1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
|
#
#
#
#
# CHECK SELF.MAX_SUPPORT
#
#
#
#
#
# Trees.py
#
# Copyright 2005 by Frank Kauff & Cymon J. Cox. All rights reserved.
# This code is part of the Biopython distribution and governed by its
# license. Please see the LICENSE file that should have been included
# as part of this package.
#
# Tree class handles phylogenetic trees. Provides a set of methods to read and write newick-format tree
# descriptions, get information about trees (monphyly of taxon sets, congruence between trees, common ancestors,...)
# and to manipulate trees (reroot trees, split terminal nodes).
#
# Bug reports welcome: fkauff@duke.edu
#
import sys, random, sets
import Nodes
PRECISION_BRANCHLENGTH=6
PRECISION_SUPPORT=6
class TreeError(Exception): pass
class NodeData:
"""Stores tree-relevant data associated with nodes (e.g. branches or otus)."""
def __init__(self,taxon=None,branchlength=0.0,support=None):
self.taxon=taxon
self.branchlength=branchlength
self.support=support
class Tree(Nodes.Chain):
"""Represents a tree using a chain of nodes with on predecessor (=ancestor)
and multiple successors (=subclades).
"""
# A newick tree is parsed into nested list and then converted to a node list in two stages
# mostly due to historical reasons. This could be done in one swoop). Note: parentheses ( ) and
# colon : are not allowed in taxon names. This is against NEXUS standard, but makes life much
# easier when parsing trees.
## NOTE: Tree should store its data class in something like self.dataclass=data,
## so that nodes that are generated have easy access to the data class
## Some routines use automatically NodeData, this needs to be more concise
def __init__(self,tree=None,weight=1.0,rooted=False,name='',data=NodeData,values_are_support=False,max_support=1.0):
"""Ntree(self,tree)."""
Nodes.Chain.__init__(self)
self.dataclass=data
self.__values_are_support=values_are_support
self.max_support=max_support
self.weight=weight
self.rooted=rooted
self.name=name
root=Nodes.Node(data())
self.add(root)
self.root=root.id
if tree: # use the tree we have
# if Tree is called from outside Nexus parser, we need to get rid of linebreaks, etc
tree=tree.strip().replace('\n','').replace('\r','')
# there's discrepancy whether newick allows semicolons et the end
tree=tree.rstrip(';')
self._add_subtree(parent_id=root.id,tree=self._parse(tree)[0])
def _parse(self,tree):
"""Parses (a,b,c...)[[[xx]:]yy] into subcomponents and travels down recursively."""
#print 'parsing',tree
if tree.count('(')!=tree.count(')'):
raise TreeError, 'Parentheses do not match in (sub)tree: '+tree
if tree.count('(')==0: # a leaf
colon=tree.rfind(':')
if colon>-1:
return [tree[:colon],self._get_values(tree[colon+1:])]
else:
return [tree,[None]]
else:
closing=tree.rfind(')')
val=self._get_values(tree[closing+1:])
if not val:
val=[None]
subtrees=[]
plevel=0
prev=1
for p in range(1,closing):
if tree[p]=='(':
plevel+=1
elif tree[p]==')':
plevel-=1
elif tree[p]==',' and plevel==0:
subtrees.append(tree[prev:p])
prev=p+1
subtrees.append(tree[prev:closing])
subclades=[self._parse(subtree) for subtree in subtrees]
return [subclades,val]
def _add_subtree(self,parent_id=None,tree=None):
"""Adds leaf or tree (in newick format) to a parent_id. (self,parent_id,tree)."""
if parent_id is None:
raise TreeError('Need node_id to connect to.')
for st in tree:
if type(st[0])==list: # it's a subtree
nd=self.dataclass()
if len(st[1])>=2: # if there's two values, support comes first. Is that always so?
