1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
|
"""Substitution matrices, log odds matrices, and operations on them.
"""
import re
import string
import sys
import copy
import math
# BioPython imports
from Bio import Alphabet
from Bio.SubsMat import FreqTable
# from Bio.Tools import statfns
log = math.log
# Matrix types
NOTYPE = 0
ACCREP = 1
OBSFREQ = 2
SUBS = 3
EXPFREQ = 4
LO = 5
EPSILON = 0.00000000000001
class BadMatrix(Exception):
"""Exception raised when verifying a matrix"""
def __str__(self):
return "Bad Matrix"
BadMatrixError = BadMatrix()
# 5/2001 added the following:
# * Methods for subtraction, addition and multiplication of matrices
# * Generation of an expected frequency table from an observed frequency matrix
# * Calculation of linear correlation coefficient between two matrices. Needs
# Bio.Tools.statfns
# * Calculation of relative entropy is now done using the _make_relative_entropy method
# and is stored in the member self.relative_entropy
# * Calculation of entropy is now done using the _make_entropy method and is stored in
# the member self.entropy
# * Jensen-Shannon distance between the distributions from which the matrices are
# derived. This is a distance function based on the distribution's entropies.
#
# Substitution matrix routines
# Iddo Friedberg idoerg@cc.huji.ac.il
# Biopython license applies (http://biopython.org)
#
# General:
# -------
# You should have python 2.0 or above.
# http://www.python.org
# You should have biopython (http://biopython.org) installed.
#
# This module provides a class and a few routines for generating
# substitution matrices, similar ot BLOSUM or PAM matrices, but based on
# user-provided data.
# The class used for these matrices is SeqMat
#
# Matrices are implemented as a user dictionary. Each index contains a
# 2-tuple, which are the two residue/nucleotide types replaced. The value
# differs according to the matrix's purpose: e.g in a log-odds frequency
# matrix, the value would be log(Pij/(Pi*Pj)) where:
# Pij: frequency of substitution of letter (residue/nucletide) i by j
# Pi, Pj: expected frequencies of i and j, respectively.
#
# Usage:
# -----
# The following section is layed out in the order by which most people wish
# to generate a log-odds matrix. Of course, interim matrices can be
# generated and investigated. Most people just want a log-odds matrix,
# that's all.
#
# Generating an Accepted Replacement Matrix:
# -----------------------------------------
# Initially, you should generate an accepted replacement matrix
# (ARM) from your data. The values in ARM are the _counted_ number of
# replacements according to your data. The data could be a set of pairs
# or multiple alignments. So for instance if Alanine was replaced by
# Cysteine 10 times, and Cysteine by Alanine 12 times, the corresponding
# ARM entries would be:
# ['A','C']: 10, ['C','A'] 12
# as order doesn't matter, user can already provide only one entry:
# ['A','C']: 22
# A SeqMat instance may be initialized with either a full (first
# method of counting: 10, 12) or half (the latter method, 22) matrices. A
# Full protein alphabet matrix would be of the size 20x20 = 400. A Half
# matrix of that alphabet would be 20x20/2 + 20/2 = 210. That is because
# same-letter entries don't change. (The matrix diagonal). Given an
# alphabet size of N:
# Full matrix size:N*N
# Half matrix size: N(N+1)/2
#
# If you provide a full matrix, the constructore will create a half-matrix
# automatically.
# If you provide a half-matrix, make sure
# of a (low, high) sorted order in the keys: there should only be
# a ('A','C') not a ('C','A').
#
# Internal functions:
#
# Generating the observed frequency matrix (OFM):
# ----------------------------------------------
# Use: OFM = _build_obs_freq_mat(ARM)
# The OFM is generated from the ARM, only instead of replacement counts, it
# contains replacement frequencies.
# Generating an expected frequency matrix (EFM):
# ---------------------------------------------
# Use: EFM = _build_exp_freq_mat(OFM,exp_freq_table)
# exp_freq_table: should be a freqTableC instantiation. See freqTable.py for
# detailed information. Briefly, the expected frequency table has the
# frequencies of appearance for each member of the alphabet
# Generating a substitution frequency matrix (SFM):
# ------------------------------------------------
# Use: SFM = _build_subs_mat(OFM,EFM)
# Accepts an OFM, EFM. Provides the division product of the corresponding
# values.
# Generating a log-odds matrix (LOM):
# ----------------------------------
# Use: LOM=_build_log_odds_mat(SFM[,logbase=10,factor=10.0,roundit=1])
# Accepts an SFM. logbase: base of the logarithm used to generate the
# log-odds values. factor: factor used to multiply the log-odds values.
# roundit: default - true. Whether to round the values.
# Each entry is generated by log(LOM[key])*factor
# And rounded if required.
#
# External:
# ---------
# In most cases, users will want to generate a log-odds matrix only, without
# explicitly calling the OFM --> EFM --> SFM stages. The function
# build_log_odds_matrix does that. User provides an ARM and an expected
# frequency table. The function returns the log-odds matrix
#
class SeqMat(dict):
"""A Generic sequence matrix class
The key is a 2-tuple containing the letter indices of the matrix. Those
should be sorted in the tuple (low, high). Because each matrix is dealt
with as a half-matrix."""
