_value(), current_dim);
// right_region is NULL if no overlap
if(right_region)
{
// test for overlap/inside/outside & do recursion/report/stop
_test_region(right_node, right_region, depth);
}
}
delete region;
}
void KDTree::_test_region(Node *node, Region *region, int depth)
{
int intersect_flag;
// is node region inside, outside or overlapping
// with query region?
intersect_flag=region->test_intersection(_query_region);
if (intersect_flag==2)
{
// inside - extract points
_report_subtree(node);
// end of recursion
// get rid of region
delete region;
}
else if (intersect_flag==1)
{
// overlap - recursion
_search(region, node, depth+1);
// search does cleanup of region
}
else
{
// outside - stop
// end of recursion
// get rid of region
delete region;
}
}
void KDTree::_report_subtree(Node *node)
{
if (node->is_leaf())
{
// report point(s)
long int i;
for (i=node->get_start(); i<node->get_end(); i++)
{
DataPoint data_point;
data_point=_data_point_list[i];
_report_point(data_point.get_index(), data_point.get_coord());
}
}
else
{
// find points in subtrees via recursion
_report_subtree(node->get_left_node());
_report_subtree(node->get_right_node());
}
}
void KDTree::_report_point(long int index, float *coord)
{
float r;
r=KDTREE_dist(_center_coord, coord, KDTree::dim);
if (r<=_radius_sq)
{
_index_list.push_back(index);
// note use of sqrt - only calculated if necessary
_radius_list.push_back(sqrt(r));
_count++;
}
}
void KDTree::set_data(float *coords, long int nr_points)
{
long int i;
DataPoint::dim=dim;
Region::dim=dim;
// clean up stuff from previous use
delete _root;
delete [] _coords;
_index_list.clear();
_radius_list.clear();
_count=0;
// keep pointer to coords to delete it
_coords=coords;
for (i=0; i<nr_points; i++)
{
_add_point(i, coords+i*dim);
}
// build KD tree
_root=_build_tree();
}
void KDTree::search_center_radius(float *coord, float radius)
{
int i;
float left[dim], right[dim];
DataPoint::dim=dim;
Region::dim=dim;
_index_list.clear();
_radius_list.clear();
_count=0;
_radius=radius;
// use of r^2 to avoid sqrt use
_radius_sq=radius*radius;
for (i=0; i<dim; i++)
{
left[i]=coord[i]-radius;
right[i]=coord[i]+radius;
// set center of query
_center_coord[i]=coord[i];
}
// clean up!
delete [] coord;
_set_query_region(left, right);
_search();
}
long int KDTree::get_count(void)
{
return _count;
}
void KDTree::copy_indices(long *indices)
{
long int i;
if (_count==0)
{
return;
}
for(i=0; i<_count; i++)
{
indices[i]=_index_list[i];
}
}
void KDTree::copy_radii(float *radii)
{
long int i;
if (_count==0)
{
return;
}
for(i=0; i<_count; i++)
{
radii[i]=_radius_list[i];
}
}
void KDTree::neighbor_copy_indices(long int *indices)
{
long int i;
if (_neighbor_count==0)
{
return;
}
for(i=0; i<_neighbor_count*2; i++)
{
indices[i]=_neighbor_index_list[i];
}
}
void KDTree::neighbor_copy_radii(float *radii)
{
long int i;
if (_neighbor_count==0)
{
return;
}
for(i=0; i<_neighbor_count; i++)
{
radii[i]=_neighbor_radius_list[i];
}
}
long int KDTree::neighbor_get_count(void)
{
return _neighbor_count;
}
void KDTree::neighbor_search(float neighbor_radius)
{
Region *region;
DataPoint::dim=dim;
Region::dim=dim;
_neighbor_index_list.clear();
_neighbor_radius_list.clear();
// note the use of r^2 to avoid use of sqrt
_neighbor_radius=neighbor_radius;
_neighbor_radius_sq=neighbor_radius*neighbor_radius;
_neighbor_count=0;
// start with [-INF, INF]
region=new Region();
if (_root->is_leaf())
{
// this is a boundary condition
// bucket_size>nr of points
_search_neighbors_in_bucket(_root);
}
else
{
// "normal" situation
_neighbor_search(_root, region, 0);
}
delete region;
}
void KDTree::_neighbor_search(Node *node, Region *region, int depth)
{
Node *left, *right;
Region *left_region, *right_region;
int localdim;
localdim=depth%dim;
left=node->get_left_node();
right=node->get_right_node();
// planes of left and right nodes
left_region=region->intersect_left(node->get_cut_value(), localdim);
right_region=region->intersect_right(node->get_cut_value(), localdim);
if (!left->is_leaf())
{
// search for pairs in this half plane
_neighbor_search(left, left_region, depth+1);
}
else
{
_search_neighbors_in_bucket(left);
}
if (!right->is_leaf())
{
// search for pairs in this half plane
_neighbor_search(right, right_region, depth+1);
}
else
{
_search_neighbors_in_bucket(right);
}
// search for pairs between the half planes
_neighbor_search_pairs(left, left_region, right, right_region, depth+1);
// cleanup
delete left_region;
delete right_region;
}
void KDTree::_test_neighbors(DataPoint &p1, DataPoint &p2)
{
float r;
r=KDTREE_dist(p1.get_coord(), p2.get_coord(), dim);
if(r<=_neighbor_radius_sq)
{
// we found a neighbor pair!
