File: test_Uniprot.py

package info (click to toggle)
python-biopython 1.78%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 65,756 kB
  • sloc: python: 221,141; xml: 178,777; ansic: 13,369; sql: 1,208; makefile: 131; sh: 70
file content (608 lines) | stat: -rw-r--r-- 26,018 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
# Copyright 2010 by Andrea Pierleoni
# Revisions copyright 2010-2015 by Peter Cock.  All rights reserved.
# This code is part of the Biopython distribution and governed by its
# license.  Please see the LICENSE file that should have been included
# as part of this package.
"""Test for the Uniprot parser on Uniprot XML files."""

import os
import unittest

from Bio import SeqIO
from Bio.SeqRecord import SeqRecord

from seq_tests_common import compare_reference, compare_record


class TestUniprot(unittest.TestCase):
    """Tests Uniprot XML parser."""

    def test_uni001(self):
        """Parsing Uniprot file uni001."""
        filename = "uni001"
        # test the record parser

        datafile = os.path.join("SwissProt", filename)

        with open(datafile) as handle:
            seq_record = SeqIO.read(handle, "uniprot-xml")

        self.assertIsInstance(seq_record, SeqRecord)

        # test a couple of things on the record -- this is not exhaustive
        self.assertEqual(seq_record.id, "Q91G55")
        self.assertEqual(seq_record.name, "043L_IIV6")
        self.assertEqual(seq_record.description, "Uncharacterized protein 043L")
        self.assertEqual(
            repr(seq_record.seq),
            "Seq('MDLINNKLNIEIQKFCLDLEKKYNINYNNLIDLWFNKESTERLIKCEVNLENKI...IPI')",
        )

        # self.assertEqual(seq_record.accessions, ['Q91G55']) #seq_record.accessions does not exist
        # self.assertEqual(seq_record.organism_classification, ['Eukaryota', 'Metazoa', 'Chordata', 'Craniata', 'Vertebrata', 'Mammalia', 'Eutheria', 'Primates', 'Catarrhini', 'Hominidae', 'Homo'])
        # self.assertEqual(record.seqinfo, (348, 39676, '75818910'))

        self.assertEqual(len(seq_record.features), 1)
        self.assertEqual(
            repr(seq_record.features[0]),
            "SeqFeature(FeatureLocation(ExactPosition(0), ExactPosition(116)), type='chain', id='PRO_0000377969')",
        )

        self.assertEqual(len(seq_record.annotations["references"]), 2)
        self.assertEqual(
            seq_record.annotations["references"][0].authors,
            "Jakob N.J., Mueller K., Bahr U., Darai G.",
        )
        self.assertEqual(
            seq_record.annotations["references"][0].title,
            "Analysis of the first complete DNA sequence of an invertebrate iridovirus: coding strategy of the genome of Chilo iridescent virus.",
        )
        self.assertEqual(
            seq_record.annotations["references"][0].journal,
            "Virology 286:182-196(2001)",
        )
        self.assertEqual(
            seq_record.annotations["references"][0].comment,
            "journal article | 2001 | Scope: NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA] | ",
        )

        self.assertEqual(len(seq_record.dbxrefs), 11)
        self.assertEqual(seq_record.dbxrefs[0], "DOI:10.1006/viro.2001.0963")

        self.assertEqual(seq_record.annotations["sequence_length"], 116)
        self.assertEqual(
            seq_record.annotations["sequence_checksum"], "4A29B35FB716523C"
        )
        self.assertEqual(seq_record.annotations["modified"], "2009-07-07")
        self.assertEqual(seq_record.annotations["accessions"], ["Q91G55"])
        self.assertEqual(
            seq_record.annotations["taxonomy"],
            ["Viruses", "dsDNA viruses, no RNA stage", "Iridoviridae", "Iridovirus"],
        )
        self.assertEqual(seq_record.annotations["sequence_mass"], 13673)
        self.assertEqual(seq_record.annotations["dataset"], "Swiss-Prot")
        self.assertEqual(seq_record.annotations["gene_name_ORF"], ["IIV6-043L"])
        self.assertEqual(seq_record.annotations["version"], 21)
        self.assertEqual(seq_record.annotations["sequence_modified"], "2001-12-01")
        self.assertEqual(
            seq_record.annotations["keywords"],
            ["Complete proteome", "Virus reference strain"],
        )
        self.assertEqual(
            seq_record.annotations["organism_host"],
            [
                "Acheta domesticus",
                "House cricket",
                "Chilo suppressalis",
                "striped riceborer",
                "Gryllus bimaculatus",
                "Two-spotted cricket",
                "Gryllus campestris",
                "Spodoptera frugiperda",
                "Fall armyworm",
            ],
        )
        self.assertEqual(seq_record.annotations["created"], "2009-06-16")
        self.assertEqual(
            seq_record.annotations["organism_name"], ["Chilo iridescent virus"]
        )
        self.assertEqual(
            seq_record.annotations["organism"],
            "Invertebrate iridescent virus 6 (IIV-6)",
        )
        self.assertEqual(
            seq_record.annotations["recommendedName_fullName"],
            ["Uncharacterized protein 043L"],
        )
        self.assertEqual(seq_record.annotations["sequence_version"], 1)
        self.assertEqual(seq_record.annotations["proteinExistence"], ["Predicted"])

