1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
|
# Copyright (C) 2013 by Yanbo Ye (yeyanbo289@gmail.com)
# This code is part of the Biopython distribution and governed by its
# license. Please see the LICENSE file that should have been included
# as part of this package.
"""Unit tests for the Bio.Phylo.TreeConstruction module."""
import unittest
from Bio._py3k import StringIO
from Bio import AlignIO
from Bio import Phylo
from Bio.Phylo import BaseTree
from Bio.Phylo import TreeConstruction
from Bio.Phylo import Consensus
from Bio.Phylo.TreeConstruction import _Matrix
from Bio.Phylo.TreeConstruction import _DistanceMatrix
from Bio.Phylo.TreeConstruction import DistanceCalculator
from Bio.Phylo.TreeConstruction import DistanceTreeConstructor
from Bio.Phylo.TreeConstruction import ParsimonyScorer
from Bio.Phylo.TreeConstruction import NNITreeSearcher
from Bio.Phylo.TreeConstruction import ParsimonyTreeConstructor
class DistanceMatrixTest(unittest.TestCase):
"""Test for _DistanceMatrix construction and manipulation"""
def setUp(self):
self.names = ['Alpha', 'Beta', 'Gamma', 'Delta']
self.matrix = [[0], [1, 0], [2, 3, 0], [4, 5, 6, 0]]
def test_good_construction(self):
dm = _DistanceMatrix(self.names, self.matrix)
self.assertTrue(isinstance(dm, TreeConstruction._DistanceMatrix))
self.assertEqual(dm.names[0], 'Alpha')
self.assertEqual(dm.matrix[2][1], 3)
self.assertEqual(len(dm), 4)
self.assertEqual(repr(dm), "_DistanceMatrix(names=['Alpha', 'Beta', 'Gamma', 'Delta'], matrix=[[0], [1, 0], [2, 3, 0], [4, 5, 6, 0]])")
def test_bad_construction(self):
self.assertRaises(TypeError, _DistanceMatrix, ['Alpha', 100, 'Gamma', 'Delta'], [[0], [0.1, 0], [0.2, 0.3, 0], [0.4, 0.5, 0.6, 0]])
self.assertRaises(TypeError, _DistanceMatrix, ['Alpha', 'Beta', 'Gamma', 'Delta'], [[0], ['a'], [0.2, 0.3], [0.4, 0.5, 0.6]])
self.assertRaises(ValueError, _DistanceMatrix, ['Alpha', 'Alpha', 'Gamma', 'Delta'], [[0], [0.1], [0.2, 0.3], [0.4, 0.5, 0.6]])
self.assertRaises(ValueError, _DistanceMatrix, ['Alpha', 'Beta', 'Gamma', 'Delta'], [[0], [0.2, 0], [0.4, 0.5, 0.6]])
self.assertRaises(ValueError, _DistanceMatrix, ['Alpha', 'Beta', 'Gamma', 'Delta'], [[0], [0.1], [0.2, 0.3, 0.4], [0.4, 0.5, 0.6]])
def test_good_manipulation(self):
dm = _DistanceMatrix(self.names, self.matrix)
# getitem
self.assertEqual(dm[1], [1, 0, 3, 5])
self.assertEqual(dm[2, 1], 3)
self.assertEqual(dm[2][1], 3)
self.assertEqual(dm[1, 2], 3)
self.assertEqual(dm[1][2], 3)
self.assertEqual(dm['Alpha'], [0, 1, 2, 4])
self.assertEqual(dm['Gamma', 'Delta'], 6)
# setitem
dm['Alpha'] = [0, 10, 20, 40]
self.assertEqual(dm['Alpha'], [0, 10, 20, 40])
# delitem insert item
del dm[1]
self.assertEqual(dm.names, ['Alpha', 'Gamma', 'Delta'])
self.assertEqual(dm.matrix, [[0], [20, 0], [40, 6, 0]])
dm.insert('Beta', [1, 0, 3, 5], 1)
self.assertEqual(dm.names, self.names)
self.assertEqual(dm.matrix, [[0], [1, 0], [20, 3, 0], [40, 5, 6, 0]])
del dm['Alpha']
self.assertEqual(dm.names, ['Beta', 'Gamma', 'Delta'])
self.assertEqual(dm.matrix, [[0], [3, 0], [5, 6, 0]])
dm.insert('Alpha', [1, 2, 4, 0])
self.assertEqual(dm.names, ['Beta', 'Gamma', 'Delta', 'Alpha'])
self.assertEqual(dm.matrix, [[0], [3, 0], [5, 6, 0], [1, 2, 4, 0]])
def test_bad_manipulation(self):
dm = _DistanceMatrix(self.names, self.matrix)
# getitem
self.assertRaises(ValueError, dm.__getitem__, 'A')
self.assertRaises(ValueError, dm.__getitem__, ('Alpha', 'A'))
