1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
|
# Copyright 2001 by Katharine Lindner. All rights reserved.
# This code is part of the Biopython distribution and governed by its
# license. Please see the LICENSE file that should have been included
# as part of this package.
"""Parser for output from MetaTool, a program which defines metabolic routes
within networks.
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&
list_uids=10222413&dopt=Abstract
"""
# standard library
import string
import array
import os
import re
import sys
import sgmllib
import urlparse
import copy
import Matrix
# XML from python 2.0
from xml.sax import handler
# Martel
import Martel
# from Martel import Opt, Alt, Integer, SignedInteger, Group, Str, MaxRepeat
# from Martel import Any, AnyBut, RepN, Rep, Rep1, ToEol
from Martel import RecordReader
from Bio.ParserSupport import EventGenerator
from Bio.ParserSupport import AbstractConsumer
from Bio.SeqFeature import Reference
from Bio import File
import metatool_format
import Record
class Iterator:
"""Iterator interface to move over a file of MetaTool entries one at a time.
"""
def __init__(self, handle, parser = None):
"""Initialize the iterator.
Arguments:
o handle - A handle with Kabat entries to iterate through.
o parser - An optional parser to pass the entries through before
returning them. If None, then the raw entry will be returned.
"""
self._reader = RecordReader.StartsWith(handle, "METATOOL")
# self._reader = RecordReader.EndsWith(handle, "RECEND|\n")
self._parser = parser
def next(self):
"""Return the next MetaTool record from the handle.
Will return None if we ran out of records.
"""
data = self._reader.next()
if self._parser is not None:
if data:
dumpfile = open( 'dump', 'w' )
dumpfile.write( data )
dumpfile.close()
return self._parser.parse(File.StringHandle(data))
return data
def __iter__(self):
return iter(self.next, None)
class _RecordConsumer:
"""Create a MetaTool Record object from scanner generated information.
"""
def __init__(self):
self.data = Record.Record()
self.data.internal_metabolites = []
self.data.external_metabolites = []
def input_file_name( self, content ):
self.data.input_file_name = content[ 0 ]
def input_file_tag( self, content ):
self.state = "input_file_state"
def metabolite_count_tag( self, content ):
self.state = "metabolite_count_state"
def reaction_count_tag( self, content ):
self.state = "reaction_count_state"
def matrix_row( self, matrix_rows ):
for matrix_row in matrix_rows:
elements = matrix_row.split()
vector = []
for element in elements:
vector.append( int( element ) )
self._vectors.append( vector )
def unbalanced_metabolite( self, content ):
for metabolite in content:
self.data.unbalanced_metabolites.append( metabolite )
def branch_metabolite( self, content ):
for metabolite in content:
items = metabolite.split()
name = items[ 0 ]
consumed = int( items[ 1 ] )
built = int( items[ 2 ] )
vector = items[ 4 ].replace( 'r', '0' )
vector = vector.replace( 'i', '1' )
vector = list( vector )
map( int, vector )
entry = Record.MetaboliteRole( name, consumed, built, vector )
self.data.branch_metabolites.append( entry )
def non_branch_metabolite( self, content ):
for metabolite in content:
items = metabolite.split()
name = items[ 0 ]
consumed = int( items[ 1 ] )
built = int( items[ 2 ] )
vector = items[ 4 ].replace( 'r', '0' )
vector = vector.replace( 'i', '1' )
vector = list( vector )
entry = Record.MetaboliteRole( name, consumed, built, vector )
self.data.non_branch_metabolites.append( entry )
def stoichiometric_tag( self, content ):
self.state = "stoichiometry_state"
self._vectors = []
self._enzymes = []
self._reactions = []
def kernel_tag( self, kernel_tag ):
self.state = "kernel_state"
self._vectors = []
self._enzymes = []
self._reactions = []
def subsets_tag( self, content ):
self.state = "subsets_state"
self._vectors = []
self._enzymes = []
self._reactions = []
def reduced_system_tag( self, content ):
self.state = "reduced_system_state"
self._vectors = []
self._enzymes = []
self._reactions = []
def convex_basis_tag( self, content ):
self.state = "convex_basis_state"
self._vectors = []
self._enzymes = []
self._reactions = []
def conservation_relations_tag( self, content ):