    def test_uni003(self):
        """Parsing Uniprot file uni003."""
        filename = "uni003"
        # test the record parser

        datafile = os.path.join("SwissProt", filename)

        with open(datafile) as handle:
            seq_record = SeqIO.read(handle, "uniprot-xml")

        self.assertIsInstance(seq_record, SeqRecord)

        # test general record entries
        self.assertEqual(seq_record.id, "O44185")
        self.assertEqual(seq_record.name, "FLP13_CAEEL")
        self.assertEqual(seq_record.description, "FMRFamide-like neuropeptides 13")
        self.assertEqual(
            repr(seq_record.seq),
            "Seq('MMTSLLTISMFVVAIQAFDSSEIRMLDEQYDTKNPFFQFLENSKRSDRPTRAMD...GRK')",
        )

        self.assertEqual(len(seq_record.annotations["references"]), 7)
        self.assertEqual(
            seq_record.annotations["references"][5].authors, "Kim K., Li C."
        )
        self.assertEqual(
            seq_record.annotations["references"][5].title,
            "Expression and regulation of an FMRFamide-related "
            "neuropeptide gene family in Caenorhabditis elegans.",
        )
        self.assertEqual(
            seq_record.annotations["references"][5].journal,
            "J. Comp. Neurol. 475:540-550(2004)",
        )
        self.assertEqual(
            seq_record.annotations["references"][5].comment,
            "journal article | 2004 | Scope: TISSUE SPECIFICITY, "
            "DEVELOPMENTAL STAGE | ",
        )

        self.assertEqual(seq_record.annotations["accessions"], ["O44185"])
        self.assertEqual(seq_record.annotations["created"], "2004-05-10")
        self.assertEqual(seq_record.annotations["dataset"], "Swiss-Prot")
        self.assertEqual(seq_record.annotations["gene_name_ORF"], ["F33D4.3"])
        self.assertEqual(seq_record.annotations["gene_name_primary"], "flp-13")
        self.assertEqual(
            seq_record.annotations["keywords"],
            [
                "Amidation",
                "Cleavage on pair of basic residues",
                "Complete proteome",
                "Direct protein sequencing",
                "Neuropeptide",
                "Reference proteome",
                "Repeat",
                "Secreted",
                "Signal",
            ],
        )
        self.assertEqual(seq_record.annotations["modified"], "2012-11-28")
        self.assertEqual(seq_record.annotations["organism"], "Caenorhabditis elegans")
        self.assertEqual(
            seq_record.annotations["proteinExistence"], ["evidence at protein level"]
        )
        self.assertEqual(
            seq_record.annotations["recommendedName_fullName"],
            ["FMRFamide-like neuropeptides 13"],
        )
        self.assertEqual(seq_record.annotations["sequence_length"], 160)
        self.assertEqual(
            seq_record.annotations["sequence_checksum"], "BE4C24E9B85FCD11"
        )
        self.assertEqual(seq_record.annotations["sequence_mass"], 17736)
        self.assertEqual(seq_record.annotations["sequence_modified"], "1998-06-01")
        self.assertEqual(seq_record.annotations["sequence_precursor"], "true")
        self.assertEqual(seq_record.annotations["sequence_version"], 1)
        self.assertEqual(
            seq_record.annotations["taxonomy"],
            [
                "Eukaryota",
                "Metazoa",
                "Ecdysozoa",
                "Nematoda",
                "Chromadorea",
                "Rhabditida",
                "Rhabditoidea",
                "Rhabditidae",
                "Peloderinae",
                "Caenorhabditis",
            ],
        )
        self.assertEqual(seq_record.annotations["type"], ["ECO:0000006", "ECO:0000001"])
        self.assertEqual(seq_record.annotations["version"], 74)