nd.support=st[1][0]
if st[1][1] is not None:
nd.branchlength=st[1][1]
elif len(st[1])==1: # otherwise it could be real branchlengths or support as branchlengths
if not self.__values_are_support: # default
if st[1][0] is not None:
nd.branchlength=st[1][0]
else:
nd.support=st[1][0]
sn=Nodes.Node(nd)
self.add(sn,parent_id)
self._add_subtree(sn.id,st[0])
else: # it's a leaf
nd=self.dataclass()
nd.taxon=st[0]
if len(st)>1:
if len(st[1])>=2: # if there's two values, support comes first. Is that always so?
nd.support=st[1][0]
if st[1][1] is not None:
nd.branchlength=st[1][1]
elif len(st[1])==1: # otherwise it could be real branchlengths or support as branchlengths
if not self.__values_are_support: # default
if st[1][0] is not None:
nd.branchlength=st[1][0]
else:
nd.support=st[1][0]
leaf=Nodes.Node(nd)
self.add(leaf,parent_id)
def _get_values(self, text):
"""Extracts values (support/branchlength) from xx[:yyy], xx."""
if text=='':
return None
return [float(t) for t in text.split(':') if t.strip()]
def _walk(self,node=None):
"""Return all node_ids downwards from a node."""
if node is None:
node=self.root
for n in self.node(node).succ:
yield n
for sn in self._walk(n):
yield sn
def node(self,node_id):
"""Return the instance of node_id.
node = node(self,node_id)
"""
if node_id not in self.chain:
raise TreeError('Unknown node_id: %d' % node_id)
return self.chain[node_id]
def split(self,parent_id=None,n=2,branchlength=1.0):
"""Speciation: generates n (default two) descendants of a node.
[new ids] = split(self,parent_id=None,n=2,branchlength=1.0):
"""
if parent_id is None:
raise TreeError('Missing node_id.')
ids=[]
parent_data=self.chain[parent_id].data
for i in range(n):
node=Nodes.Node()
if parent_data:
node.data=self.dataclass()
# each node has taxon and branchlength attribute
if parent_data.taxon:
node.data.taxon=parent_data.taxon+str(i)
node.data.branchlength=branchlength
ids.append(self.add(node,parent_id))
return ids
def search_taxon(self,taxon):
"""Returns the first matching taxon in self.data.taxon. Not restricted to terminal nodes.
node_id = search_taxon(self,taxon)
"""
for id,node in self.chain.items():
if node.data.taxon==taxon:
return id
return None
def prune(self,taxon):
"""Prunes a terminal taxon from the tree.
id_of_previous_node = prune(self,taxon)
If taxon is from a bifurcation, the connectiong node will be collapsed
and its branchlength added to remaining terminal node. This might be no
longer a meaningful value'
"""
id=self.search_taxon(taxon)
if id is None:
raise TreeError('Taxon not found: %s' % taxon)
elif id not in self.get_terminals():
raise TreeError('Not a terminal taxon: %s' % taxon)
else:
prev=self.unlink(id)
self.kill(id)
if not prev==self.root and len(self.node(prev).succ)==1:
succ=self.node(prev).succ[0]
new_bl=self.node(prev).data.branchlength+self.node(succ).data.branchlength
self.collapse(prev)
self.node(succ).data.branchlength=new_bl
return prev
def get_taxa(self,node_id=None):
"""Return a list of all otus downwards from a node (self, node_id).
nodes = get_taxa(self,node_id=None)
"""
if node_id is None:
node_id=self.root
if node_id not in self.chain:
raise TreeError('Unknown node_id: %d.' % node_id)
if self.chain[node_id].succ==[]:
if self.chain[node_id].data:
return [self.chain[node_id].data.taxon]
else:
return None
else:
list=[]
for succ in self.chain[node_id].succ:
list.extend(self.get_taxa(succ))
return list
def get_terminals(self):
"""Return a list of all terminal nodes."""
return [i for i in self.all_ids() if self.node(i).succ==[]]
def sum_branchlength(self,root=None,node=None):
"""Adds up the branchlengths from root (default self.root) to node.
sum = sum_branchlength(self,root=None,node=None)
"""
if root is None:
root=self.root
if node is None:
raise TreeError('Missing node id.')
