1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
|
import math
from CodonUsageIndices import SharpEcoliIndex
from Bio import Fasta
CodonsDict = {'TTT':0, 'TTC':0, 'TTA':0, 'TTG':0, 'CTT':0,
'CTC':0, 'CTA':0, 'CTG':0, 'ATT':0, 'ATC':0,
'ATA':0, 'ATG':0, 'GTT':0, 'GTC':0, 'GTA':0,
'GTG':0, 'TAT':0, 'TAC':0, 'TAA':0, 'TAG':0,
'CAT':0, 'CAC':0, 'CAA':0, 'CAG':0, 'AAT':0,
'AAC':0, 'AAA':0, 'AAG':0, 'GAT':0, 'GAC':0,
'GAA':0, 'GAG':0, 'TCT':0, 'TCC':0, 'TCA':0,
'TCG':0, 'CCT':0, 'CCC':0, 'CCA':0, 'CCG':0,
'ACT':0, 'ACC':0, 'ACA':0, 'ACG':0, 'GCT':0,
'GCC':0, 'GCA':0, 'GCG':0, 'TGT':0, 'TGC':0,
'TGA':0, 'TGG':0, 'CGT':0, 'CGC':0, 'CGA':0,
'CGG':0, 'AGT':0, 'AGC':0, 'AGA':0, 'AGG':0,
'GGT':0, 'GGC':0, 'GGA':0, 'GGG':0}
# this dictionary is used to know which codons encode the same AA.
SynonymousCodons = {'CYS': ['TGT', 'TGC'], 'ASP': ['GAT', 'GAC'],
'SER': ['TCT', 'TCG', 'TCA', 'TCC', 'AGC', 'AGT'],
'GLN': ['CAA', 'CAG'], 'MET': ['ATG'], 'ASN': ['AAC', 'AAT'],
'PRO': ['CCT', 'CCG', 'CCA', 'CCC'], 'LYS': ['AAG', 'AAA'],
'STOP': ['TAG', 'TGA', 'TAA'], 'THR': ['ACC', 'ACA', 'ACG', 'ACT'],
'PHE': ['TTT', 'TTC'], 'ALA': ['GCA', 'GCC', 'GCG', 'GCT'],
'GLY': ['GGT', 'GGG', 'GGA', 'GGC'], 'ILE': ['ATC', 'ATA', 'ATT'],
'LEU': ['TTA', 'TTG', 'CTC', 'CTT', 'CTG', 'CTA'], 'HIS': ['CAT', 'CAC'],
'ARG': ['CGA', 'CGC', 'CGG', 'CGT', 'AGG', 'AGA'], 'TRP': ['TGG'],
'VAL': ['GTA', 'GTC', 'GTG', 'GTT'], 'GLU': ['GAG', 'GAA'], 'TYR': ['TAT', 'TAC']}
class CodonAdaptationIndex:
"""
This class implements the codon adaptaion index (CAI) described by Sharp and
Li (Nucleic Acids Res. 1987 Feb 11;15(3):1281-95).
methods:
set_cai_index(Index):
This mehtod sets-up an index to be used when calculating CAI for a gene.
Just pass a dictionary similar to the SharpEcoliIndex in CodonUsageIndices
module.
generate_index(FastaFile):
This method takes a location of a FastaFile and generates an index. This
index can later be used to calculate CAI of a gene.
cai_for_gene(DNAsequence):
This mehtod uses the Index (either the one you set or the one you generated)
and returns the CAI for the DNA sequence.
print_index():
This method prints out the index you used.
"""
def __init__(self):
self.index = {}
self.codon_count={}
# use this method with predefined CAI index
def set_cai_index(self, Index):
self.index = Index
def generate_index(self, FastaFile):
# first make sure i am not overwriting an existing index:
if self.index != {} or self.codon_count!={}:
raise Error("an index has already been set or a codon count has been done. cannot overwrite either.")
# count codon occurances in the file.
self._count_codons(FastaFile)
# now to calculate the index we first need to sum the number of times
# synonymous codons were used all together.
for AA in SynonymousCodons.keys():
Sum=0.0
RCSU=[] # RCSU values are equal to CodonCount/((1/num of synonymous codons) * sum of all synonymous codons)
for codon in SynonymousCodons[AA]:
Sum += self.codon_count[codon]
# calculate the RSCU value for each of the codons
for codon in SynonymousCodons[AA]:
RCSU.append(self.codon_count[codon]/((1.0/len(SynonymousCodons[AA]))*Sum))
# now generate the index W=RCSUi/RCSUmax:
RCSUmax = max(RCSU)
for i in range(len(SynonymousCodons[AA])):
self.index[SynonymousCodons[AA][i]]= RCSU[i]/RCSUmax
def cai_for_gene(self, DNAsequence):
caiValue = 0
LengthForCai = 0
# if no index is set or generated, the default SharpEcoliIndex will be used.
if self.index=={}:
self.set_cai_index(SharpEcoliIndex)
if DNAsequence.islower():
DNAsequence = DNAsequence.upper()
for i in range (0,len(DNAsequence),3):
codon = DNAsequence[i:i+3]
if self.index.has_key(codon):
if codon!='ATG' and codon!= 'TGG': #these two codons are always one, exclude them.
caiValue += math.log(self.index[codon])
LengthForCai += 1
elif codon not in ['TGA','TAA', 'TAG']: # some indices you will use may not include stop codons.
raise TypeError("illegal codon in sequence: %s.\n%s" % (codon, self.index))
return math.exp(caiValue*(1.0/(LengthForCai-1)))
def _count_codons(self, FastaFile):
InputFile = open(FastaFile, 'r')
# set up the fasta parser
parser = Fasta.RecordParser()
iterator = Fasta.Iterator(InputFile, parser)
cur_record = iterator.next()
# make the codon dictionary local
self.codon_count = CodonsDict.copy()
# iterate over sequence and count all the codons in the FastaFile.
while cur_record:
# make sure the sequence is lower case
if cur_record.sequence.islower():
DNAsequence = cur_record.sequence.upper()
else:
DNAsequence = cur_record.sequence
for i in range(0,len(DNAsequence),3):
codon = DNAsequence[i:i+3]
if self.codon_count.has_key(codon):
self.codon_count[codon] += 1
else:
raise TypeError("illegal codon %s in gene: %s" % (codon, cur_record.title))
cur_record = iterator.next()
InputFile.close()
# this just gives the index when the objects is printed.
def print_index (self):
X=self.index.keys()
X.sort()
for i in X:
print "%s\t%.3f" %(i, self.index[i])
|