1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
|
#!/usr/bin/env python
# Copyright 2010 by Andrea Pierleoni
# Revisions copyright 2010-2015 by Peter Cock. All rights reserved.
# This code is part of the Biopython distribution and governed by its
# license. Please see the LICENSE file that should have been included
# as part of this package.
"""Test for the Uniprot parser on Uniprot XML files.
"""
import os
import unittest
from Bio import SeqIO
from Bio.SeqRecord import SeqRecord
# Left as None if the import within UniProtIO fails
if SeqIO.UniprotIO.ElementTree is None:
from Bio import MissingPythonDependencyError
raise MissingPythonDependencyError("No ElementTree module was found. "
"Use Python 2.5+, lxml or elementtree if you "
"want to use Bio.SeqIO.UniprotIO.")
from seq_tests_common import compare_reference, compare_record
class TestUniprot(unittest.TestCase):
def test_uni001(self):
"Parsing Uniprot file uni001"
filename = 'uni001'
# test the record parser
datafile = os.path.join('SwissProt', filename)
with open(datafile) as test_handle:
seq_record = SeqIO.read(test_handle, "uniprot-xml")
self.assertTrue(isinstance(seq_record, SeqRecord))
# test a couple of things on the record -- this is not exhaustive
self.assertEqual(seq_record.id, "Q91G55")
self.assertEqual(seq_record.name, "043L_IIV6")
self.assertEqual(seq_record.description, "Uncharacterized protein 043L")
self.assertEqual(repr(seq_record.seq), "Seq('MDLINNKLNIEIQKFCLDLEKKYNINYNNLIDLWFNKESTERLIKCEVNLENKI...IPI', ProteinAlphabet())")
# self.assertEqual(seq_record.accessions, ['Q91G55']) #seq_record.accessions does not exist
# self.assertEqual(seq_record.organism_classification, ['Eukaryota', 'Metazoa', 'Chordata', 'Craniata', 'Vertebrata', 'Mammalia', 'Eutheria', 'Primates', 'Catarrhini', 'Hominidae', 'Homo'])
# self.assertEqual(record.seqinfo, (348, 39676, '75818910'))
self.assertEqual(len(seq_record.features), 1)
self.assertEqual(repr(seq_record.features[0]), "SeqFeature(FeatureLocation(ExactPosition(0), ExactPosition(116)), type='chain', id='PRO_0000377969')")
self.assertEqual(len(seq_record.annotations['references']), 2)
self.assertEqual(seq_record.annotations['references'][0].authors, 'Jakob N.J., Mueller K., Bahr U., Darai G.')
self.assertEqual(seq_record.annotations['references'][0].title, 'Analysis of the first complete DNA sequence of an invertebrate iridovirus: coding strategy of the genome of Chilo iridescent virus.')
self.assertEqual(seq_record.annotations['references'][0].journal, 'Virology 286:182-196(2001)')
self.assertEqual(seq_record.annotations['references'][0].comment, 'journal article | 2001 | Scope: NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA] | ')
self.assertEqual(len(seq_record.dbxrefs), 11)
self.assertEqual(seq_record.dbxrefs[0], 'DOI:10.1006/viro.2001.0963')
self.assertEqual(seq_record.annotations['sequence_length'], 116)
self.assertEqual(seq_record.annotations['sequence_checksum'], '4A29B35FB716523C')
self.assertEqual(seq_record.annotations['modified'], '2009-07-07')
self.assertEqual(seq_record.annotations['accessions'], ['Q91G55'])
self.assertEqual(seq_record.annotations['taxonomy'], ['Viruses', 'dsDNA viruses, no RNA stage', 'Iridoviridae', 'Iridovirus'])
self.assertEqual(seq_record.annotations['sequence_mass'], 13673)
self.assertEqual(seq_record.annotations['dataset'], 'Swiss-Prot')
self.assertEqual(seq_record.annotations['gene_name_ORF'], ['IIV6-043L'])
self.assertEqual(seq_record.annotations['version'], 21)
self.assertEqual(seq_record.annotations['sequence_modified'], '2001-12-01')
self.assertEqual(seq_record.annotations['keywords'], ['Complete proteome', 'Virus reference strain'])