blen=0.0
while node is not None and node is not root:
blen+=self.node(node).data.branchlength
node=self.node(node).prev
return blen
def set_subtree(self,node):
"""Return subtree as a set of nested sets.
sets = set_subtree(self,node)
"""
if self.node(node).succ==[]:
return self.node(node).data.taxon
else:
return sets.Set([self.set_subtree(n) for n in self.node(node).succ])
def is_identical(self,tree2):
"""Compare tree and tree2 for identity.
result = is_identical(self,tree2)
"""
return self.set_subtree(self.root)==tree2.set_subtree(tree2.root)
def is_compatible(self,tree2,threshold,strict=True):
"""Compares branches with support>threshold for compatibility.
result = is_compatible(self,tree2,threshold)
"""
# check if both trees have the same set of taxa. strict=True enforces this.
missing2=sets.Set(self.get_taxa())-sets.Set(tree2.get_taxa())
missing1=sets.Set(tree2.get_taxa())-sets.Set(self.get_taxa())
if strict and (missing1 or missing2):
if missing1:
print 'Taxon/taxa %s is/are missing in tree %s' % (','.join(missing1) , self.name)
if missing2:
print 'Taxon/taxa %s is/are missing in tree %s' % (','.join(missing2) , tree2.name)
raise TreeError, 'Can\'t compare trees with different taxon compositions.'
t1=[(sets.Set(self.get_taxa(n)),self.node(n).data.support) for n in self.all_ids() if \
self.node(n).succ and\
(self.node(n).data and self.node(n).data.support and self.node(n).data.support>=threshold)]
t2=[(sets.Set(tree2.get_taxa(n)),tree2.node(n).data.support) for n in tree2.all_ids() if \
tree2.node(n).succ and\
(tree2.node(n).data and tree2.node(n).data.support and tree2.node(n).data.support>=threshold)]
conflict=[]
for (st1,sup1) in t1:
for (st2,sup2) in t2:
if not st1.issubset(st2) and not st2.issubset(st1): # don't hiccup on upstream nodes
intersect,notin1,notin2=st1 & st2, st2-st1, st1-st2 # all three are non-empty sets
# if notin1==missing1 or notin2==missing2 <==> st1.issubset(st2) or st2.issubset(st1) ???
if intersect and not (notin1.issubset(missing1) or notin2.issubset(missing2)): # omit conflicts due to missing taxa
conflict.append((st1,sup1,st2,sup2,intersect,notin1,notin2))
return conflict
def common_ancestor(self,node1,node2):
"""Return the common ancestor that connects to nodes.
node_id = common_ancestor(self,node1,node2)
"""
l1=[self.root]+self.trace(self.root,node1)
l2=[self.root]+self.trace(self.root,node2)
return [n for n in l1 if n in l2][-1]
def distance(self,node1,node2):
"""Add and return the sum of the branchlengths between two nodes.
dist = distance(self,node1,node2)
"""
ca=self.common_ancestor(node1,node2)
return self.sum_branchlength(ca,node1)+self.sum_branchlength(ca,node2)
def is_monophyletic(self,taxon_list):
"""Return node_id of common ancestor if taxon_list is monophyletic, -1 otherwise.
result = is_monophyletic(self,taxon_list)
"""
if isinstance(taxon_list,str):
taxon_set=sets.Set([taxon_list])
else:
taxon_set=sets.Set(taxon_list)
node_id=self.root
while 1:
subclade_taxa=sets.Set(self.get_taxa(node_id))
if subclade_taxa==taxon_set: # are we there?
return node_id
else: # check subnodes
for subnode in self.chain[node_id].succ:
if sets.Set(self.get_taxa(subnode)).issuperset(taxon_set): # taxon_set is downstream
node_id=subnode
break # out of for loop
else:
return -1 # taxon set was not with successors, for loop exhausted
def branchlength2support(self):
"""Move values stored in data.branchlength to data.support, and set branchlength to 0.0
This is necessary when support has been stored as branchlength (e.g. paup), and has thus
been read in as branchlength.
