1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
|
#!/usr/bin/env python
"""Test the HMM.MarkovModel and HMM.DynamicProgramming modules.
Also tests Training methods.
"""
# standard modules
from __future__ import print_function
import unittest
import math
# biopython
from Bio import Alphabet
from Bio.Seq import Seq
# stuff we are testing
from Bio.HMM import MarkovModel
from Bio.HMM import DynamicProgramming
from Bio.HMM import Trainer
# create some simple alphabets
class NumberAlphabet(Alphabet.Alphabet):
"""Numbers as the states of the model.
"""
letters = ['1', '2']
class LetterAlphabet(Alphabet.Alphabet):
"""Letters as the emissions of the model.
"""
letters = ['A', 'B']
# -- helper functions
def test_assertion(name, result, expected):
"""Helper function to test an assertion and print out a reasonable error.
"""
assert result == expected, "Expected %s, got %s for %s" \
% (expected, result, name)
class MarkovModelBuilderTest(unittest.TestCase):
def setUp(self):
self.mm_builder = MarkovModel.MarkovModelBuilder(NumberAlphabet(),
LetterAlphabet())
def test_test_initialize(self):
"""Making sure MarkovModelBuilder is initialized correctly.
"""
expected_transition_prob = {}
expected_transition_pseudo = {}
expected_emission_prob = {('2', 'A'): 0, ('1', 'A'): 0,
('1', 'B'): 0, ('2', 'B'): 0}
expected_emission_pseudo = {('2', 'A'): 1, ('1', 'A'): 1,
('1', 'B'): 1, ('2', 'B'): 1}
assertions = []
test_assertion("Transition prob", self.mm_builder.transition_prob,
expected_transition_prob)
test_assertion("Transition pseudo",
self.mm_builder.transition_pseudo,
expected_transition_pseudo)
test_assertion("Emission prob", self.mm_builder.emission_prob,
expected_emission_prob)
test_assertion("Emission pseudo", self.mm_builder.emission_pseudo,
expected_emission_pseudo)
def test_allow_all_transitions(self):
"""Testing allow_all_transitions.
"""
self.mm_builder.allow_all_transitions()
expected_prob = {('2', '1'): 0, ('1', '1'): 0,
('1', '2'): 0, ('2', '2'): 0}
expected_pseudo = {('2', '1'): 1, ('1', '1'): 1,
('1', '2'): 1, ('2', '2'): 1}
test_assertion("Probabilities", self.mm_builder.transition_prob,
expected_prob)
test_assertion("Pseudo counts", self.mm_builder.transition_pseudo,
expected_pseudo)
def test_set_initial_probabilities(self):
self.mm_builder.set_initial_probabilities({})
test_assertion("Equal initial probabilities by default",
self.mm_builder.initial_prob, {'1': 0.5, '2': 0.5})
# initial probability sum > 1, should raise an exception
self.assertRaises(
Exception,
self.mm_builder.set_initial_probabilities,
{'1': 0.6, '2': 0.5})
# referencing invalid states should raise an exception
self.assertRaises(
Exception,
self.mm_builder.set_initial_probabilities,
{'666': 0.1})
self.mm_builder.set_initial_probabilities({'1': 0.2})
test_assertion("One default initial probability",
self.mm_builder.initial_prob, {'1': 0.2, '2': 0.8})
self.mm_builder.set_initial_probabilities({'1': 0.9, '2': 0.1})
test_assertion("Set initial probabilities",
self.mm_builder.initial_prob, {'1': 0.9, '2': 0.1})
def test_set_equal_probabilities(self):
self.mm_builder.allow_transition('1', '2', 0.05)
self.mm_builder.allow_transition('2', '1', 0.95)
self.mm_builder.set_equal_probabilities()
test_assertion("Equal initial probabilities",
self.mm_builder.initial_prob,
{'1': 0.5, '2': 0.5})
test_assertion("Equal transition probabilities",
self.mm_builder.transition_prob,
{('1', '2'): 0.5, ('2', '1'): 0.5})
test_assertion("Equal emission probabilities",
self.mm_builder.emission_prob,
{('2', 'A'): 0.25, ('1', 'B'): 0.25,
('1', 'A'): 0.25, ('2', 'B'): 0.25})
def test_set_random_probabilities(self):
self.mm_builder.allow_transition('1', '2', 0.05)
self.mm_builder.allow_transition('2', '1', 0.95)
self.mm_builder.set_random_probabilities()
test_assertion("Number of initial probabilities",
len(self.mm_builder.initial_prob),
len(self.mm_builder._state_alphabet.letters))