self.assertEqual(seq_record.annotations['organism_host'], ['Acheta domesticus', 'House cricket', 'Chilo suppressalis', 'striped riceborer', 'Gryllus bimaculatus', 'Two-spotted cricket', 'Gryllus campestris', 'Spodoptera frugiperda', 'Fall armyworm'])
self.assertEqual(seq_record.annotations['created'], '2009-06-16')
self.assertEqual(seq_record.annotations['organism_name'], ['Chilo iridescent virus'])
self.assertEqual(seq_record.annotations['organism'], 'Invertebrate iridescent virus 6 (IIV-6)')
self.assertEqual(seq_record.annotations['recommendedName_fullName'], ['Uncharacterized protein 043L'])
self.assertEqual(seq_record.annotations['sequence_version'], 1)
self.assertEqual(seq_record.annotations['proteinExistence'], ['Predicted'])
def test_uni003(self):
"Parsing Uniprot file uni003"
filename = 'uni003'
# test the record parser
datafile = os.path.join('SwissProt', filename)
test_handle = open(datafile)
seq_record = SeqIO.read(test_handle, "uniprot-xml")
test_handle.close()
self.assertTrue(isinstance(seq_record, SeqRecord))
# test general record entries
self.assertEqual(seq_record.id, "O44185")
self.assertEqual(seq_record.name, "FLP13_CAEEL")
self.assertEqual(seq_record.description,
"FMRFamide-like neuropeptides 13")
self.assertEqual(repr(seq_record.seq),
"Seq('MMTSLLTISMFVVAIQAFDSSEIRMLDEQYDTKNPFFQFLENSKRSDRPTRAMD...GRK', ProteinAlphabet())")
self.assertEqual(len(seq_record.annotations['references']), 7)
self.assertEqual(seq_record.annotations['references'][5].authors,
'Kim K., Li C.')
self.assertEqual(seq_record.annotations['references'][5].title,
'Expression and regulation of an FMRFamide-related '
'neuropeptide gene family in Caenorhabditis elegans.')
self.assertEqual(seq_record.annotations['references'][5].journal,
'J. Comp. Neurol. 475:540-550(2004)')
self.assertEqual(seq_record.annotations['references'][5].comment,
'journal article | 2004 | Scope: TISSUE SPECIFICITY, '
'DEVELOPMENTAL STAGE | ')
self.assertEqual(seq_record.annotations["accessions"], ['O44185'])
self.assertEqual(seq_record.annotations["created"], "2004-05-10")
self.assertEqual(seq_record.annotations["dataset"], "Swiss-Prot")
self.assertEqual(seq_record.annotations["gene_name_ORF"], ['F33D4.3'])
self.assertEqual(seq_record.annotations["gene_name_primary"], "flp-13")
self.assertEqual(seq_record.annotations["keywords"],
['Amidation', 'Cleavage on pair of basic residues',
'Complete proteome', 'Direct protein sequencing',
'Neuropeptide', 'Reference proteome', 'Repeat',
'Secreted', 'Signal'])
self.assertEqual(seq_record.annotations["modified"], "2012-11-28")
self.assertEqual(seq_record.annotations["organism"],
"Caenorhabditis elegans")
self.assertEqual(seq_record.annotations["proteinExistence"],
['evidence at protein level'])
self.assertEqual(seq_record.annotations["recommendedName_fullName"],
['FMRFamide-like neuropeptides 13'])
self.assertEqual(seq_record.annotations["sequence_length"], 160)
self.assertEqual(seq_record.annotations["sequence_checksum"],
"BE4C24E9B85FCD11")
self.assertEqual(seq_record.annotations["sequence_mass"], 17736)
self.assertEqual(seq_record.annotations["sequence_modified"], "1998-06-01")
self.assertEqual(seq_record.annotations["sequence_precursor"], "true")
self.assertEqual(seq_record.annotations["sequence_version"], 1)
self.assertEqual(seq_record.annotations["taxonomy"],
['Eukaryota', 'Metazoa', 'Ecdysozoa', 'Nematoda',
'Chromadorea', 'Rhabditida', 'Rhabditoidea', 'Rhabditidae',
'Peloderinae', 'Caenorhabditis'])
self.assertEqual(seq_record.annotations["type"],
['ECO:0000006', 'ECO:0000001'])
self.assertEqual(seq_record.annotations["version"], 74)
# test comment entries
self.assertEqual(seq_record.annotations["comment_allergen"],
['Causes an allergic reaction in human.'])
