File: __init__.py

package info (click to toggle)
python-biopython 1.42-2
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 17,584 kB
  • ctags: 12,272
  • sloc: python: 80,461; xml: 13,834; ansic: 7,902; cpp: 1,855; sql: 1,144; makefile: 203
file content (291 lines) | stat: -rw-r--r-- 9,507 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
# Copyright 2002 by Katharine Lindner.  All rights reserved.
# This code is part of the Biopython distribution and governed by its
# license.  Please see the LICENSE file that should have been included
# as part of this package.

"""
This module provides code to work with html files from NDB.
http://ndbserver.rutgers.edu/NDB/structure-finder/ndb/index.html


Classes:
Record             Holds NDB sequence data.
NdbParser          Parses NDB sequence data into a Record object.

The algorithm is based on a state machine because the record has multiple 
sections and the handling of tags varies depending on the section.  
Citations have their own state machine.
"""

from types import *
import string
from Bio import File
from Bio import Index
from Bio.Crystal import Hetero
from Bio.Crystal import Chain
from Bio.Crystal import Crystal
from Bio.SeqFeature import Reference
import urllib
import sgmllib
from Bio.ParserSupport import *
from Bio.SeqFeature import Reference


class Record( dict ):

    def __init__( self ):
        self[ 'Id' ] = ''
        self[ 'Features' ] = ''
        self[ 'Name' ] = ''
        self[ 'Sequence' ] = Crystal( {} )
        self[ 'Citation' ] = Reference()
        self[ 'Space Group' ] = ''
        self[ 'Cell Constants' ] = {}
        self[ 'Crystallization Conditions' ] = []
        self[ 'Refinement' ] = ''
        self[ 'Coordinates' ] = ''

    def __str__( self ):
        keys = self.keys()
        keys.sort()
        out = ''
        for key in keys:
            val = self[ key ]
            if( type( val ) == type( [] ) ):
                out = out + '\n%s\n' % key
                for item in val:
                    out = out + '%s\n' % item

            elif( type( val ) == type( {} ) ):
                out = out + '\n%s\n' % key
                subkeys = val.keys()
                subkeys.sort()
                for item in subkeys:
                    out = out + '%s : %s\n' % ( item, val[ item ] )
            elif( isinstance( val, dict ) ):
                out = out + '\n%s\n' % key
                subkeys = val.keys()
                subkeys.sort()
                for item in subkeys:
                    out = out + '%s : %s\n' % ( item, val[ item ] )

            else:
                out = out + '%s: %s\n' % ( key, self[ key ] )
        return out

def _parse_constants( text ):
    items = text.split( '=' )
    constants = {}
    key = ''
    for i in range( 0, ( len( items ) - 1 ) ):
        item = items[ i ]
        item = item.strip()
        separator = item.rfind( ' ' )
        if( separator < 0 ):
            separator = 0
        val = item[ :separator ]
        val = val.strip()
        if( key != '' ):
            constants[ key ] = val
        key = item[ separator: ]
        key = key.strip()
    constants[ key ] = items[ -1 ]
    return constants





class NdbParser(  sgmllib.SGMLParser ):
    """Parses Ndb sequence data into a Record object.
    data available at: http://ndbserver.rutgers.edu/NDB/NDBATLAS/index.html
    """
    def reset(self):
        sgmllib.SGMLParser.reset( self )
        self.ndb_dict = Record()
        self.text = ''
        self._space_group = ''
        self._state = 'id'
        self._reference_state = 'authors'
        self._current_reference = Reference()

    def parse(self, handle):
        self.reset()
        self.feed(handle)
        return self.ndb_dict

    def feed(self, handle):
        """feed(self, handle )

        Feed in ndb data for scanning.  handle is a file-like object
        containing ndb data.  consumer is a Consumer object that will
        receive events as the ndb data is scanned.

        """
        if isinstance(handle, File.UndoHandle):
            uhandle = handle
        else:
            uhandle = File.UndoHandle(handle)
        text = ''
        while 1:
            line = uhandle.readline()
            if( not line ):
                break
            line = string.strip( line )
            if( line[ -7: ] == '</HTML>' ):
                break
            text = text + ' ' + line

        sgmllib.SGMLParser.feed( self, text )


    def handle_data(self, newtext ):
        newtext = string.strip( newtext )
        self.text = self.text + newtext

    def start_h1( self, attrs ):
        self._flush_text()

    def end_h1( self ):
        text = self._flush_text()
        if( self._state == 'id' ):
            cols = text.split( ':' )
            self.ndb_dict[ 'Id' ] = ( cols[ 1 ] ).upper()
            self._state = 'id_found'