_neighbor_index_list.push_back(p1.get_index());
_neighbor_index_list.push_back(p2.get_index());
// note sqrt
_neighbor_radius_list.push_back(sqrt(r));
_neighbor_count++;
}
}
void KDTree::_search_neighbors_in_bucket(Node *node)
{
long int i;
for(i=node->get_start(); i<node->get_end(); i++)
{
DataPoint p1;
long int j;
p1=_data_point_list[i];
for (j=i+1; j<node->get_end(); j++)
{
DataPoint p2;
p2=_data_point_list[j];
_test_neighbors(p1, p2);
}
}
}
void KDTree::_search_neighbors_between_buckets(Node *node1, Node *node2)
{
long int i;
for(i=node1->get_start(); i<node1->get_end(); i++)
{
DataPoint p1;
long int j;
p1=_data_point_list[i];
for (j=node2->get_start(); j<node2->get_end(); j++)
{
DataPoint p2;
p2=_data_point_list[j];
_test_neighbors(p1, p2);
}
}
}
void KDTree::_neighbor_search_pairs(Node *down, Region *down_region,
Node *up, Region *up_region, int depth)
{
int down_is_leaf, up_is_leaf;
int localdim;
// if regions do not overlap - STOP
if (!down || !up || !down_region || !up_region)
{
// STOP
return;
}
if (down_region->test_intersection(up_region, _neighbor_radius)==0)
{
// regions cannot contain neighbors
return;
}
// dim
localdim=depth%dim;
// are they leaves?
up_is_leaf=up->is_leaf();
down_is_leaf=down->is_leaf();
if (up_is_leaf && down_is_leaf)
{
// two leaf nodes
_search_neighbors_between_buckets(down, up);
}
else
{
// one or no leaf nodes
Node *up_right, *up_left, *down_left, *down_right;
Region *up_left_region, *up_right_region,
*down_left_region, *down_right_region;
if (down_is_leaf)
{
down_left=down;
// make a copy of down_region
down_left_region=new Region(down_region->get_left(), down_region->get_right());
down_right=NULL;
down_right_region=NULL;
}
else
{
float cut_value;
cut_value=down->get_cut_value();
down_left=down->get_left_node();
down_right=down->get_right_node();
down_left_region=down_region->intersect_left(cut_value, localdim);
down_right_region=down_region->intersect_right(cut_value, localdim);
}
if (up_is_leaf)
{
up_left=up;
// make a copy of up_region
up_left_region=new Region(up_region->get_left(), up_region->get_right());
up_right=NULL;
up_right_region=NULL;
}
else
{
float cut_value;
cut_value=up->get_cut_value();
up_left=up->get_left_node();
up_right=up->get_right_node();
up_left_region=up_region->intersect_left(cut_value, localdim);
up_right_region=up_region->intersect_right(cut_value, localdim);
}
_neighbor_search_pairs(up_left, up_left_region, down_left, down_left_region, depth+1);
_neighbor_search_pairs(up_left, up_left_region, down_right, down_right_region, depth+1);
_neighbor_search_pairs(up_right, up_right_region, down_left, down_left_region, depth+1);
_neighbor_search_pairs(up_right, up_right_region, down_right, down_right_region, depth+1);
delete down_left_region;
delete down_right_region;
delete up_left_region;
delete up_right_region;
}
}
void KDTree::neighbor_simple_search(float radius)
{
long int i;
DataPoint::dim=dim;
Region::dim=dim;
_neighbor_radius=radius;
_neighbor_radius_sq=radius*radius;
_neighbor_count=0;
_neighbor_index_list.clear();
_neighbor_radius_list.clear();
DataPoint::current_dim=0;
sort(_data_point_list.begin(), _data_point_list.end());
for (i=0; i<_data_point_list.size(); i++)
{
float x1;
long int j;
DataPoint p1;
p1=_data_point_list[i];
x1=p1.get_coord()[0];
for (j=i+1; j<_data_point_list.size(); j++)
{
DataPoint p2;
float x2;
p2=_data_point_list[j];
x2=p2.get_coord()[0];
if (fabs(x2-x1)<=radius)
{
_test_neighbors(p1, p2);
}
else
{
break;
}
}
}
}
|