def _alphabet_from_matrix(self):
ab_dict = {}
s = ''
for i in self.keys():
ab_dict[i[0]] = 1
ab_dict[i[1]] = 1
letters_list = ab_dict.keys()
letters_list.sort()
for i in letters_list:
s = s + i
self.alphabet.letters = s
def __init__(self,data=None, alphabet=None,
mat_type=NOTYPE,mat_name='',build_later=0):
# User may supply:
# data: matrix itself
# mat_type: its type. See below
# mat_name: its name. See below.
# alphabet: an instance of Bio.Alphabet, or a subclass. If not
# supplied, constructor builds its own from that matrix."""
# build_later: skip the matrix size assertion. User will build the
# matrix after creating the instance. Constructor builds a half matrix
# filled with zeroes.
assert type(mat_type) == type(1)
assert type(mat_name) == type('')
# "data" may be:
# 1) None --> then self.data is an empty dictionary
# 2) type({}) --> then self.data takes the items in data
# 3) An instance of SeqMat
# This whole creation-during-execution is done to avoid changing
# default values, the way Python does because default values are
# created when the function is defined, not when it is created.
assert (type(data) == type({}) or isinstance(data,dict) or
data == None)
if data == None:
data = {}
else:
self.update(data)
if alphabet == None:
alphabet = Alphabet.Alphabet()
assert Alphabet.generic_alphabet.contains(alphabet)
self.alphabet = alphabet
# If passed alphabet is empty, use the letters in the matrix itself
if not self.alphabet.letters:
self._alphabet_from_matrix()
# Assert matrix size: half or full
if not build_later:
N = len(self.alphabet.letters)
assert len(self) == N**2 or len(self) == N*(N+1)/2
self.ab_list = list(self.alphabet.letters)
self.ab_list.sort()
# type can be: ACCREP, OBSFREQ, SUBS, EXPFREQ, LO
self.mat_type = mat_type
# Names: a string like "BLOSUM62" or "PAM250"
self.mat_name = mat_name
if build_later:
self._init_zero()
else:
# Convert full to half if matrix is not already a log-odds matrix
if self.mat_type <> LO:
self._full_to_half()
self._correct_matrix()
self.sum_letters = {}
self.relative_entropy = 0
def _correct_matrix(self):
keylist = self.keys()
for key in keylist:
if key[0] > key[1]:
self[(key[1],key[0])] = self[key]
del self[key]
def _full_to_half(self):
"""
Convert a full-matrix to a half-matrix
"""
# For instance: two entries ('A','C'):13 and ('C','A'):20 will be summed
# into ('A','C'): 33 and the index ('C','A') will be deleted
# alphabet.letters:('A','A') and ('C','C') will remain the same.
N = len(self.alphabet.letters)
# Do nothing if this is already a half-matrix
if len(self) == N*(N+1)/2:
return
for i in self.ab_list:
for j in self.ab_list[:self.ab_list.index(i)+1]:
if i <> j:
self[j,i] = self[j,i] + self[i,j]
del self[i,j]
def _init_zero(self):
for i in self.ab_list:
for j in self.ab_list[:self.ab_list.index(i)+1]:
self[j,i] = 0.
def make_relative_entropy(self,obs_freq_mat):
"""if this matrix is a log-odds matrix, return its entropy
Needs the observed frequency matrix for that"""
ent = 0.
if self.mat_type == LO:
for i in self.keys():
ent += obs_freq_mat[i]*self[i]/log(2)
elif self.mat_type == SUBS:
for i in self.keys():
if self[i] > EPSILON:
ent += obs_freq_mat[i]*log(self[i])/log(2)
else:
raise TypeError,"entropy: substitution or log-odds matrices only"
self.relative_entropy = ent
#
def make_entropy(self):
self.entropy = 0
for i in self.keys():
if self[i] > EPSILON:
self.entropy += self[i]*log(self[i])/log(2)
self.entropy = -self.entropy
def letter_sum(self,letter):
assert letter in self.alphabet.letters
sum = 0.