self.assertEqual(seq_record.annotations["comment_alternativeproducts_isoform"],
['Q8W1X2-1', 'Q8W1X2-2'])
self.assertEqual(seq_record.annotations["comment_biotechnology"],
['Green fluorescent protein has been engineered to produce a '
'vast number of variously colored mutants, fusion proteins, '
'and biosensors. Fluorescent proteins and its mutated allelic '
'forms, blue, cyan and yellow have become a useful and '
'ubiquitous tool for making chimeric proteins, where they '
'function as a fluorescent protein tag. Typically they '
'tolerate N- and C-terminal fusion to a broad variety of '
'proteins. They have been expressed in most known cell types '
'and are used as a noninvasive fluorescent marker in living '
'cells and organisms. They enable a wide range of applications '
'where they have functioned as a cell lineage tracer, reporter '
'of gene expression, or as a measure of protein-protein '
'interactions.', 'Can also be used as a molecular thermometer, '
'allowing accurate temperature measurements in fluids. The '
'measurement process relies on the detection of the blinking '
'of GFP using fluorescence correlation spectroscopy.'])
self.assertEqual(seq_record.annotations["comment_catalyticactivity"],
['ATP + acetyl-CoA + HCO(3)(-) = ADP + phosphate + malonyl-CoA.',
'ATP + biotin-[carboxyl-carrier-protein] + CO(2) = ADP + '
'phosphate + carboxy-biotin-[carboxyl-carrier-protein].'])
self.assertEqual(seq_record.annotations["comment_caution"],
['Could be the product of a pseudogene. The existence of a '
'transcript at this locus is supported by only one sequence '
'submission (PubMed:2174397).'])
self.assertEqual(seq_record.annotations["comment_cofactor"],
['Biotin (By similarity).', 'Binds 2 manganese ions per '
'subunit (By similarity).'])
self.assertEqual(seq_record.annotations["comment_developmentalstage"],
['Expressed from the comma stage of embryogenesis, during all '
'larval stages, and in low levels in adults.'])
self.assertEqual(seq_record.annotations["comment_disease"],
['Defects in MC2R are the cause of glucocorticoid deficiency '
'type 1 (GCCD1) [MIM:202200]; also known as familial '
'glucocorticoid deficiency type 1 (FGD1). GCCD1 is an '
'autosomal recessive disorder due to congenital '
'insensitivity or resistance to adrenocorticotropin (ACTH). '
'It is characterized by progressive primary adrenal '
'insufficiency, without mineralocorticoid deficiency.'])
self.assertEqual(seq_record.annotations["comment_disruptionphenotype"],
['Mice display impaired B-cell development which does not '
'progress pass the progenitor stage.'])
self.assertEqual(seq_record.annotations["comment_domain"],
['Two regions, an N-terminal (aa 96-107) and a C-terminal '
'(aa 274-311) are required for binding FGF2.'])
self.assertEqual(seq_record.annotations["comment_enzymeregulation"],
['By phosphorylation. The catalytic activity is inhibited by '
'soraphen A, a polyketide isolated from the myxobacterium '
'Sorangium cellulosum and a potent inhibitor of fungal growth.'])
self.assertEqual(seq_record.annotations["comment_function"],
['FMRFamides and FMRFamide-like peptides are neuropeptides. '
'AADGAPLIRF-amide and APEASPFIRF-amide inhibit muscle tension '
'in somatic muscle. APEASPFIRF-amide is a potent inhibitor of '
'the activity of dissected pharyngeal myogenic muscle system.'])
self.assertEqual(seq_record.annotations["comment_induction"],
['Repressed in presence of fatty acids. Repressed 3-fold by '
'lipid precursors, inositol and choline, and also controlled '
'by regulatory factors INO2, INO4 and OPI1.'])
self.assertEqual(seq_record.annotations["comment_interaction_intactId"],
['EBI-356720', 'EBI-746969', 'EBI-720116'])
self.assertEqual(seq_record.annotations["comment_massspectrometry"],
['88..98:1032|MALDI', '100..110:1133.7|MALDI'])
self.assertEqual(seq_record.annotations["comment_miscellaneous"],
['Present with 20200 molecules/cell in log phase SD medium.'])