self.assertRaises(TypeError, dm.__getitem__, (1, 'A'))
self.assertRaises(TypeError, dm.__getitem__, (1, 1.2))
self.assertRaises(IndexError, dm.__getitem__, 6)
self.assertRaises(IndexError, dm.__getitem__, (10, 10))
# setitem: item or index test
self.assertRaises(ValueError, dm.__setitem__, 'A', [1, 3, 4])
self.assertRaises(ValueError, dm.__setitem__, ('Alpha', 'A'), 4)
self.assertRaises(TypeError, dm.__setitem__, (1, 'A'), 3)
self.assertRaises(TypeError, dm.__setitem__, (1, 1.2), 2)
self.assertRaises(IndexError, dm.__setitem__, 6, [1, 3, 4])
self.assertRaises(IndexError, dm.__setitem__, (10, 10), 1)
# setitem: value test
self.assertRaises(ValueError, dm.__setitem__, 0, [1, 2])
self.assertRaises(TypeError, dm.__setitem__, ('Alpha', 'Beta'), 'a')
self.assertRaises(TypeError, dm.__setitem__, 'Alpha', ['a', 'b', 'c'])
class DistanceCalculatorTest(unittest.TestCase):
"""Test DistanceCalculator"""
def test_known_matrices(self):
aln = AlignIO.read('TreeConstruction/msa.phy', 'phylip')
calculator = DistanceCalculator('identity')
dm = calculator.get_distance(aln)
self.assertEqual(dm['Alpha', 'Beta'], 1 - (10 * 1.0 / 13))
calculator = DistanceCalculator('blastn')
dm = calculator.get_distance(aln)
self.assertEqual(dm['Alpha', 'Beta'], 1 - (38 * 1.0 / 65))
calculator = DistanceCalculator('trans')
dm = calculator.get_distance(aln)
self.assertEqual(dm['Alpha', 'Beta'], 1 - (49 * 1.0 / 78))
calculator = DistanceCalculator('blosum62')
dm = calculator.get_distance(aln)
self.assertEqual(dm['Alpha', 'Beta'], 1 - (53 * 1.0 / 84))
def test_nonmatching_seqs(self):
aln = AlignIO.read(
StringIO('\n'.join(
[">Alpha", "A-A--",
">Gamma", "-Y-Y-"])),
"fasta")
# With a proper scoring matrix -- no matches
dmat = DistanceCalculator('blosum62').get_distance(aln)
self.assertEqual(dmat['Alpha', 'Alpha'], 0.)
self.assertEqual(dmat['Alpha', 'Gamma'], 1.)
# Comparing characters only -- 4 misses, 1 match
dmat = DistanceCalculator().get_distance(aln)
self.assertEqual(dmat['Alpha', 'Alpha'], 0.)
self.assertAlmostEqual(dmat['Alpha', 'Gamma'], 4. / 5.)
class DistanceTreeConstructorTest(unittest.TestCase):
"""Test DistanceTreeConstructor"""
def setUp(self):
self.aln = AlignIO.read('TreeConstruction/msa.phy', 'phylip')
calculator = DistanceCalculator('blosum62')
self.dm = calculator.get_distance(self.aln)
self.constructor = DistanceTreeConstructor(calculator)
def test_upgma(self):
tree = self.constructor.upgma(self.dm)
self.assertTrue(isinstance(tree, BaseTree.Tree))
# tree_file = StringIO()
# Phylo.write(tree, tree_file, 'newick')
ref_tree = Phylo.read('./TreeConstruction/upgma.tre', 'newick')
self.assertTrue(Consensus._equal_topology(tree, ref_tree))
# ref_tree.close()
def test_nj(self):
tree = self.constructor.nj(self.dm)
self.assertTrue(isinstance(tree, BaseTree.Tree))
# tree_file = StringIO()
# Phylo.write(tree, tree_file, 'newick')
ref_tree = Phylo.read('./TreeConstruction/nj.tre', 'newick')
self.assertTrue(Consensus._equal_topology(tree, ref_tree))
# ref_tree.close()
def test_built_tree(self):
tree = self.constructor.build_tree(self.aln)
self.assertTrue(isinstance(tree, BaseTree.Tree))
# tree_file = StringIO()
# Phylo.write(tree, tree_file, 'newick')
ref_tree = Phylo.read('./TreeConstruction/nj.tre', 'newick')
self.assertTrue(Consensus._equal_topology(tree, ref_tree))
# ref_tree.close()
class ParsimonyScorerTest(unittest.TestCase):
"""Test ParsimonyScorer"""