self.state = "conservation_relations_state"
self._vectors = []
self._enzymes = []
self._reactions = []
def elementary_modes_tag( self, content ):
self.state = "elementary_modes_state"
self._vectors = []
self._enzymes = []
self._reactions = []
def metabolite_line( self, content ):
self.data.external_metabolites = []
self.data.internal_metabolites = []
for metabolite in content:
items = metabolite.split()
entry = Record.Metabolite( int( items[ 0 ] ), items[ 2 ] )
if( items[ 1 ] == "external" ):
self.data.external_metabolites.append( entry )
else:
self.data.internal_metabolites.append( entry )
def num_int_metabolites( self, content ):
num_int_metabolites = content[ 0 ]
self.data.num_int_metabolites = int( num_int_metabolites )
def num_reactions( self, content ):
num_reactions = content[ 0 ]
self.data.num_reactions = int( num_reactions )
def irreversible_vector( self, content ):
self._irreversible_vector = content[ 0 ].split()
def reaction( self, reactions ):
for reaction in reactions:
items = reaction.split()
item = string.join( items[ 1: ] )
self._reactions.append( item.strip() )
def enzyme( self, enzymes ):
for enzyme in enzymes:
items = enzyme.split()
item = string.join( items[ 1: ] )
self._enzymes.append( item.strip() )
def sum_is_constant_line( self, lines ):
for line in lines:
items = line.split( ':')
items = items[ 1 ].split( '=' )
self.data.sum_is_constant_lines.append( items[ 0 ] )
def num_rows( self, num_rows ):
pass
def num_cols( self, num_cols ):
pass
def metabolite_roles( self, content ):
for metabolite_role in content:
cols = metabolite_role.split()
def end_stochiometric( self, content ):
if( self._vectors != [] ):
self.data.stochiometric.matrix = Matrix.Matrix( self._vectors )
self.data.stochiometric.enzymes = []
for enzyme in self._enzymes:
self.data.stochiometric.enzymes.append( enzyme )
self.data.stochiometric.enzymes = []
for reaction in self._reactions:
self.data.stochiometric.reactions.append( reaction )
for col in self._irreversible_vector:
self.data.stochiometric.irreversible_vector.append( col )
def end_kernel( self, content ):
if( self._vectors != [] ):
self.data.kernel.matrix = Matrix.Matrix( self._vectors )
self.data.kernel.enzymes = []
for enzyme in self._enzymes:
self.data.kernel.enzymes.append( enzyme )
for reaction in self._reactions:
self.data.kernel.reactions.append( reaction )
def end_subsets( self, content ):
if( self._vectors != [] ):
self.data.subsets.matrix = Matrix.Matrix( self._vectors )
self.data.subsets.enzymes = []
for enzyme in self._enzymes:
self.data.subsets.enzymes.append( enzyme )
for reaction in self._reactions:
self.data.subsets.reactions.append( reaction )
def end_reduced_system( self, content ):
if( self._vectors != [] ):
self.data.reduced_system.matrix = Matrix.Matrix( self._vectors[:14] )
self.data.reduced_system.enzymes = []
for enzyme in self._enzymes:
self.data.reduced_system.enzymes.append( enzyme )
for reaction in self._reactions:
self.data.reduced_system.reactions.append( reaction )
for col in self._irreversible_vector:
self.data.reduced_system.irreversible_vector.append( col )
def end_convex_basis( self, content ):
if( self._vectors != [] ):
self.data.convex_basis.matrix = Matrix.Matrix( self._vectors )
self.data.convex_basis.enzymes = []
for enzyme in self._enzymes:
self.data.convex_basis.enzymes.append( enzyme )
for reaction in self._reactions:
self.data.convex_basis.reactions.append( reaction )
def end_conservation_relations( self, content ):
if( self._vectors != [] ):
self.data.conservation_relations.matrix = Matrix.Matrix( self._vectors )
self.data.conservation_relations.enzymes = []
for enzyme in self._enzymes:
self.data.conservation_relations.enzymes.append( enzyme )
for reaction in self._reactions:
self.data.conservation_relations.reactions.append( reaction )
def end_elementary_modes( self, content ):
if( self._vectors != [] ):
self.data.elementary_modes.matrix = Matrix.Matrix( self._vectors )
self.data.elementary_modes.enzymes = []
for enzyme in self._enzymes:
self.data.elementary_modes.enzymes.append( enzyme )
for reaction in self._reactions:
self.data.elementary_modes.reactions.append( reaction )
class _Scanner:
"""Start up Martel to do the scanning of the file.