self.assertEqual(seq_record.annotations["comment_onlineinformation"],
['NIEHS-SNPs@http://egp.gs.washington.edu/data/api5/'])
self.assertEqual(seq_record.annotations["comment_pathway"],
['Lipid metabolism; malonyl-CoA biosynthesis; malonyl-CoA '
'from acetyl-CoA: step 1/1.'])
self.assertEqual(seq_record.annotations["comment_RNAediting"],
['Partially edited. RNA editing generates receptor isoforms '
'that differ in their ability to interact with the '
'phospholipase C signaling cascade in a transfected cell '
'line, suggesting that this RNA processing event may '
'contribute to the modulation of serotonergic '
'neurotransmission in the central nervous system.'])
self.assertEqual(seq_record.annotations["comment_PTM"],
['Acetylation at Lys-251 impairs antiapoptotic function.'])
self.assertEqual(seq_record.annotations["comment_pharmaceutical"],
['Could be used as a possible therapeutic agent for treating '
'rheumatoid arthritis.'])
self.assertEqual(seq_record.annotations["comment_polymorphism"],
['Position 23 is polymorphic; the frequencies in unrelated '
'Caucasians are 0.87 for Cys and 0.13 for Ser.'])
self.assertEqual(seq_record.annotations["comment_similarity"],
['Belongs to the FARP (FMRFamide related peptide) family.'])
self.assertEqual(seq_record.annotations["comment_subcellularlocation_location"],
['Secreted'])
self.assertEqual(seq_record.annotations["comment_subunit"],
['Homodimer.'])
self.assertEqual(seq_record.annotations["comment_tissuespecificity"],
['Each flp gene is expressed in a distinct set of neurons. '
'Flp-13 is expressed in the ASE sensory neurons, the DD motor '
'neurons, the 15, M3 and M5 cholinergic pharyngeal '
'motoneurons, and the ASG, ASK and BAG neurons.'])
self.assertEqual(seq_record.annotations["comment_toxicdose"],
['LD(50) is 50 ug/kg in mouse by intracerebroventricular '
'injection and 600 ng/g in Blatella germanica.'])
def compare_txt_xml(self, old, new):
self.assertEqual(old.id, new.id)
self.assertEqual(old.name, new.name)
self.assertEqual(len(old), len(new))
self.assertEqual(str(old.seq), str(new.seq))
for key in set(old.annotations).intersection(new.annotations):
if key == "references":
self.assertEqual(len(old.annotations[key]),
len(new.annotations[key]))
for r1, r2 in zip(old.annotations[key], new.annotations[key]):
# Tweak for line breaks in plain text SwissProt
r1.title = r1.title.replace("- ", "-")
r2.title = r2.title.replace("- ", "-")
r1.journal = r1.journal.rstrip(".") # Should parser do this?
r1.medline_id = "" # Missing in UniPort XML? TODO - check
# Lots of extra comments in UniProt XML
r1.comment = ""
r2.comment = ""
if not r2.journal:
r1.journal = ""
compare_reference(r1, r2)
elif old.annotations[key] == new.annotations[key]:
pass
elif key in ["date"]:
# TODO - Why is this a list vs str?
pass
elif not isinstance(old.annotations[key], type(new.annotations[key])):
raise TypeError("%s gives %s vs %s" %
(key, old.annotations[key], new.annotations[key]))
elif key in ["organism"]:
if old.annotations[key] == new.annotations[key]:
pass
elif old.annotations[key].startswith(new.annotations[key] + " "):
pass
else:
raise ValueError(key)
elif isinstance(old.annotations[key], list) \
and sorted(old.annotations[key]) == sorted(new.annotations[key]):
pass
else:
raise ValueError("%s gives %s vs %s" %
(key, old.annotations[key], new.annotations[key]))
self.assertEqual(len(old.features), len(new.features),
"Features in %s, %i vs %i" %
(old.id, len(old.features), len(new.features)))
for f1, f2 in zip(old.features, new.features):
"""
self.assertEqual(f1.location.nofuzzy_start, f2.location.nofuzzy_start,
"%s %s vs %s %s" %
(f1.location, f1.type, f2.location, f2.type))
self.assertEqual(f1.location.nofuzzy_end, f2.location.nofuzzy_end,
"%s %s vs %s %s" %
(f1.location, f1.type, f2.location, f2.type))
"""
self.assertEqual(repr(f1.location), repr(f2.location),
"%s %s vs %s %s" %
(f1.location, f1.type, f2.location, f2.type))
def test_Q13639(self):
"""Compare SwissProt text and uniprot XML versions of Q13639."""
