1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
|
#!/usr/bin/env python
# Created: Wed May 29 08:07:18 2002
# thomas@cbs.dtu.dk, Cecilia.Alsmark@ebc.uu.se
# Copyright 2001 by Thomas Sicheritz-Ponten and Cecilia Alsmark.
# All rights reserved.
# This code is part of the Biopython distribution and governed by its
# license. Please see the LICENSE file that should have been included
# as part of this package.
import os, sys, getopt, re, time
from string import maketrans
from Bio import Fasta
from Bio import Translate
from Bio.Seq import Seq
from Bio import Alphabet
from Bio.Alphabet import IUPAC
from Bio.Data import IUPACData, CodonTable
######################################
# DNA
######################
# {{{
def reverse(seq):
"""Reverse the sequence. Works on string sequences.
"""
r = map(None, seq)
r.reverse()
return ''.join(r)
def GC(seq):
""" calculates G+C content """
# 19/8/03: Iddo: added provision for lowercase
# 19/8/03: Iddo: divide by the sequence's length rather than by the
# A+T+G+C number. In that way, make provision for N.
d = {}
for nt in ['A','T','G','C','a','t','g','c','S','s']:
d[nt] = seq.count(nt)
gc = d.get('G',0) + d.get('C',0) + d.get('g',0) + d.get('c',0) + \
d.get('S',0) + d.get('s',0)
if gc == 0: return 0
# return gc*100.0/(d['A'] +d['T'] + gc)
return gc*100.0/len(seq)
def GC123(seq):
" calculates total G+C content plus first, second and third position "
d= {}
for nt in ['A','T','G','C']:
d[nt] = [0,0,0]
for i in range(0,len(seq),3):
codon = seq[i:i+3]
if len(codon) <3: codon += ' '
for pos in range(0,3):
for nt in ['A','T','G','C']:
if codon[pos] == nt or codon[pos] == nt.lower():
d[nt][pos] = d[nt][pos] +1
gc = {}
gcall = 0
nall = 0
for i in range(0,3):
try:
n = d['G'][i] + d['C'][i] +d['T'][i] + d['A'][i]
gc[i] = (d['G'][i] + d['C'][i])*100.0/n
except:
gc[i] = 0
gcall = gcall + d['G'][i] + d['C'][i]
nall = nall + n
gcall = 100.0*gcall/nall
return gcall, gc[0], gc[1], gc[2]
def GC_skew(seq, window = 100):
""" calculates GC skew (G-C)/(G+C) """
# 8/19/03: Iddo: added lowercase
values = []
for i in range(0, len(seq), window):
s = seq[i: i + window]
g = s.count('G') + s.count('g')
c = s.count('C') + s.count('c')
skew = (g-c)/float(g+c)
values.append(skew)
return values
# 8/19/03 Iddo: moved these imports from within the function as
# ``import * '' is only
# allowed within the module
# Brad -- added an import check so you don't have to have Tkinter
# installed to use other sequtils functions. A little ugly but
# it really should be fixed by not using 'import *' which I'm not
# really excited about doing right now.
try:
from Tkinter import *
except ImportError:
pass
from math import pi, sin, cos, log
def xGC_skew(seq, window = 1000, zoom = 100,
r = 300, px = 100, py = 100):
" calculates and plots normal and accumulated GC skew (GRAPHICS !!!) "
yscroll = Scrollbar(orient = VERTICAL)
xscroll = Scrollbar(orient = HORIZONTAL)
canvas = Canvas(yscrollcommand = yscroll.set,
xscrollcommand = xscroll.set, background = 'white')
win = canvas.winfo_toplevel()
win.geometry('700x700')
yscroll.config(command = canvas.yview)
xscroll.config(command = canvas.xview)
yscroll.pack(side = RIGHT, fill = Y)
xscroll.pack(side = BOTTOM, fill = X)
canvas.pack(fill=BOTH, side = LEFT, expand = 1)
canvas.update()
X0, Y0 = r + px, r + py
x1, x2, y1, y2 = X0 - r, X0 + r, Y0 -r, Y0 + r
ty = Y0
canvas.create_text(X0, ty, text = '%s...%s (%d nt)' % (seq[:7], seq[-7:], len(seq)))
ty +=20
canvas.create_text(X0, ty, text = 'GC %3.2f%%' % (GC(seq)))
ty +=20
canvas.create_text(X0, ty, text = 'GC Skew', fill = 'blue')
ty +=20
canvas.create_text(X0, ty, text = 'Accumulated GC Skew', fill = 'magenta')
ty +=20
canvas.create_oval(x1,y1, x2, y2)
acc = 0
start = 0
for gc in GC_skew(seq, window):
r1 = r
acc+=gc
# GC skew
alpha = pi - (2*pi*start)/len(seq)
r2 = r1 - gc*zoom
x1 = X0 + r1 * sin(alpha)
y1 = Y0 + r1 * cos(alpha)
x2 = X0 + r2 * sin(alpha)
y2 = Y0 + r2 * cos(alpha)
canvas.create_line(x1,y1,x2,y2, fill = 'blue')
# accumulated GC skew
r1 = r - 50
r2 = r1 - acc
x1 = X0 + r1 * sin(alpha)
y1 = Y0 + r1 * cos(alpha)
x2 = X0 + r2 * sin(alpha)
y2 = Y0 + r2 * cos(alpha)
canvas.create_line(x1,y1,x2,y2, fill = 'magenta')
canvas.update()
start = start + window
canvas.configure(scrollregion = canvas.bbox(ALL))
def molecular_weight(seq):
if type(seq) == type(''): seq = Seq(seq, IUPAC.unambiguous_dna)
weight_table = IUPACData.unambiguous_dna_weights
sum = 0
for x in seq:
sum += weight_table[x]
return sum
def nt_search(seq, subseq):
""" search for a DNA subseq in sequence
use ambiguous values (like N = A or T or C or G, R = A or G etc.)