This initialzes the Martel based parser and connects it to a handler
that will generate events for a Feature Consumer.
"""
def __init__(self, debug = 0):
"""Initialize the scanner by setting up our caches.
Creating the parser takes a long time, so we want to cache it
to reduce parsing time.
Arguments:
o debug - The level of debugging that the parser should
display. Level 0 is no debugging, Level 2 displays the most
debugging info (but is much slower). See Martel documentation
for more info on this.
"""
# a listing of all tags we are interested in scanning for
# in the MartelParser
self.interest_tags = [ "input_file_name", "num_int_metabolites", \
"num_reactions", "metabolite_line", "unbalanced_metabolite", \
"num_rows", "num_cols", "irreversible_vector", \
"branch_metabolite", "non_branch_metabolite", \
"stoichiometric_tag", "kernel_tag", "subsets_tag", \
"reduced_system_tag", "convex_basis_tag", \
"conservation_relations_tag", "elementary_modes_tag", \
"reaction", "enzyme", "matrix_row", "sum_is_constant_line", \
"end_stochiometric", "end_kernel", "end_subsets", \
"end_reduced_system", "end_convex_basis", \
"end_conservation_relations", "end_elementary_modes" ]
# make a parser that returns only the tags we are interested in
expression = Martel.select_names( metatool_format.metatool_record,
self.interest_tags)
self._parser = expression.make_parser(debug_level = debug)
def feed(self, handle, consumer):
"""Feeed a set of data into the scanner.
Arguments:
o handle - A handle with the information to parse.
o consumer - The consumer that should be informed of events.
"""
self._parser.setContentHandler(EventGenerator(consumer,
self.interest_tags ))
# _strip_and_combine ))
self._parser.setErrorHandler(handler.ErrorHandler())
self._parser.parseFile(handle)
class RecordParser:
"""Parse MetaTool files into Record objects
"""
def __init__(self, debug_level = 0):
"""Initialize the parser.
Arguments:
o debug_level - An optional argument that species the amount of
debugging information Martel should spit out. By default we have
no debugging info (the fastest way to do things), but if you want
you can set this as high as two and see exactly where a parse fails.
"""
self._scanner = _Scanner(debug_level)
def parse(self, handle):
"""Parse the specified handle into a MetaTool record.
"""
self._consumer = _RecordConsumer()
self._scanner.feed(handle, self._consumer)
return self._consumer.data
def _strip_and_combine(line_list):
"""Combine multiple lines of content separated by spaces.
This function is used by the EventGenerator callback function to
combine multiple lines of information. The lines are first
stripped to remove whitepsace, and then combined so they are separated
by a space. This is a simple minded way to combine lines, but should
work for most cases.
"""
# first strip out extra whitespace
stripped_line_list = map(string.strip, line_list)
# now combine everything with spaces
return string.join(stripped_line_list, ' ')
|