"""
for n in self.chain.keys():
self.node(n).data.support=self.node(n).data.branchlength
self.node(n).data.branchlength=0.0
def convert_absolute_support(self,nrep):
"""Convert absolute support (clade-count) to rel. frequencies.
Some software (e.g. PHYLIP consense) just calculate how often clades appear, instead of
calculating relative frequencies."""
for n in self._walk():
if self.node(n).data.support:
self.node(n).data.support/=float(nrep)
def randomize(self,ntax=None,taxon_list=None,branchlength=1.0,branchlength_sd=None,bifurcate=True):
"""Generates a random tree with ntax taxa and/or taxa from taxlabels.
new_tree = randomize(self,ntax=None,taxon_list=None,branchlength=1.0,branchlength_sd=None,bifurcate=True)
Trees are bifurcating by default. (Polytomies not yet supported).
"""
if not ntax and taxon_list:
ntax=len(taxon_list)
elif not taxon_list and ntax:
taxon_list=['taxon'+str(i+1) for i in range(ntax)]
elif not ntax and not taxon_list:
raise TreeError('Either numer of taxa or list of taxa must be specified.')
elif ntax<>len(taxon_list):
raise TreeError('Length of taxon list must correspond to ntax.')
# initiate self with empty root
self.__init__()
terminals=self.get_terminals()
# bifurcate randomly at terminal nodes until ntax is reached
while len(terminals)<ntax:
newsplit=random.choice(terminals)
new_terminals=self.split(parent_id=newsplit,branchlength=branchlength)
# if desired, give some variation to the branch length
if branchlength_sd:
for nt in new_terminals:
bl=random.gauss(branchlength,branchlength_sd)
if bl<0:
bl=0
self.node(nt).data.branchlength=bl
terminals.extend(new_terminals)
terminals.remove(newsplit)
# distribute taxon labels randomly
random.shuffle(taxon_list)
for (node,name) in zip(terminals,taxon_list):
self.node(node).data.taxon=name
def display(self):
"""Quick and dirty lists of all nodes."""
table=[('#','taxon','prev','succ','brlen','blen (sum)','support')]
for i in self.all_ids():
n=self.node(i)
if not n.data:
table.append((str(i),'-',str(n.prev),str(n.succ),'-','-','-'))
else:
tx=n.data.taxon
if not tx:
tx='-'
blength=n.data.branchlength
if blength is None:
blength='-'
sum_blength='-'
else:
sum_blength=self.sum_branchlength(node=i)
support=n.data.support
if support is None:
support='-'
table.append((str(i),tx,str(n.prev),str(n.succ),blength,sum_blength,support))
print '\n'.join(['%3s %32s %15s %15s %8s %10s %8s' % l for l in table])
print '\nRoot: ',self.root
def to_string(self,support_as_branchlengths=False,branchlengths_only=False,plain=True):
"""Return a paup compatible tree line.
to_string(self,support_as_branchlengths=False,branchlengths_only=False,plain=True)
"""
# if there's a conflict in the arguments, we override plain=True
if support_as_branchlengths or branchlengths_only:
plain=False
self.support_as_branchlengths=support_as_branchlengths
self.branchlengths_only=branchlengths_only
self.plain=plain
def make_info_string(data,terminal=False):
"""Creates nicely formatted support/branchlengths."""
# CHECK FORMATTING
if self.plain: # plain tree only. That's easy.
return ''
elif self.support_as_branchlengths: # support as branchlengths (eg. PAUP), ignore actual branchlengths
if terminal: # terminal branches have 100% support
return ':%1.2f' % self.max_support
else:
return ':%1.2f' % (data.support)
elif self.branchlengths_only: # write only branchlengths, ignore support
return ':%1.5f' % (data.branchlength)
else: # write suport and branchlengths (e.g. .con tree of mrbayes)
if terminal:
return ':%1.5f' % (data.branchlength)
else:
if data.branchlength is not None and data.support is not None: # we have blen and suppport
return '%1.2f:%1.5f' % (data.support,data.branchlength)
elif data.branchlength is not None: # we have only blen
return '0.00000:%1.5f' % (data.branchlength)
elif data.support is not None: # we have only support
return '%1.2f:0.00000' % (data.support)
else:
return '0.00:0.00000'
def newickize(node):
"""Convert a node tree to a newick tree recursively."""