searches only on forward strand
"""
pattern = ''
for nt in subseq:
value = IUPACData.ambiguous_dna_values[nt]
if len(value) == 1:
pattern += value
else:
pattern += '[%s]' % value
pos = -1
result = [pattern]
l = len(seq)
while 1:
pos+=1
s = seq[pos:]
m = re.search(pattern, s)
if not m: break
pos += int(m.start(0))
result.append(pos)
return result
# }}}
######################################
# Protein
######################
# {{{
# temporary hack for exception free translation of "dirty" DNA
# should be moved to ???
class ProteinX(Alphabet.ProteinAlphabet):
letters = IUPACData.extended_protein_letters + "X"
proteinX = ProteinX()
class MissingTable:
def __init__(self, table):
self._table = table
def get(self, codon, stop_symbol):
try:
return self._table.get(codon, stop_symbol)
except CodonTable.TranslationError:
return 'X'
def makeTableX(table):
assert table.protein_alphabet == IUPAC.extended_protein
return CodonTable.CodonTable(table.nucleotide_alphabet, proteinX,
MissingTable(table.forward_table),
table.back_table, table.start_codons,
table.stop_codons)
# end of hacks
def seq3(seq):
"""
Method that returns the amino acid sequence as a
list of three letter codes. Output follows the IUPAC standard plus 'Ter' for
terminator. Any unknown character, including the default
unknown character 'X', is changed into 'Xaa'. A noncoded
aminoacid selenocystein is recognized (Sel, U).
"""
threecode = {'A':'Ala', 'B':'Asx', 'C':'Cys', 'D':'Asp',
'E':'Glu', 'F':'Phe', 'G':'Gly', 'H':'His',
'I':'Ile', 'K':'Lys', 'L':'Leu', 'M':'Met',
'N':'Asn', 'P':'Pro', 'Q':'Gln', 'R':'Arg',
'S':'Ser', 'T':'Thr', 'V':'Val', 'W':'Trp',
'Y':'Tyr', 'Z':'Glx', 'X':'Xaa', '*':'Ter',
'U':'Sel'
}
return ''.join([threecode.get(aa,'Xer') for aa in seq])