    def start_h2( self, attrs ):
        text = self._flush_text()
        if( self._state == 'features' ):
            self.ndb_dict[ 'Features' ] = text
        elif( self._state == 'name' ):
            self.ndb_dict[ 'Name' ] = text
        elif( self._state == 'sequence' ):
            pass
        elif( self._state == 'citation' ):
            if( self._reference_state == 'journal' ):
                self._current_reference.journal = text
            self.ndb_dict[ 'Citation' ] = self._current_reference
        elif( self._state == 'space' ):
            self._space_group = self._space_group + text
            self.ndb_dict[ 'Space Group' ] = self._space_group
        elif( self._state == 'constants' ):
            self.ndb_dict[ 'Cell Constants' ] = _parse_constants( text )
        elif( self._state == 'crystallization' ):
            pass
        elif( self._state == 'refinement' ):
            self.ndb_dict[ 'Refinement' ] = text
        elif( self._state == 'coordinates' ):
            self.ndb_dict[ 'Coordinates' ] = text

    def end_h2( self ):
        text = self._flush_text()
        text = text.lower()
        if( self._state == 'id' ):
            if( text.find( 'id' ) >= 0 ):
                cols = text.split( ':' )
                self.ndb_dict[ 'Id' ] = ( cols[ 1 ] ).upper()
                self._state = 'id_found'
        elif( text.find( 'feature' ) >= 0 ):
            self._state = 'features'
        elif( text.find( 'name' ) >= 0 ):
            self._state = 'name'
        elif( text.find( 'sequence' ) >= 0 ):
            self._state = 'sequence'
        elif( text.find( 'citation' ) >= 0 ):
            self._state = 'citation'
        elif( text.find( 'space' ) >= 0 ):
            self._state = 'space'
        elif( text.find( 'constants' ) >= 0 ):
            self._state = 'constants'
        elif( text.find( 'crystallization' ) >= 0 ):
            self._state = 'crystallization'
        elif( text.find( 'refinement' ) >= 0 ):
            self._state = 'refinement'
        elif( text.find( 'coordinates' ) >= 0 ):
            self._state = 'coordinates'


    def start_ul( self, attrs ):
        if( self._state == 'sequence' ):
            self._flush_text()

        elif( self._state == 'crystallization' ):
            self._flush_text()

    def end_ul( self ):
        if( self._state == 'sequence' ):
            self._parse_chain()
        elif( self._state == 'crystallization' ):
            text = self._flush_text()
            ( self.ndb_dict[ 'Crystallization Conditions' ] ).append( text )
        elif( self._state == 'citation' ):
            if( self._reference_state == 'journal' ):
                self._current_reference.journal = self._flush_text()
                self._reference_state = 'done'

    def start_sub( self, attrs ):
        if( self._state == 'space' ):
            self._space_group = self._space_group + self._flush_text()

    def end_sub( self ):
        if( self._state == 'space' ):
            self._space_group = self._space_group + '(%s) ' % self._flush_text()

    def start_li( self, attrs ):
        if( self._state == 'sequence' ):
            self._parse_chain()
        elif( self._state == 'crystallization' ):
            text = self._flush_text()
            ( self.ndb_dict[ 'Crystallization Conditions' ] ).append( text )

    def end_li( self ):
        if( self._state == 'sequence' ):
            self._parse_chain()
        elif( self._state == 'crystallization' ):
            text = self._flush_text()
            ( self.ndb_dict[ 'Crystallization Conditions' ] ).append( text )

    def do_br( self, attrs ):
        if( self._state == 'citation' ):
            if( self._reference_state == 'authors' ):
                self._current_reference.authors = self._flush_text()
                self._reference_state = 'title'
            elif( self._reference_state == 'title' ):
                self._current_reference.title = self._flush_text()
                self._reference_state = 'journal'

    def start_i( self, attrs ):
        pass

    def end_i( self ):
        if( self._state == 'references' ):
            if( self._reference_state == 'title' ):
                text = self._flush_text()
                self._current_reference.title = text
                self._reference_state = 'journal'


    def _parse_chain(  self ):
        text = self._flush_text()
        text = text.strip()
        if( text.lower().startswith( 'chain' ) ):
            fields = text.split( ':' )
            words = fields[ 0 ].split()
            key = words[ 1 ]
            val = fields[ 1 ]
            self.ndb_dict[ 'Sequence' ][ key ] = val



    def _flush_text( self ):
        text = string.strip( self.text )
        self.text = ''
        return text[:]


if( __name__ == '__main__' ):
    handle = open( 'PR0004.htm')
    undo_handle = File.UndoHandle( handle )
    ndb_parser = NdbParser()
    record = ndb_parser.parse( handle )
    print str( record )