# To test this more thoroughly, perhaps mock random.random() and
# verify that it's being called as expected?
class HiddenMarkovModelTest(unittest.TestCase):
def setUp(self):
self.mm_builder = MarkovModel.MarkovModelBuilder(NumberAlphabet(),
LetterAlphabet())
def test_transitions_from(self):
"""Testing the calculation of transitions_from
"""
self.mm_builder.allow_transition('1', '2', 1.0)
self.mm_builder.allow_transition('2', '1', 0.5)
self.mm_builder.allow_transition('2', '2', 0.5)
self.mm_builder.set_initial_probabilities({})
self.mm = self.mm_builder.get_markov_model()
state_1 = self.mm.transitions_from("1")
expected_state_1 = ["2"]
state_1.sort()
expected_state_1.sort()
test_assertion("States reached by transitions from state 1",
state_1, expected_state_1)
state_2 = self.mm.transitions_from("2")
expected_state_2 = ["1", "2"]
state_2.sort()
expected_state_2.sort()
test_assertion("States reached by transitions from state 2",
state_2, expected_state_2)
fake_state = self.mm.transitions_from("Fake")
expected_fake_state = []
test_assertion("States reached by transitions from a fake transition",
fake_state, expected_fake_state)
def test_transitions_to(self):
"""Testing the calculation of transitions_to
"""
self.mm_builder.allow_transition('1', '1', 0.5)
self.mm_builder.allow_transition('1', '2', 0.5)
self.mm_builder.allow_transition('2', '1', 1.0)
self.mm_builder.set_initial_probabilities({})
self.mm = self.mm_builder.get_markov_model()
state_1 = self.mm.transitions_to("1")
expected_state_1 = ["1", "2"]
state_1.sort()
expected_state_1.sort()
test_assertion("States with transitions to state 1",
state_1, expected_state_1)
state_2 = self.mm.transitions_to("2")
expected_state_2 = ["1"]
state_2.sort()
expected_state_2.sort()
test_assertion("States with transitions to state 2",
state_2, expected_state_2)
fake_state = self.mm.transitions_to("Fake")
expected_fake_state = []
test_assertion("States with transitions to a fake transition",
fake_state, expected_fake_state)
def test_allow_transition(self):
"""Testing allow_transition
"""
self.mm_builder.allow_transition('1', '2', 1.0)
self.mm_builder.set_initial_probabilities({})
self.mm = self.mm_builder.get_markov_model()
state_1 = self.mm.transitions_from("1")
expected_state_1 = ["2"]
state_1.sort()
expected_state_1.sort()
test_assertion("States reached by transitions from state 1",
state_1, expected_state_1)
state_2 = self.mm.transitions_from("2")
expected_state_2 = []
state_2.sort()
expected_state_2.sort()
test_assertion("States reached by transitions from state 2",
state_2, expected_state_2)
state_1 = self.mm.transitions_to("1")
expected_state_1 = []
state_1.sort()
expected_state_1.sort()
test_assertion("States with transitions to state 1",
state_1, expected_state_1)
state_2 = self.mm.transitions_to("2")
expected_state_2 = ["1"]
state_2.sort()
expected_state_2.sort()
test_assertion("States with transitions to state 2",
state_2, expected_state_2)
def test_simple_hmm(self):
"""Test a simple model with 2 states and 2 symbols.
"""
# set initial probabilities
prob_initial = [0.4, 0.6]
self.mm_builder.set_initial_probabilities(
{'1': prob_initial[0], '2': prob_initial[1]})
# set transition probabilities
prob_transition = [[0.35, 0.65], [0.45, 0.55]]
self.mm_builder.allow_transition('1', '1', prob_transition[0][0])
self.mm_builder.allow_transition('1', '2', prob_transition[0][1])
self.mm_builder.allow_transition('2', '1', prob_transition[1][0])
self.mm_builder.allow_transition('2', '2', prob_transition[1][1])
# set emission probabilities
prob_emission = [[0.45, 0.55], [0.75, 0.25]]
self.mm_builder.set_emission_score('1', 'A', prob_emission[0][0])
self.mm_builder.set_emission_score('1', 'B', prob_emission[0][1])
self.mm_builder.set_emission_score('2', 'A', prob_emission[1][0])
self.mm_builder.set_emission_score('2', 'B', prob_emission[1][1])
# Check all two letter sequences using a brute force calculation
model = self.mm_builder.get_markov_model()
for first_letter in LetterAlphabet.letters:
for second_letter in LetterAlphabet.letters:
observed_emissions = [first_letter, second_letter]
viterbi = model.viterbi(observed_emissions, NumberAlphabet)
self._checkSimpleHmm(prob_initial, prob_transition,
prob_emission, viterbi, observed_emissions)
def _checkSimpleHmm(self, prob_initial, prob_transition, prob_emission,
viterbi, observed_emissions):
max_prob = 0
# expected first and second states in the sequence, calculated below
seq_first_state = None
seq_second_state = None
# convert the observed letters 'A' or 'B' into 0 or 1
letter1 = ord(observed_emissions[0]) - ord('A')
letter2 = ord(observed_emissions[1]) - ord('A')
for first_state in NumberAlphabet.letters:
for second_state in NumberAlphabet.letters:
# compute the probability of the state sequence first_state,
# second_state emitting the observed_emissions
state1 = ord(first_state) - ord('1')
state2 = ord(second_state) - ord('1')
prob = prob_initial[state1] * prob_emission[state1][letter1] *\
prob_transition[state1][state2] *\
prob_emission[state2][letter2]
if prob > max_prob:
seq_first_state = first_state
seq_second_state = second_state
max_prob = prob
max_prob = math.log(max_prob)
seq = viterbi[0]
prob = viterbi[1]
test_assertion("state sequence",
str(seq),
seq_first_state + seq_second_state)
test_assertion("log probability", round(prob, 11), round(max_prob, 11))
def test_non_ergodic(self):
"""Test a non-ergodic model (meaning that some transitions are not
allowed).