# }}}
######################################
# Mixed ???
######################
# {{{
def translate(seq, frame = 1, genetic_code = 1, translator = None):
" translation of DNA in one of the six different reading frames "
if frame not in [1,2,3,-1,-2,-3]:
raise ValueError, 'invalid frame'
if not translator:
table = makeTableX(CodonTable.ambiguous_dna_by_id[genetic_code])
translator = Translate.Translator(table)
return translator.translate(Seq(seq[frame-1:], IUPAC.ambiguous_dna)).data
def GC_Frame(seq, genetic_code = 1):
" just an alias for six_frame_translations "
return six_frame_translations(seq, genetic_code)
def six_frame_translations(seq, genetic_code = 1):
"""
nice looking 6 frame translation with GC content - code from xbbtools
similar to DNA Striders six-frame translation
"""
comp = complement(seq)
anti = reverse(comp)
length = len(seq)
frames = {}
for i in range(0,3):
frames[i+1] = translate(seq[i:], genetic_code)
frames[-(i+1)] = reverse(translate(anti[i:], genetic_code))
# create header
if length > 20:
short = '%s ... %s' % (seq[:10], seq[-10:])
else:
short = seq
date = time.strftime('%y %b %d, %X', time.localtime(time.time()))
header = 'GC_Frame: %s, ' % date
for nt in ['a','t','g','c']:
header += '%s:%d ' % (nt, seq.count(nt.upper()))
header += '\nSequence: %s, %d nt, %0.2f %%GC\n\n\n' % (short.lower(),length, GC(seq))
res = header
for i in range(0,length,60):
subseq = seq[i:i+60]
csubseq = comp[i:i+60]
p = i/3
res = res + '%d/%d\n' % (i+1, i/3+1)
res = res + ' ' + ' '.join(map(None,frames[3][p:p+20])) + '\n'
res = res + ' ' + ' '.join(map(None,frames[2][p:p+20])) + '\n'
res = res + ' '.join(map(None,frames[1][p:p+20])) + '\n'
# seq
res = res + subseq.lower() + '%5d %%\n' % int(GC(subseq))
res = res + csubseq.lower() + '\n'
# - frames
res = res + ' '.join(map(None,frames[-2][p:p+20])) +' \n'
res = res + ' ' + ' '.join(map(None,frames[-1][p:p+20])) + '\n'
res = res + ' ' + ' '.join(map(None,frames[-3][p:p+20])) + '\n\n'
return res
# }}}
######################################
# FASTA file utilities
######################
# {{{
def fasta_uniqids(file):
" checks and changes the name/ID's to be unique identifiers by adding numbers "
dict = {}
txt = open(file).read()
entries = []
for entry in txt.split('>')[1:]:
name, seq= entry.split('\n',1)
name = name.split()[0].split(',')[0]
if dict.has_key(name):
n = 1
while 1:
n = n + 1
_name = name + str(n)
if not dict.has_key(_name):
name = _name
break
dict[name] = seq
for name, seq in dict.items():
print '>%s\n%s' % (name, seq)
def quick_FASTA_reader(file):
" simple and FASTA reader, preferable to be used on large files "
txt = open(file).read()
entries = []
for entry in txt.split('>')[1:]:
name,seq= entry.split('\n',1)
seq = seq.replace('\n','').replace(' ','').upper()
entries.append((name, seq))
return entries
def apply_on_multi_fasta(file, function, *args):
" apply function on each sequence in a multiple FASTA file "
try:
f = globals()[function]
except:
raise NotImplementedError, "%s not implemented" % function
parser = Fasta.RecordParser()
handle = open(file, 'r')
iter = Fasta.Iterator(handle, parser)
results = []
while 1:
record = iter.next()
if not record: break
arguments = [record.sequence]
for arg in args: arguments.append(arg)
result = f(*arguments)
if result:
results.append('>%s\n%s' % (record.title, result))
return results
def quicker_apply_on_multi_fasta(file, function, *args):
" apply function on each sequence in a multiple FASTA file "
try:
f = globals()[function]
except:
raise NotImplementedError, "%s not implemented" % function
entries = quick_FASTA_reader(file)
results = []
for name, seq in entries:
arguments = [seq]
for arg in args: arguments.append(arg)
result = f(*arguments)
if result:
results.append('>%s\n%s' % (name, result))
return results
# }}}
######################################
# Main
#####################
# {{{
if __name__ == '__main__':
# crude command line options to use most functions directly on a FASTA file
options = {'apply_on_multi_fasta':0,
'quick':0,
'uniq_ids':0,
}
optlist, args = getopt.getopt(sys.argv[1:], '', ['describe', 'apply_on_multi_fasta=',
'help', 'quick', 'uniq_ids', 'search='])
for arg in optlist:
if arg[0] in ['-h', '--help']:
pass
elif arg[0] in ['--describe']:
# get all new functions from this file
mol_funcs = [x[0] for x in locals().items() if type(x[1]) == type(GC)]
mol_funcs.sort()
print 'available functions:'
for f in mol_funcs: print '\t--%s' % f
print '\n\ne.g.\n./sequtils.py --apply_on_multi_fasta GC test.fas'
sys.exit(0)
elif arg[0] in ['--apply_on_multi_fasta']:
options['apply_on_multi_fasta'] = arg[1]
elif arg[0] in ['--search']:
options['search'] = arg[1]
else:
key = re.search('-*(.+)', arg[0]).group(1)
options[key] = 1
if options.get('apply_on_multi_fasta'):
file = args[0]
function = options['apply_on_multi_fasta']
arguments = []
if options.get('search'):
arguments = options['search']
if function == 'xGC_skew':
arguments = 1000
if options.get('quick'):
results = quicker_apply_on_multi_fasta(file, function, arguments)
else:
results = apply_on_multi_fasta(file, function, arguments)
for result in results: print result
elif options.get('uniq_ids'):
file = args[0]
fasta_uniqids(file)
# }}}
|