for i in self.keys():
if letter in i:
if i[0] == i[1]:
sum += self[i]
else:
sum += (self[i] / 2.)
return sum
def all_letters_sum(self):
for letter in self.alphabet.letters:
self.sum_letters[letter] = self.letter_sum(letter)
def print_full_mat(self,f=None,format="%4d",topformat="%4s",
alphabet=None,factor=1,non_sym=None):
f = f or sys.stdout
# create a temporary dictionary, which holds the full matrix for
# printing
assert non_sym == None or type(non_sym) == type(1.) or \
type(non_sym) == type(1)
full_mat = copy.copy(self)
for i in self:
if i[0] <> i[1]:
full_mat[(i[1],i[0])] = full_mat[i]
if not alphabet:
alphabet = self.ab_list
topline = ''
for i in alphabet:
topline = topline + topformat % i
topline = topline + '\n'
f.write(topline)
for i in alphabet:
outline = i
for j in alphabet:
if alphabet.index(j) > alphabet.index(i) and non_sym <> None:
val = non_sym
else:
val = full_mat[i,j]
val *= factor
if val <= -999:
cur_str = ' ND'
else:
cur_str = format % val
outline = outline+cur_str
outline = outline+'\n'
f.write(outline)
def print_mat(self,f=None,format="%4d",bottomformat="%4s",
alphabet=None,factor=1):
"""Print a nice half-matrix. f=sys.stdout to see on the screen
User may pass own alphabet, which should contain all letters in the
alphabet of the matrix, but may be in a different order. This
order will be the order of the letters on the axes"""
f = f or sys.stdout
if not alphabet:
alphabet = self.ab_list
bottomline = ''
for i in alphabet:
bottomline = bottomline + bottomformat % i
bottomline = bottomline + '\n'
for i in alphabet:
outline = i
for j in alphabet[:alphabet.index(i)+1]:
try:
val = self[j,i]
except KeyError:
val = self[i,j]
val *= factor
if val == -999:
cur_str = ' ND'
else:
cur_str = format % val
outline = outline+cur_str
outline = outline+'\n'
f.write(outline)
f.write(bottomline)
def __sub__(self,other):
""" returns a number which is the subtraction product of the two matrices"""
mat_diff = 0
for i in self.keys():
mat_diff += (self[i] - other[i])
return mat_diff
def __mul__(self,other):
""" returns a matrix for which each entry is the multiplication product of the
two matrices passed"""
new_mat = copy.copy(self)
for i in self.keys():
new_mat[i] *= other[i]
return new_mat
def __sum__(self, other):
new_mat = copy.copy(self)
for i in self.keys():
new_mat[i] += other[i]
return new_mat
def _build_obs_freq_mat(acc_rep_mat):
"""
build_obs_freq_mat(acc_rep_mat):
Build the observed frequency matrix, from an accepted replacements matrix
The accRep matrix should be generated by the user.
"""
# Note: acc_rep_mat should already be a half_matrix!!
sum = 0.
for i in acc_rep_mat.values():
sum += i
obs_freq_mat = SeqMat(alphabet=acc_rep_mat.alphabet,build_later=1)
for i in acc_rep_mat.keys():
obs_freq_mat[i] = acc_rep_mat[i]/sum
obs_freq_mat.mat_type = OBSFREQ
return obs_freq_mat
def _exp_freq_table_from_obs_freq(obs_freq_mat):
exp_freq_table = {}
for i in obs_freq_mat.alphabet.letters:
exp_freq_table[i] = 0.
for i in obs_freq_mat.keys():
if i[0] == i[1]:
exp_freq_table[i[0]] += obs_freq_mat[i]
else:
exp_freq_table[i[0]] += obs_freq_mat[i] / 2.
exp_freq_table[i[1]] += obs_freq_mat[i] / 2.
