File: test_AlignInfo.py

package info (click to toggle)
python-biopython 1.78%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 65,756 kB
  • sloc: python: 221,141; xml: 178,777; ansic: 13,369; sql: 1,208; makefile: 131; sh: 70
file content (168 lines) | stat: -rw-r--r-- 6,722 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
# Copyright 2016 by Peter Cock.  All rights reserved.
# This code is part of the Biopython distribution and governed by its
# license.  Please see the LICENSE file that should have been included
# as part of this package.

"""Bio.Align.AlignInfo related tests."""
import unittest

from Bio.Align import MultipleSeqAlignment
from Bio.Seq import Seq
from Bio.SeqRecord import SeqRecord
from Bio import AlignIO
from Bio.Align.AlignInfo import SummaryInfo
from Bio.Data import IUPACData
import math


class AlignInfoTests(unittest.TestCase):
    """Test basic usage."""

    def assertAlmostEqualList(self, list1, list2, **kwargs):
        self.assertEqual(len(list1), len(list2))
        for (v1, v2) in zip(list1, list2):
            self.assertAlmostEqual(v1, v2, **kwargs)

    def test_nucleotides(self):
        filename = "GFF/multi.fna"
        fmt = "fasta"
        alignment = AlignIO.read(filename, fmt)
        summary = SummaryInfo(alignment)

        c = summary.dumb_consensus(ambiguous="N")
        self.assertEqual(str(c), "NNNNNNNN")

        c = summary.gap_consensus(ambiguous="N")
        self.assertEqual(str(c), "NNNNNNNN")

        expected = {"A": 0.25, "G": 0.25, "T": 0.25, "C": 0.25}

        m = summary.pos_specific_score_matrix(chars_to_ignore=["-"], axis_seq=c)
        self.assertEqual(
            str(m),
            """    A   C   G   T
N  2.0 0.0 1.0 0.0
N  1.0 1.0 1.0 0.0
N  1.0 0.0 2.0 0.0
N  0.0 1.0 1.0 1.0
N  1.0 2.0 0.0 0.0
N  0.0 2.0 1.0 0.0
N  1.0 2.0 0.0 0.0
N  0.0 2.0 1.0 0.0
""",
        )

        # provide the frequencies and chars to ignore explicitly.
        ic = summary.information_content(e_freq_table=expected, chars_to_ignore=["-"])
        self.assertAlmostEqual(ic, 7.32029999423075, places=6)

    def test_proteins(self):
        a = MultipleSeqAlignment(
            [
                SeqRecord(Seq("MHQAIFIYQIGYP*LKSGYIQSIRSPEYDNW-"), id="ID001"),
                SeqRecord(Seq("MH--IFIYQIGYAYLKSGYIQSIRSPEY-NW*"), id="ID002"),
                SeqRecord(Seq("MHQAIFIYQIGYPYLKSGYIQSIRSPEYDNW*"), id="ID003"),
            ]
        )
        self.assertEqual(32, a.get_alignment_length())

        s = SummaryInfo(a)

        c = s.dumb_consensus(ambiguous="X")
        self.assertEqual(str(c), "MHQAIFIYQIGYXXLKSGYIQSIRSPEYDNW*")

        c = s.gap_consensus(ambiguous="X")
        self.assertEqual(str(c), "MHXXIFIYQIGYXXLKSGYIQSIRSPEYXNWX")

        m = s.pos_specific_score_matrix(chars_to_ignore=["-", "*"], axis_seq=c)
        self.assertEqual(
            str(m),
            """    A   D   E   F   G   H   I   K   L   M   N   P   Q   R   S   W   Y
M  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
H  0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
X  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0
X  2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
I  0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
F  0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
I  0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Y  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0
Q  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0
I  0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
G  0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Y  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0
X  1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0
X  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0
L  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
K  0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
S  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0
G  0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Y  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0
I  0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Q  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0
S  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0
I  0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
R  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0
S  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0
P  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0
E  0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Y  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0
X  0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
N  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0
W  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0
X  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
""",
        )

        letters = IUPACData.protein_letters
        base_freq = 1.0 / len(letters)
        e_freq_table = {letter: base_freq for letter in letters}
        ic = s.information_content(
            e_freq_table=e_freq_table, chars_to_ignore=["-", "*"]
        )
        self.assertAlmostEqual(ic, 133.061475107, places=6)

    def test_pseudo_count(self):
        # use example from
        # http://biologie.univ-mrs.fr/upload/p202/01.4.PSSM_theory.pdf
        dna_align = MultipleSeqAlignment(
            [
                SeqRecord(Seq("AACCACGTTTAA"), id="ID001"),
                SeqRecord(Seq("CACCACGTGGGT"), id="ID002"),
                SeqRecord(Seq("CACCACGTTCGC"), id="ID003"),
                SeqRecord(Seq("GCGCACGTGGGG"), id="ID004"),
                SeqRecord(Seq("TCGCACGTTGTG"), id="ID005"),
                SeqRecord(Seq("TGGCACGTGTTT"), id="ID006"),
                SeqRecord(Seq("TGACACGTGGGA"), id="ID007"),
                SeqRecord(Seq("TTACACGTGCGC"), id="ID008"),
            ]
        )

        summary = SummaryInfo(dna_align)
        expected = {"A": 0.325, "G": 0.175, "T": 0.325, "C": 0.175}
        ic = summary.information_content(
            e_freq_table=expected, log_base=math.exp(1), pseudo_count=1
        )
        self.assertAlmostEqualList(
            summary.ic_vector,
            [
                0.110,
                0.090,
                0.360,
                1.290,
                0.800,
                1.290,
                1.290,
                0.80,
                0.610,
                0.390,
                0.470,
                0.040,
            ],
            places=2,
        )
        self.assertAlmostEqual(ic, 7.546, places=3)


if __name__ == "__main__":
    runner = unittest.TextTestRunner(verbosity=2)
    unittest.main(testRunner=runner)