old = SeqIO.read("SwissProt/Q13639.txt", "swiss")
new = SeqIO.read("SwissProt/Q13639.xml", "uniprot-xml")
self.compare_txt_xml(old, new)
def test_H2CNN8(self):
"""Compare SwissProt text and uniprot XML versions of H2CNN8."""
old = SeqIO.read("SwissProt/H2CNN8.txt", "swiss")
new = SeqIO.read("SwissProt/H2CNN8.xml", "uniprot-xml")
self.compare_txt_xml(old, new)
def test_F2CXE6(self):
"""Compare SwissProt text and uniprot XML versions of F2CXE6."""
# This evil record has a semi-colon in the genem name,
# GN Name=HvPIP2;8 {ECO:0000313|EMBL:BAN04711.1};
# <gene><name type="primary" evidence="3">HvPIP2;8</name></gene>
old = SeqIO.read("SwissProt/F2CXE6.txt", "swiss")
new = SeqIO.read("SwissProt/F2CXE6.xml", "uniprot-xml")
self.compare_txt_xml(old, new)
# TODO - Why the mismatch gene_name vs gene_name_primary?
# TODO - Handle evidence codes on GN line (see GitHub isse #416)
self.assertEqual(old.annotations["gene_name"], 'Name=HvPIP2;8 {ECO:0000313|EMBL:BAN04711.1};')
self.assertEqual(new.annotations["gene_name_primary"], 'HvPIP2;8')
self.assertEqual(old.name, 'F2CXE6_HORVD')
self.assertEqual(new.name, 'F2CXE6_HORVD')
def test_multi_ex(self):
"""Compare SwissProt text and uniprot XML versions of several examples."""
txt_list = list(SeqIO.parse("SwissProt/multi_ex.txt", "swiss"))
xml_list = list(SeqIO.parse("SwissProt/multi_ex.xml", "uniprot-xml"))
fas_list = list(SeqIO.parse("SwissProt/multi_ex.fasta", "fasta"))
with open("SwissProt/multi_ex.list") as handle:
ids = [x.strip() for x in handle]
self.assertEqual(len(txt_list), len(ids))
self.assertEqual(len(txt_list), len(fas_list))
self.assertEqual(len(txt_list), len(xml_list))
for txt, xml, fas, id in zip(txt_list, xml_list, fas_list, ids):
self.assertEqual(txt.id, id)
self.assertTrue(txt.id in fas.id.split("|"))
self.assertEqual(str(txt.seq), str(fas.seq))
self.compare_txt_xml(txt, xml)
def test_multi_ex_index(self):
"""Index SwissProt text and uniprot XML versions of several examples."""
txt_list = list(SeqIO.parse("SwissProt/multi_ex.txt", "swiss"))
xml_list = list(SeqIO.parse("SwissProt/multi_ex.xml", "uniprot-xml"))
with open("SwissProt/multi_ex.list") as handle:
ids = [x.strip() for x in handle]
txt_index = SeqIO.index("SwissProt/multi_ex.txt", "swiss")
xml_index = SeqIO.index("SwissProt/multi_ex.xml", "uniprot-xml")
self.assertEqual(sorted(txt_index), sorted(ids))
self.assertEqual(sorted(xml_index), sorted(ids))
# Check SeqIO.parse() versus SeqIO.index() for plain text "swiss"
for old in txt_list:
new = txt_index[old.id]
compare_record(old, new)
# Check SeqIO.parse() versus SeqIO.index() for XML "uniprot-xml"
for old in xml_list:
new = xml_index[old.id]
compare_record(old, new)
txt_index.close()
xml_index.close()
if __name__ == "__main__":
runner = unittest.TextTestRunner(verbosity=2)
unittest.main(testRunner=runner)
|