File: CodonUsage.py

package info (click to toggle)
python-biopython 1.42-2
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 17,584 kB
  • ctags: 12,272
  • sloc: python: 80,461; xml: 13,834; ansic: 7,902; cpp: 1,855; sql: 1,144; makefile: 203
file content (146 lines) | stat: -rw-r--r-- 5,132 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import math
from CodonUsageIndices import SharpEcoliIndex
from Bio import Fasta

CodonsDict = {'TTT':0, 'TTC':0, 'TTA':0, 'TTG':0, 'CTT':0, 
'CTC':0, 'CTA':0, 'CTG':0, 'ATT':0, 'ATC':0, 
'ATA':0, 'ATG':0, 'GTT':0, 'GTC':0, 'GTA':0, 
'GTG':0, 'TAT':0, 'TAC':0, 'TAA':0, 'TAG':0, 
'CAT':0, 'CAC':0, 'CAA':0, 'CAG':0, 'AAT':0, 
'AAC':0, 'AAA':0, 'AAG':0, 'GAT':0, 'GAC':0, 
'GAA':0, 'GAG':0, 'TCT':0, 'TCC':0, 'TCA':0, 
'TCG':0, 'CCT':0, 'CCC':0, 'CCA':0, 'CCG':0, 
'ACT':0, 'ACC':0, 'ACA':0, 'ACG':0, 'GCT':0, 
'GCC':0, 'GCA':0, 'GCG':0, 'TGT':0, 'TGC':0, 
'TGA':0, 'TGG':0, 'CGT':0, 'CGC':0, 'CGA':0, 
'CGG':0, 'AGT':0, 'AGC':0, 'AGA':0, 'AGG':0, 
'GGT':0, 'GGC':0, 'GGA':0, 'GGG':0}


# this dictionary is used to know which codons encode the same AA.
SynonymousCodons = {'CYS': ['TGT', 'TGC'], 'ASP': ['GAT', 'GAC'],
'SER': ['TCT', 'TCG', 'TCA', 'TCC', 'AGC', 'AGT'],
'GLN': ['CAA', 'CAG'], 'MET': ['ATG'], 'ASN': ['AAC', 'AAT'],
'PRO': ['CCT', 'CCG', 'CCA', 'CCC'], 'LYS': ['AAG', 'AAA'],
'STOP': ['TAG', 'TGA', 'TAA'], 'THR': ['ACC', 'ACA', 'ACG', 'ACT'],
'PHE': ['TTT', 'TTC'], 'ALA': ['GCA', 'GCC', 'GCG', 'GCT'],
'GLY': ['GGT', 'GGG', 'GGA', 'GGC'], 'ILE': ['ATC', 'ATA', 'ATT'],
'LEU': ['TTA', 'TTG', 'CTC', 'CTT', 'CTG', 'CTA'], 'HIS': ['CAT', 'CAC'],
'ARG': ['CGA', 'CGC', 'CGG', 'CGT', 'AGG', 'AGA'], 'TRP': ['TGG'],
'VAL': ['GTA', 'GTC', 'GTG', 'GTT'], 'GLU': ['GAG', 'GAA'], 'TYR': ['TAT', 'TAC']}


class CodonAdaptationIndex:
	"""
	
	This class implements the codon adaptaion index (CAI) described by Sharp and
	Li (Nucleic Acids Res. 1987 Feb 11;15(3):1281-95).

	methods:

	set_cai_index(Index):

	This mehtod sets-up an index to be used when calculating CAI for a gene.
	Just pass a dictionary similar to the SharpEcoliIndex in CodonUsageIndices
	module.

	generate_index(FastaFile):

	This method takes a location of a FastaFile and generates an index. This
	index can later be used to calculate CAI of a gene.

	cai_for_gene(DNAsequence):

	This mehtod uses the Index (either the one you set or the one you generated)
	and returns the CAI for the DNA sequence.

	print_index():
	This method prints out the index you used.

	"""
	def __init__(self):
		self.index = {}
		self.codon_count={}
	
	# use this method with predefined CAI index
	def set_cai_index(self, Index):
		self.index = Index	
	
	def generate_index(self, FastaFile):
		# first make sure i am not overwriting an existing index:
		if self.index != {} or self.codon_count!={}:
			raise Error("an index has already been set or a codon count has been done. cannot overwrite either.")
		# count codon occurances in the file.
		self._count_codons(FastaFile)	
	
		# now to calculate the index we first need to sum the number of times
		# synonymous codons were used all together.
		for AA in SynonymousCodons.keys():
			Sum=0.0
			RCSU=[] # RCSU values are equal to CodonCount/((1/num of synonymous codons) * sum of all synonymous codons)
			
			for codon in SynonymousCodons[AA]:
				Sum += self.codon_count[codon]
			# calculate the RSCU value for each of the codons
			for codon in SynonymousCodons[AA]:
				RCSU.append(self.codon_count[codon]/((1.0/len(SynonymousCodons[AA]))*Sum))
			# now generate the index W=RCSUi/RCSUmax:
			RCSUmax = max(RCSU)
			for i in range(len(SynonymousCodons[AA])):
				self.index[SynonymousCodons[AA][i]]= RCSU[i]/RCSUmax
		
		
	def cai_for_gene(self, DNAsequence):
		caiValue = 0
		LengthForCai = 0
		# if no index is set or generated, the default SharpEcoliIndex will be used.
		if self.index=={}:
			self.set_cai_index(SharpEcoliIndex)
			
		if DNAsequence.islower():
			DNAsequence = DNAsequence.upper()
		for i in range (0,len(DNAsequence),3):
			codon = DNAsequence[i:i+3]
			if self.index.has_key(codon):
				if codon!='ATG' and codon!= 'TGG': #these two codons are always one, exclude them.
					caiValue += math.log(self.index[codon])
					LengthForCai += 1
			elif codon not in ['TGA','TAA', 'TAG']: # some indices you will use may not include stop codons.
				raise TypeError("illegal codon in sequence: %s.\n%s" % (codon, self.index))
		return math.exp(caiValue*(1.0/(LengthForCai-1)))
			
	def _count_codons(self, FastaFile):
		InputFile = open(FastaFile, 'r')
		# set up the fasta parser
		parser = Fasta.RecordParser()
		iterator = Fasta.Iterator(InputFile, parser)
		cur_record = iterator.next()
		
		# make the codon dictionary local
		self.codon_count = CodonsDict.copy()
		
		
		# iterate over sequence and count all the codons in the FastaFile.
		while cur_record:
			# make sure the sequence is lower case
			if cur_record.sequence.islower():
				DNAsequence = cur_record.sequence.upper()
			else:
				DNAsequence = cur_record.sequence
			for i in range(0,len(DNAsequence),3):
				codon = DNAsequence[i:i+3]
				if self.codon_count.has_key(codon):
					self.codon_count[codon] += 1
				else:
					raise TypeError("illegal codon %s in gene: %s" % (codon, cur_record.title))

			cur_record = iterator.next()
		InputFile.close()
	
	# this just gives the index when the objects is printed.
	def print_index (self):
		X=self.index.keys()
		X.sort()
		for i in X:
			print "%s\t%.3f" %(i, self.index[i])