1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
|
# Copyright 2017 by Peter Cock. All rights reserved.
# This file is part of the Biopython distribution and governed by your
# choice of the "Biopython License Agreement" or the "BSD 3-Clause License".
# Please see the LICENSE file that should have been included as part of this
# package.
"""Tests for the vector code in Bio.PDB."""
import unittest
try:
import numpy
from numpy.random import random
except ImportError:
from Bio import MissingPythonDependencyError
raise MissingPythonDependencyError(
"Install NumPy if you want to use Bio.PDB."
) from None
from Bio.PDB.vectors import Vector
from Bio.PDB import rotmat, refmat, calc_angle, calc_dihedral, rotaxis, m2rotaxis
from Bio.PDB.vectors import get_spherical_coordinates, coord_space, homog_trans_mtx
class VectorTests(unittest.TestCase):
"""Tests for the Vector class."""
def test_division(self):
"""Confirm division works."""
v = Vector(1, 1, 1) / 2
self.assertEqual(repr(v), "<Vector 0.50, 0.50, 0.50>")
def test_Vector(self):
"""Test Vector object."""
v1 = Vector(0, 0, 1)
v2 = Vector(0, 0, 0)
v3 = Vector(0, 1, 0)
v4 = Vector(1, 1, 0)
self.assertEqual(calc_angle(v1, v2, v3), 1.5707963267948966)
self.assertEqual(calc_dihedral(v1, v2, v3, v4), 1.5707963267948966)
self.assertTrue(
numpy.array_equal((v1 - v2).get_array(), numpy.array([0.0, 0.0, 1.0]))
)
self.assertTrue(
numpy.array_equal((v1 - 1).get_array(), numpy.array([-1.0, -1.0, 0.0]))
)
self.assertTrue(
numpy.array_equal(
(v1 - (1, 2, 3)).get_array(), numpy.array([-1.0, -2.0, -2.0])
)
)
self.assertTrue(
numpy.array_equal((v1 + v2).get_array(), numpy.array([0.0, 0.0, 1.0]))
)
self.assertTrue(
numpy.array_equal((v1 + 3).get_array(), numpy.array([3.0, 3.0, 4.0]))
)
self.assertTrue(
numpy.array_equal(
(v1 + (1, 2, 3)).get_array(), numpy.array([1.0, 2.0, 4.0])
)
)
self.assertTrue(numpy.array_equal(v1.get_array() / 2, numpy.array([0, 0, 0.5])))
self.assertTrue(numpy.array_equal(v1.get_array() / 2, numpy.array([0, 0, 0.5])))
self.assertEqual(v1 * v2, 0.0)
self.assertTrue(
numpy.array_equal((v1 ** v2).get_array(), numpy.array([0.0, -0.0, 0.0]))
)
self.assertTrue(
numpy.array_equal((v1 ** 2).get_array(), numpy.array([0.0, 0.0, 2.0]))
)
self.assertTrue(
numpy.array_equal(
(v1 ** (1, 2, 3)).get_array(), numpy.array([0.0, 0.0, 3.0])
)
)
self.assertEqual(v1.norm(), 1.0)
self.assertEqual(v1.normsq(), 1.0)
v1[2] = 10
self.assertEqual(v1.__getitem__(2), 10)
def test_normalization(self):
"""Test Vector normalization."""
v1 = Vector([2, 0, 0])
self.assertTrue(
numpy.array_equal(v1.normalized().get_array(), numpy.array([1, 0, 0]))
)
# State of v1 should not be affected by `normalized`
self.assertTrue(numpy.array_equal(v1.get_array(), numpy.array([2, 0, 0])))
v1.normalize()
# State of v1 should be affected by `normalize`
self.assertTrue(numpy.array_equal(v1.get_array(), numpy.array([1, 0, 0])))
def test_refmat(self):
v1 = Vector(0, 0, 1)
v2 = Vector(0, 1, 0)
ref = refmat(v1, v2)
self.assertTrue(numpy.allclose(ref[0], [1.0, 0.0, 0.0]))
self.assertTrue(numpy.allclose(ref[1], [0.0, 0.0, 1.0]))
self.assertTrue(numpy.allclose(ref[2], [0.0, 1.0, 0.0]))
self.assertTrue(
numpy.allclose(v1.left_multiply(ref).get_array(), [0.0, 1.0, 0.0])
)
def test_rotmat_90(self):
"""Test regular 90 deg rotation."""
v1 = Vector(0, 0, 1)
v2 = Vector(0, 1, 0)
rot = rotmat(v1, v2)
self.assertTrue(numpy.allclose(rot[0], numpy.array([1.0, 0.0, 0.0])))
self.assertTrue(numpy.allclose(rot[1], numpy.array([0.0, 0.0, 1.0])))
self.assertTrue(numpy.allclose(rot[2], numpy.array([0.0, -1.0, 0.0])))
self.assertTrue(
numpy.allclose(v1.left_multiply(rot).get_array(), [0.0, 1.0, 0.0])
)
self.assertTrue(
numpy.allclose(
v1.right_multiply(numpy.transpose(rot)).get_array(), [0.0, 1.0, 0.0]
)
)
def test_rotmat_180(self):
"""Test rotmat when the rotation is 180 deg (singularity)."""