"""
# make state '1' the initial state
prob_1_initial = 1.0
self.mm_builder.set_initial_probabilities(
{'1': prob_1_initial})
# probabilities of transitioning from state 1 to 1, and 1 to 2
prob_1_to_1 = 0.5
prob_1_to_2 = 0.5
# set up allowed transitions
self.mm_builder.allow_transition('1', '1', prob_1_to_1)
self.mm_builder.allow_transition('1', '2', prob_1_to_2)
# Emission probabilities
# In state 1 the most likely emission is A, in state 2 the most
# likely emission is B. (Would be simpler just to use 1.0 and 0.0
# emission probabilities here, but the algorithm blows up on zero
# probabilities because of the conversion to log space.)
prob_1_A = 0.95
prob_1_B = 0.05
prob_2_A = 0.05
prob_2_B = 0.95
# set emission probabilities
self.mm_builder.set_emission_score('1', 'A', prob_1_A)
self.mm_builder.set_emission_score('1', 'B', prob_1_B)
self.mm_builder.set_emission_score('2', 'A', prob_2_A)
self.mm_builder.set_emission_score('2', 'B', prob_2_B)
# run the Viterbi algorithm to find the most probable state path
model = self.mm_builder.get_markov_model()
observed_emissions = ['A', 'B']
viterbi = model.viterbi(observed_emissions, NumberAlphabet)
seq = viterbi[0]
prob = viterbi[1]
# the most probable path must be from state 1 to state 2
test_assertion("most probable path", str(seq), '12')
# The probability of that path is the probability of starting in
# state 1, then emitting an A, then transitioning 1 -> 2, then
# emitting a B.
# Note that probabilities are converted into log space.
expected_prob = math.log(prob_1_initial)\
+ math.log(prob_1_A)\
+ math.log(prob_1_to_2)\
+ math.log(prob_2_B)
test_assertion("log probability of most probable path",
prob, expected_prob)
class ScaledDPAlgorithmsTest(unittest.TestCase):
def setUp(self):
# set up our Markov Model
mm_builder = MarkovModel.MarkovModelBuilder(NumberAlphabet(),
LetterAlphabet())
mm_builder.allow_all_transitions()
mm_builder.set_equal_probabilities()
mm = mm_builder.get_markov_model()
# now set up a test sequence
emission_seq = Seq("ABB", LetterAlphabet())
state_seq = Seq("", NumberAlphabet())
training_seq = Trainer.TrainingSequence(emission_seq, state_seq)
# finally set up the DP
self.dp = DynamicProgramming.ScaledDPAlgorithms(mm, training_seq)
def test_calculate_s_value(self):
"""Testing the calculation of s values.
"""
previous_vars = {('1', 0): .5,
('2', 0): .7}
s_value = self.dp._calculate_s_value(1, previous_vars)
# print(s_value)
class AbstractTrainerTest(unittest.TestCase):
def setUp(self):
# set up a bogus HMM and our trainer
hmm = MarkovModel.HiddenMarkovModel({}, {}, {}, {}, {})
self.test_trainer = Trainer.AbstractTrainer(hmm)
def test_ml_estimator(self):
"""Test the maximum likelihood estimator for simple cases.
"""
# set up a simple dictionary
counts = {('A', 'A'): 10,
('A', 'B'): 20,
('A', 'C'): 15,
('B', 'B'): 5,
('C', 'A'): 15,
('C', 'C'): 10}
results = self.test_trainer.ml_estimator(counts)
# now make sure we are getting back the right thing
result_tests = []
result_tests.append([('A', 'A'), float(10) / float(45)])
result_tests.append([('A', 'B'), float(20) / float(45)])
result_tests.append([('A', 'C'), float(15) / float(45)])
result_tests.append([('B', 'B'), float(5) / float(5)])
result_tests.append([('C', 'A'), float(15) / float(25)])
result_tests.append([('C', 'C'), float(10) / float(25)])
for test_result in result_tests:
assert results[test_result[0]] == test_result[1], \
"Got %f, expected %f for %s" % (results[test_result[0]],
test_result[1],
test_result[0])
def test_log_likelihood(self):
"""Calculate log likelihood.
"""
probs = [.25, .13, .12, .17]
log_prob = self.test_trainer.log_likelihood(probs)
expected_log_prob = -7.31873556778
assert abs(expected_log_prob - log_prob) < 0.1, \
"Bad probability calculated: %s" % log_prob
# run the tests
if __name__ == "__main__":
runner = unittest.TextTestRunner(verbosity=2)
unittest.main(testRunner=runner)
|