return FreqTable.FreqTable(exp_freq_table,FreqTable.FREQ)
def _build_exp_freq_mat(exp_freq_table):
"""Build an expected frequency matrix
exp_freq_table: should be a FreqTable instance
"""
exp_freq_mat = SeqMat(alphabet=exp_freq_table.alphabet,build_later=1)
for i in exp_freq_mat.keys():
if i[0] == i[1]:
exp_freq_mat[i] = exp_freq_table[i[0]]**2
else:
exp_freq_mat[i] = 2.0*exp_freq_table[i[0]]*exp_freq_table[i[1]]
exp_freq_mat.mat_type = EXPFREQ
return exp_freq_mat
#
# Build the substitution matrix
#
def _build_subs_mat(obs_freq_mat,exp_freq_mat):
""" Build the substitution matrix """
if obs_freq_mat.ab_list <> exp_freq_mat.ab_list:
raise ValueError, "Alphabet mismatch in passed matrices"
subs_mat = SeqMat(obs_freq_mat)
for i in obs_freq_mat.keys():
subs_mat[i] = obs_freq_mat[i]/exp_freq_mat[i]
subs_mat.mat_type = SUBS
return subs_mat
#
# Build a log-odds matrix
#
def _build_log_odds_mat(subs_mat,logbase=2,factor=10.0,round_digit=0,keep_nd=0):
"""_build_log_odds_mat(subs_mat,logbase=10,factor=10.0,round_digit=1):
Build a log-odds matrix
logbase=2: base of logarithm used to build (default 2)
factor=10.: a factor by which each matrix entry is multiplied
round_digit: roundoff place after decimal point
keep_nd: if true, keeps the -999 value for non-determined values (for which there
are no substitutions in the frequency substitutions matrix). If false, plants the
minimum log-odds value of the matrix in entries containing -999
"""
lo_mat = SeqMat(subs_mat)
for i in subs_mat.keys():
if subs_mat[i] < EPSILON:
lo_mat[i] = -999
else:
lo_mat[i] = round(factor*log(subs_mat[i])/log(logbase),round_digit)
lo_mat.mat_type = LO
mat_min = min(lo_mat.values())
if not keep_nd:
for i in lo_mat.keys():
if lo_mat[i] <= -999:
lo_mat[i] = mat_min
return lo_mat
#
# External function. User provides an accepted replacement matrix, and,
# optionally the following: expected frequency table, log base, mult. factor,
# and rounding factor. Generates a log-odds matrix, calling internal SubsMat
# functions.
#
def make_log_odds_matrix(acc_rep_mat,exp_freq_table=None,logbase=2,
factor=1.,round_digit=9,keep_nd=0):
obs_freq_mat = _build_obs_freq_mat(acc_rep_mat)
if not exp_freq_table:
exp_freq_table = _exp_freq_table_from_obs_freq(obs_freq_mat)
exp_freq_mat = _build_exp_freq_mat(exp_freq_table)
subs_mat = _build_subs_mat(obs_freq_mat, exp_freq_mat)
lo_mat = _build_log_odds_mat(subs_mat,logbase,factor,round_digit,keep_nd)
lo_mat.make_relative_entropy(obs_freq_mat)
return lo_mat
def observed_frequency_to_substitution_matrix(obs_freq_mat):
exp_freq_table = _exp_freq_table_from_obs_freq(obs_freq_mat)
exp_freq_mat = _build_exp_freq_mat(exp_freq_table)
subs_mat = _build_subs_mat(obs_freq_mat, exp_freq_mat)
return subs_mat
def read_text_matrix(data_file,mat_type=NOTYPE):
matrix = {}
tmp = string.split(data_file.read(),"\n")
table=[]
for i in tmp:
table.append(string.split(i))
# remove records beginning with ``#''
for rec in table[:]:
if (rec.count('#') > 0):
table.remove(rec)
# remove null lists
while (table.count([]) > 0):
table.remove([])
# build a dictionary
alphabet = table[0]
j = 0
for rec in table[1:]:
# print j
row = alphabet[j]
# row = rec[0]
if re.compile('[A-z\*]').match(rec[0]):
first_col = 1
else:
first_col = 0
i = 0
for field in rec[first_col:]:
col = alphabet[i]
matrix[(row,col)] = string.atof(field)
i += 1
j += 1
# delete entries with an asterisk
for i in matrix.keys():
if '*' in i: del(matrix[i])
ret_mat = SeqMat(matrix,mat_type=mat_type)
return ret_mat
diagNO = 1
diagONLY = 2
diagALL = 3
def two_mat_relative_entropy(mat_1,mat_2,logbase=2,diag=diagALL):
rel_ent = 0.
key_list_1 = mat_1.keys(); key_list_2 = mat_2.keys()
key_list_1.sort(); key_list_2.sort()
key_list = []
sum_ent_1 = 0.; sum_ent_2 = 0.