v1 = Vector([1.0, 0.8, 0])
v2 = Vector([-1.0, -0.8, 0])
rot = rotmat(v1, v2)
v3 = v1.left_multiply(rot)
self.assertTrue(numpy.allclose(v2.get_array(), v3.get_array()))
def test_rotmat_0(self):
"""Test rotmat when the rotation is 0 deg (singularity)."""
v1 = Vector([1.0, 0.8, 0])
v2 = Vector([1.0, 0.8, 0])
rot = rotmat(v1, v2)
v3 = v1.left_multiply(rot)
self.assertTrue(numpy.allclose(v1.get_array(), v3.get_array()))
def test_m2rotaxis_90(self):
"""Test 90 deg rotation."""
v1 = Vector(0, 0, 1)
v2 = Vector(0, 1, 0)
rot = rotmat(v1, v2)
angle, axis = m2rotaxis(rot)
self.assertTrue(numpy.allclose(axis.get_array(), [-1.0, 0.0, 0.0]))
self.assertTrue(abs(angle - numpy.pi / 2) < 1e-5)
def test_m2rotaxis_180(self):
"""Test 180 deg rotation."""
v1 = Vector([1.0, 0.8, 0])
v2 = Vector([-1.0, -0.8, 0])
rot = rotmat(v1, v2)
angle, axis = m2rotaxis(rot)
self.assertTrue(abs(axis * v1) < 1e-5) # axis orthogonal to v1
self.assertTrue(abs(angle - numpy.pi) < 1e-5)
def test_m2rotaxis_0(self):
"""Test 0 deg rotation. Axis must be [1, 0, 0] as per Vector documentation."""
v1 = Vector([1.0, 0.8, 0])
v2 = Vector([1.0, 0.8, 0])
rot = rotmat(v1, v2)
angle, axis = m2rotaxis(rot)
self.assertTrue(numpy.allclose(axis.get_array(), [1, 0, 0]))
self.assertTrue(abs(angle) < 1e-5)
def test_Vector_angles(self):
"""Test Vector angles."""
angle = random() * numpy.pi
axis = Vector(random(3) - random(3))
axis.normalize()
m = rotaxis(angle, axis)
cangle, caxis = m2rotaxis(m)
self.assertAlmostEqual(angle, cangle, places=3)
self.assertTrue(
numpy.allclose(list(map(int, (axis - caxis).get_array())), [0, 0, 0]),
"Want %r and %r to be almost equal" % (axis.get_array(), caxis.get_array()),
)
def test_get_spherical_coordinates(self):
"""Test spherical coordinates."""
srt22 = numpy.sqrt(2.0) / 2
r45 = numpy.radians(45)
r90 = numpy.radians(90)
r135 = numpy.radians(135)
for i in range(2):
for j in range(2):
for k in range(2):
sc = get_spherical_coordinates(
[
(0.5 if i else -0.5),
0.5 if j else -0.5,
(1 if k else -1) * srt22,
]
)
# print(sc[0], numpy.degrees(sc[1]), numpy.degrees(sc[2]))
self.assertEqual(1.0, sc[0]) # r
self.assertEqual(
(1 if j else -1) * (r45 if i else r135), sc[1]
) # azimuth
self.assertEqual((r45 if k else r135), sc[2]) # polar angle
def test_coord_space(self):
# start with 3 points already aligned to axes
point_set = (
numpy.array([[2.0], [0.0], [2.0], [1.0]]),
numpy.array([[0.0], [0.0], [0.0], [1.0]]),
numpy.array([[0.0], [0.0], [2.0], [1.0]]),
)
# confirm get id matrix to transform to/from coord space
homog_id = numpy.array([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]])
mtxs = coord_space(point_set[0], point_set[1], point_set[2], True)
for i in range(2):
self.assertTrue(numpy.array_equal(mtxs[i], homog_id))
# test in every quadrant
for i in range(2):
for j in range(2):
for k in range(2):
# translate point_set arbitrary amount in each axis
tm = homog_trans_mtx(
(3 if i else -3), (3 if j else -3), (3 if k else -3)
)
ps2 = [1, 2, 3]
for i in range(3):
ps2[i] = tm.dot(point_set[i])
# confirm coord_space puts points back to axis alignment
mtxs = coord_space(ps2[0], ps2[1], ps2[2], True)
rslt = [1, 2, 3]
for i in range(3):
rslt[i] = mtxs[0].dot(ps2[i])
self.assertTrue(numpy.array_equal(rslt, point_set))
# confirm reverse transform returns translated points
for i in range(3):
rslt[i] = mtxs[1].dot(rslt[i])
self.assertTrue(numpy.array_equal(rslt, ps2))
if __name__ == "__main__":
runner = unittest.TextTestRunner(verbosity=2)
unittest.main(testRunner=runner)
|