def test_get_score(self):
aln = AlignIO.read('TreeConstruction/msa.phy', 'phylip')
tree = Phylo.read('./TreeConstruction/upgma.tre', 'newick')
scorer = ParsimonyScorer()
score = scorer.get_score(tree, aln)
self.assertEqual(score, 2 + 1 + 2 + 2 + 1 + 1 + 1 + 3)
alphabet = ['A', 'T', 'C', 'G']
step_matrix = [[0],
[2.5, 0],
[2.5, 1, 0],
[1, 2.5, 2.5, 0]]
matrix = _Matrix(alphabet, step_matrix)
scorer = ParsimonyScorer(matrix)
score = scorer.get_score(tree, aln)
self.assertEqual(score, 3.5 + 2.5 + 3.5 + 3.5 + 2.5 + 1 + 2.5 + 4.5)
alphabet = ['A', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'K', 'L', 'M', 'N', 'P', 'Q', 'R', '1', '2', 'T', 'V', 'W', 'Y', '*', '-']
step_matrix = [[0],
[2, 0],
[1, 2, 0],
[1, 2, 1, 0],
[2, 1, 2, 2, 0],
[1, 1, 1, 1, 2, 0],
[2, 2, 1, 2, 2, 2, 0],
[2, 2, 2, 2, 1, 2, 2, 0],
[2, 2, 2, 1, 2, 2, 2, 1, 0],
[2, 2, 2, 2, 1, 2, 1, 1, 2, 0],
[2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 0],
[2, 2, 1, 2, 2, 2, 1, 1, 1, 2, 2, 0],
[1, 2, 2, 2, 2, 2, 1, 2, 2, 1, 2, 2, 0],
[2, 2, 2, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 0],
[2, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 0],
[1, 1, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 1, 2, 2, 0],
[2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 1, 2, 0],
[1, 2, 2, 2, 2, 2, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 0],
[1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 0],
[2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 3, 2, 2, 1, 1, 2, 2, 2, 0],
[2, 1, 1, 2, 1, 2, 1, 2, 2, 2, 3, 1, 2, 2, 2, 1, 2, 2, 2, 2, 0],
[2, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2, 1, 1, 0],
[3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0]]
matrix = _Matrix(alphabet, step_matrix)
scorer = ParsimonyScorer(matrix)
score = scorer.get_score(tree, aln)
self.assertEqual(score, 3 + 1 + 3 + 3 + 2 + 1 + 2 + 5)
class NNITreeSearcherTest(unittest.TestCase):
"""Test NNITreeSearcher"""
def test_get_neighbors(self):
tree = Phylo.read('./TreeConstruction/upgma.tre', 'newick')
alphabet = ['A', 'T', 'C', 'G']
step_matrix = [[0],
[2.5, 0],
[2.5, 1, 0],
[1, 2.5, 2.5, 0]]
matrix = _Matrix(alphabet, step_matrix)
scorer = ParsimonyScorer(matrix)
searcher = NNITreeSearcher(scorer)
trees = searcher._get_neighbors(tree)
self.assertEqual(len(trees), 2 * (5 - 3))
Phylo.write(trees, './TreeConstruction/neighbor_trees.tre', 'newick')
class ParsimonyTreeConstructorTest(unittest.TestCase):
"""Test ParsimonyTreeConstructor"""
def test_build_tree(self):
aln = AlignIO.read('TreeConstruction/msa.phy', 'phylip')
tree1 = Phylo.read('./TreeConstruction/upgma.tre', 'newick')
tree2 = Phylo.read('./TreeConstruction/nj.tre', 'newick')
alphabet = ['A', 'T', 'C', 'G']
step_matrix = [[0],
[2.5, 0],
[2.5, 1, 0],
[1, 2.5, 2.5, 0]]
matrix = _Matrix(alphabet, step_matrix)
scorer = ParsimonyScorer(matrix)
searcher = NNITreeSearcher(scorer)
constructor = ParsimonyTreeConstructor(searcher, tree1)
best_tree = constructor.build_tree(aln)
Phylo.write(best_tree, './TreeConstruction/pars1.tre', 'newick')
constructor.starting_tree = tree2
best_tree = constructor.build_tree(aln)
Phylo.write(best_tree, './TreeConstruction/pars2.tre', 'newick')
constructor.starting_tree = None
best_tree = constructor.build_tree(aln)
Phylo.write(best_tree, './TreeConstruction/pars3.tre', 'newick')
if __name__ == '__main__':
runner = unittest.TextTestRunner(verbosity=2)
unittest.main(testRunner=runner)
|