for i in key_list_1:
if i in key_list_2:
key_list.append(i)
if len(key_list_1) <> len(key_list_2):
sys.stderr.write("Warning:first matrix has more entries than the second\n")
if key_list_1 <> key_list_2:
sys.stderr.write("Warning: indices not the same between matrices\n")
for key in key_list:
if diag == diagNO and key[0] == key[1]:
continue
if diag == diagONLY and key[0] <> key[1]:
continue
if mat_1[key] > EPSILON and mat_2[key] > EPSILON:
sum_ent_1 += mat_1[key]
sum_ent_2 += mat_2[key]
for key in key_list:
if diag == diagNO and key[0] == key[1]:
continue
if diag == diagONLY and key[0] <> key[1]:
continue
if mat_1[key] > EPSILON and mat_2[key] > EPSILON:
val_1 = mat_1[key] / sum_ent_1
val_2 = mat_2[key] / sum_ent_2
# rel_ent += mat_1[key] * log(mat_1[key]/mat_2[key])/log(logbase)
rel_ent += val_1 * log(val_1/val_2)/log(logbase)
return rel_ent
## Gives the linear correlation coefficient between two matrices
#def two_mat_correlation(mat_1, mat_2):
# Wait for the statistical package before uncommenting this
#
# corr_list = []
# assert mat_1.ab_list == mat_2.ab_list
# for ab_pair in mat_1.keys():
# try:
# corr_list.append((mat_1[ab_pair], mat_2[ab_pair]))
# except KeyError:
# sys.stderr.write("Error:two_mat_correlation: %s is not a common key\n" %
# mat_1)
# return statfns.corr(corr_list)
# Jensen-Shannon Distance
# Need to input observed frequency matrices
def two_mat_DJS(mat_1,mat_2,pi_1=0.5,pi_2=0.5):
assert mat_1.ab_list == mat_2.ab_list
assert pi_1 > 0 and pi_2 > 0 and pi_1< 1 and pi_2 <1
assert not (pi_1 + pi_2 - 1.0 > EPSILON)
sum_mat = SeqMat(build_later=1)
sum_mat.ab_list = mat_1.ab_list
for i in mat_1.keys():
sum_mat[i] = pi_1 * mat_1[i] + pi_2 * mat_2[i]
sum_mat.make_entropy()
mat_1.make_entropy()
mat_2.make_entropy()
# print mat_1.entropy, mat_2.entropy
dJS = sum_mat.entropy - pi_1 * mat_1.entropy - pi_2 *mat_2.entropy
return dJS
"""
This isn't working yet. Boo hoo!
def two_mat_print(mat_1, mat_2, f=None,alphabet=None,factor_1=1, factor_2=1,
format="%4d",bottomformat="%4s",topformat="%4s",
topindent=7*" ", bottomindent=1*" "):
f = f or sys.stdout
if not alphabet:
assert mat_1.ab_list == mat_2.ab_list
alphabet = mat_1.ab_list
len_alphabet = len(alphabet)
print_mat = {}
topline = topindent
bottomline = bottomindent
for i in alphabet:
bottomline += bottomformat % i
topline += topformat % alphabet[len_alphabet-alphabet.index(i)-1]
topline += '\n'
bottomline += '\n'
f.write(topline)
for i in alphabet:
for j in alphabet:
print_mat[i,j] = -999
diag_1 = {}; diag_2 = {}
for i in alphabet:
for j in alphabet[:alphabet.index(i)+1]:
if i == j:
diag_1[i] = mat_1[(i,i)]
diag_2[i] = mat_2[(alphabet[len_alphabet-alphabet.index(i)-1],
alphabet[len_alphabet-alphabet.index(i)-1])]
else:
if i > j:
key = (j,i)
else:
key = (i,j)
mat_2_key = [alphabet[len_alphabet-alphabet.index(key[0])-1],
alphabet[len_alphabet-alphabet.index(key[1])-1]]
# print mat_2_key
mat_2_key.sort(); mat_2_key = tuple(mat_2_key)
# print key ,"||", mat_2_key
print_mat[key] = mat_2[mat_2_key]
print_mat[(key[1],key[0])] = mat_1[key]
for i in alphabet:
outline = i
for j in alphabet:
if i == j:
if diag_1[i] == -999:
val_1 = ' ND'
else:
val_1 = format % (diag_1[i]*factor_1)
if diag_2[i] == -999:
val_2 = ' ND'
else:
val_2 = format % (diag_2[i]*factor_2)
cur_str = val_1 + " " + val_2
else:
if print_mat[(i,j)] == -999:
val = ' ND'
elif alphabet.index(i) > alphabet.index(j):
val = format % (print_mat[(i,j)]*factor_1)
else:
val = format % (print_mat[(i,j)]*factor_2)
cur_str = val
outline += cur_str
outline += bottomformat % (alphabet[len_alphabet-alphabet.index(i)-1] +
'\n')
f.write(outline)
f.write(bottomline)
"""
|