if not self.node(node).succ: #terminal
return self.node(node).data.taxon+make_info_string(self.node(node).data,terminal=True)
else:
return '(%s)%s' % (','.join(map(newickize,self.node(node).succ)),make_info_string(self.node(node).data))
return subtree
treeline='tree '
if self.name:
treeline+=self.name
else:
treeline+='a_tree'
treeline+=' = '
if self.weight<>1:
treeline+='[&W%s] ' % str(round(float(self.weight),3))
if self.rooted:
treeline+='[&R] '
treeline+='(%s);' % ','.join(map(newickize,self.node(self.root).succ))
return treeline
def __str__(self):
"""Short version of to_string(), gives plain tree"""
return self.to_string(plain=True)
def unroot(self):
"""Defines a unrooted Tree structure, using data of a rooted Tree."""
# travel down the rooted tree structure and save all branches and the nodes they connect
def _get_branches(node):
branches=[]
for b in self.node(node).succ:
branches.append([node,b,self.node(b).data.branchlength,self.node(b).data.support])
branches.extend(_get_branches(b))
return branches
self.unrooted=_get_branches(self.root)
# if root is bifurcating, then it is eliminated
if len(self.node(self.root).succ)==2:
# find the two branches that connect to root
rootbranches=[b for b in self.unrooted if self.root in b[:2]]
b1=self.unrooted.pop(self.unrooted.index(rootbranches[0]))
b2=self.unrooted.pop(self.unrooted.index(rootbranches[1]))
# Connect them two each other. If both have support, it should be identical (or one set to None?).
# If both have branchlengths, they will be added
newbranch=[b1[1],b2[1],b1[2]+b2[2]]
if b1[3] is None:
newbranch.append(b2[3]) # either None (both rootbranches are unsupported) or some support
elif b2[3] is None:
newbranch.append(b1[3]) # dito
elif b1[3]==b2[3]:
newbranch.append(b1[3]) # identical support
elif b1[3]==0 or b2[3]==0:
newbranch.append(b1[3]+b2[3]) # one is 0, take the other
else:
raise TreeError, 'Support mismatch in bifurcating root: %f, %f' % (float(b1[3]),float(b2[3]))
self.unrooted.append(newbranch)
def root_with_outgroup(self,outgroup=None):
def _connect_subtree(parent,child):
"""Hook subtree starting with node child to parent."""
for i,branch in enumerate(self.unrooted):
if parent in branch[:2] and child in branch[:2]:
branch=self.unrooted.pop(i)
break
else:
raise TreeError, 'Unable to connect nodes for rooting: nodes %d and %d are not connected' % (parent,child)
self.link(parent,child)
self.node(child).data.branchlength=branch[2]
self.node(child).data.support=branch[3]
#now check if there are more branches connected to the child, and if so, connect them
child_branches=[b for b in self.unrooted if child in b[:2]]
for b in child_branches:
if child==b[0]:
succ=b[1]
else:
succ=b[0]
_connect_subtree(child,succ)
# check the outgroup we're supposed to root with
if outgroup is None:
return self.root
outgroup_node=self.is_monophyletic(outgroup)
if outgroup_node==-1:
return -1
# if tree is already rooted with outgroup on a bifurcating root,
# or the outgroup includes all taxa on the tree, then we're fine
if (len(self.node(self.root).succ)==2 and outgroup_node in self.node(self.root).succ) or outgroup_node==self.root:
return self.root
self.unroot()
# now we find the branch that connects outgroup and ingroup
#print self.node(outgroup_node).prev
for i,b in enumerate(self.unrooted):
if outgroup_node in b[:2] and self.node(outgroup_node).prev in b[:2]:
root_branch=self.unrooted.pop(i)
break
else:
raise TreeError, 'Unrooted and rooted Tree do not match'
if outgroup_node==root_branch[1]:
ingroup_node=root_branch[0]
else:
ingroup_node=root_branch[1]
