File: test_NaiveBayes.py

package info (click to toggle)
python-biopython 1.68%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 46,860 kB
  • ctags: 13,237
  • sloc: python: 160,306; xml: 93,216; ansic: 9,118; sql: 1,208; makefile: 155; sh: 63
file content (116 lines) | stat: -rw-r--r-- 3,667 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
# coding=utf-8
import copy
import unittest

try:
    import numpy
except ImportError:
    from Bio import MissingPythonDependencyError
    raise MissingPythonDependencyError(
        "Install NumPy if you want to use Bio.NaiveBayes.")

from Bio import NaiveBayes


class CarTest(unittest.TestCase):
    def test_car_data(self):
        """Simple example using car data."""
        # Car data from example 'Naive Bayes Classifier example'
        # by Eric Meisner November 22, 2003
        # http://www.inf.u-szeged.hu/~ormandi/teaching/mi2/02-naiveBayes-example.pdf
        xcar = [
            ['Red', 'Sports', 'Domestic'],
            ['Red', 'Sports', 'Domestic'],
            ['Red', 'Sports', 'Domestic'],
            ['Yellow', 'Sports', 'Domestic'],
            ['Yellow', 'Sports', 'Imported'],
            ['Yellow', 'SUV', 'Imported'],
            ['Yellow', 'SUV', 'Imported'],
            ['Yellow', 'SUV', 'Domestic'],
            ['Red', 'SUV', 'Imported'],
            ['Red', 'Sports', 'Imported'],
            ]

        ycar = [
            'Yes',
            'No',
            'Yes',
            'No',
            'Yes',
            'No',
            'Yes',
            'No',
            'No',
            'Yes',
            ]

        carmodel = NaiveBayes.train(xcar, ycar)
        self.assertEqual("Yes", NaiveBayes.classify(carmodel, ['Red', 'Sports', 'Domestic']))
        self.assertEqual("No", NaiveBayes.classify(carmodel, ['Red', 'SUV', 'Domestic']))


class NaiveBayesTest(unittest.TestCase):
    def setUp(self):
        # Using example from https://en.wikipedia.org/wiki/Naive_Bayes_classifier
        # height (feet), weight (lbs), foot size (inches)
        self.xs = [
            [6, 180, 12],
            [5.92, 190, 11],
            [5.58, 170, 12],
            [5.92, 165, 10],
            [5, 100, 6],
            [5.5, 150, 8],
            [5.42, 130, 7],
            [5.75, 150, 9],
        ]
        self.ys = [
            'male',
            'male',
            'male',
            'male',
            'female',
            'female',
            'female',
            'female',
        ]
        self.model = NaiveBayes.train(self.xs, self.ys)
        self.test = [6, 130, 8]

    def test_train_function_no_training_set(self):
        self.assertRaises(ValueError, NaiveBayes.train, [], self.ys)

    def test_train_function_input_lengths(self):
        ys = copy.copy(self.ys)
        ys.pop()
        self.assertRaises(ValueError, NaiveBayes.train, self.xs, ys)

    def test_train_function_uneven_dimension_of_training_set(self):
        xs = copy.copy(self.xs)
        xs[0] = [1]
        self.assertRaises(ValueError, NaiveBayes.train, xs, self.ys)

    def test_train_function_with_priors(self):
        model = NaiveBayes.train(self.xs, self.ys, priors={'male': 0.1, 'female': 0.9})
        result = NaiveBayes.calculate(model, self.test, scale=True)
        expected = -692.0
        self.assertEqual(expected, round(result['male']))

    def test_classify_function(self):
        expected = "female"
        result = NaiveBayes.classify(self.model, self.test)
        self.assertEqual(expected, result)

    def test_calculate_function_wrong_dimensionality(self):
        xs = self.xs[0]
        xs.append(100)
        self.assertRaises(ValueError, NaiveBayes.calculate, self.model, xs)

    def test_calculate_function_with_scale(self):
        result = NaiveBayes.calculate(self.model, self.test, scale=True)
        expected = -689.0
        self.assertEqual(expected, round(result['male']))


if __name__ == "__main__":
    runner = unittest.TextTestRunner(verbosity=2)
    unittest.main(testRunner=runner)