# now we destroy the old tree structure, but keep node data. Nodes will be reconnected according to new outgroup
for n in self.all_ids():
self.node(n).prev=None
self.node(n).succ=[]
# now we just add both subtrees (outgroup and ingroup) branch for branch
root=Nodes.Node(data=NodeData()) # new root
self.add(root) # add to tree description
self.root=root.id # set as root
self.unrooted.append([root.id,ingroup_node,root_branch[2],root_branch[3]]) # add branch to ingroup to unrooted tree
self.unrooted.append([root.id,outgroup_node,0.0,0.0]) # add branch to outgroup to unrooted tree
_connect_subtree(root.id,ingroup_node) # add ingroup
_connect_subtree(root.id,outgroup_node) # add outgroup
# if theres still a lonely node in self.chain, then it's the old root, and we delete it
oldroot=[i for i in self.all_ids() if self.node(i).prev is None and i!=self.root]
if len(oldroot)>1:
raise TreeError, 'Isolated nodes in tree description: %s' % ','.join(oldroot)
elif len(oldroot)==1:
self.kill(oldroot[0])
return self.root
def consensus(trees, threshold=0.5,outgroup=None):
"""Compute a majority rule consensus tree of all clades with relative frequency>=threshold from a list of trees."""
total=len(trees)
if total==0:
return None
# shouldn't we make sure that it's NodeData or subclass??
dataclass=trees[0].dataclass
max_support=trees[0].max_support
clades={}
#countclades={}
alltaxa=sets.Set(trees[0].get_taxa())
# calculate calde frequencies
c=0
for t in trees:
c+=1
#if c%50==0:
# print c
if alltaxa!=sets.Set(t.get_taxa()):
raise TreeError, 'Trees for consensus must contain the same taxa'
t.root_with_outgroup(outgroup=outgroup)
for st_node in t._walk(t.root):
subclade_taxa=t.get_taxa(st_node)
subclade_taxa.sort()
subclade_taxa=str(subclade_taxa) # lists are not hashable
if subclade_taxa in clades:
clades[subclade_taxa]+=float(t.weight)/total
else:
clades[subclade_taxa]=float(t.weight)/total
#if subclade_taxa in countclades:
# countclades[subclade_taxa]+=t.weight
#else:
# countclades[subclade_taxa]=t.weight
# weed out clades below threshold
for (c,p) in clades.items():
if p<threshold:
del clades[c]
# create a tree with a root node
consensus=Tree(name='consensus_%2.1f' % float(threshold),data=dataclass)
# each clade needs a node in the new tree, add them as isolated nodes
for (c,s) in clades.items():
node=Nodes.Node(data=dataclass())
node.data.support=s
node.data.taxon=sets.Set(eval(c))
consensus.add(node)
# set root node data
consensus.node(consensus.root).data.support=None
consensus.node(consensus.root).data.taxon=alltaxa
# we sort the nodes by no. of taxa in the clade, so root will be the last
consensus_ids=consensus.all_ids()
consensus_ids.sort(lambda x,y:len(consensus.node(x).data.taxon)-len(consensus.node(y).data.taxon))
# now we just have to hook each node to the next smallest node that includes all taxa of the current
for i,current in enumerate(consensus_ids[:-1]): # skip the last one which is the root
#print '----'
#print 'current: ',consensus.node(current).data.taxon
# search remaining nodes
for parent in consensus_ids[i+1:]:
#print 'parent: ',consensus.node(parent).data.taxon
if consensus.node(parent).data.taxon.issuperset(consensus.node(current).data.taxon):
break
else:
sys.exit('corrupt tree structure?')
# internal nodes don't have taxa
if len(consensus.node(current).data.taxon)==1:
consensus.node(current).data.taxon=consensus.node(current).data.taxon.pop()
# reset the support for terminal nodes to maximum
#consensus.node(current).data.support=max_support
else:
consensus.node(current).data.taxon=None
consensus.link(parent,current)
# eliminate root taxon name
consensus.node(consensus_ids[-1]).data.taxon=None
return consensus
|