        # test comment entries
        self.assertEqual(
            seq_record.annotations["comment_allergen"],
            ["Causes an allergic reaction in human."],
        )
        self.assertEqual(
            seq_record.annotations["comment_alternativeproducts_isoform"],
            ["Q8W1X2-1", "Q8W1X2-2"],
        )
        self.assertEqual(
            seq_record.annotations["comment_biotechnology"],
            [
                "Green fluorescent protein has been engineered to "
                "produce a vast number of variously colored "
                "mutants, fusion proteins, and biosensors. "
                "Fluorescent proteins and its mutated allelic "
                "forms, blue, cyan and yellow have become a useful "
                "and ubiquitous tool for making chimeric proteins, "
                "where they function as a fluorescent protein tag. "
                "Typically they tolerate N- and C-terminal fusion "
                "to a broad variety of proteins. They have been "
                "expressed in most known cell types and are used "
                "as a noninvasive fluorescent marker in living "
                "cells and organisms. They enable a wide range of "
                "applications where they have functioned as a cell "
                "lineage tracer, reporter of gene expression, or as "
                "a measure of protein-protein interactions.",
                "Can also be used as a molecular thermometer, "
                "allowing accurate temperature measurements in "
                "fluids. The measurement process relies on the "
                "detection of the blinking of GFP using "
                "fluorescence correlation spectroscopy.",
            ],
        )
        self.assertEqual(
            seq_record.annotations["comment_catalyticactivity"],
            [
                "ATP + acetyl-CoA + HCO(3)(-) = ADP + phosphate + malonyl-CoA.",
                "ATP + biotin-[carboxyl-carrier-protein] "
                "+ CO(2) = ADP + phosphate + "
                "carboxy-biotin-[carboxyl-carrier-protein].",
            ],
        )
        self.assertEqual(
            seq_record.annotations["comment_caution"],
            [
                "Could be the product of a pseudogene. The "
                "existence of a transcript at this locus is "
                "supported by only one sequence submission "
                "(PubMed:2174397)."
            ],
        )
        self.assertEqual(
            seq_record.annotations["comment_cofactor"],
            [
                "Biotin (By similarity).",
                "Binds 2 manganese ions per subunit (By similarity).",
            ],
        )
        self.assertEqual(
            seq_record.annotations["comment_developmentalstage"],
            [
                "Expressed from the comma stage of embryogenesis, "
                "during all larval stages, and in low levels in "
                "adults."
            ],
        )
        self.assertEqual(
            seq_record.annotations["comment_disease"],
            [
                "Defects in MC2R are the cause of glucocorticoid "
                "deficiency type 1 (GCCD1) [MIM:202200]; also known "
                "as familial glucocorticoid deficiency type 1 "
                "(FGD1). GCCD1 is an autosomal recessive disorder "
                "due to congenital insensitivity or resistance to "
                "adrenocorticotropin (ACTH). It is characterized by "
                "progressive primary adrenal insufficiency, without "
                "mineralocorticoid deficiency."
            ],
        )
        self.assertEqual(
            seq_record.annotations["comment_disruptionphenotype"],
            [
                "Mice display impaired B-cell development which "
                "does not progress pass the progenitor stage."
            ],
        )
        self.assertEqual(
            seq_record.annotations["comment_domain"],
            [
                "Two regions, an N-terminal (aa 96-107) and a "
                "C-terminal (aa 274-311) are required for binding "
                "FGF2."
            ],
        )
        self.assertEqual(
            seq_record.annotations["comment_enzymeregulation"],
            [
                "By phosphorylation. The catalytic activity is "
                "inhibited by soraphen A, a polyketide isolated "
                "from the myxobacterium Sorangium cellulosum and "
                "a potent inhibitor of fungal growth."
            ],
        )
        self.assertEqual(
            seq_record.annotations["comment_function"],
            [
                "FMRFamides and FMRFamide-like peptides are "
                "neuropeptides. AADGAPLIRF-amide and "
                "APEASPFIRF-amide inhibit muscle tension in somatic "
                "muscle. APEASPFIRF-amide is a potent inhibitor of "
                "the activity of dissected pharyngeal myogenic "
                "muscle system."
            ],
        )
        self.assertEqual(
            seq_record.annotations["comment_induction"],
            [
                "Repressed in presence of fatty acids. Repressed "
                "3-fold by lipid precursors, inositol and "
                "choline, and also controlled by regulatory "
                "factors INO2, INO4 and OPI1."
            ],
        )
        self.assertEqual(
            seq_record.annotations["comment_interaction_intactId"],
            ["EBI-356720", "EBI-746969", "EBI-720116"],
        )
        self.assertEqual(
            seq_record.annotations["comment_massspectrometry"],
            ["88..98:1032|MALDI", "100..110:1133.7|MALDI"],
        )
        self.assertEqual(
            seq_record.annotations["comment_miscellaneous"],
            ["Present with 20200 molecules/cell in log phase SD medium."],
        )
        self.assertEqual(
            seq_record.annotations["comment_onlineinformation"],
            ["NIEHS-SNPs@http://egp.gs.washington.edu/data/api5/"],
        )
        self.assertEqual(
            seq_record.annotations["comment_pathway"],
            [
                "Lipid metabolism; malonyl-CoA biosynthesis; "
                "malonyl-CoA from acetyl-CoA: step 1/1."
            ],
        )
        self.assertEqual(
            seq_record.annotations["comment_RNAediting"],
            [
                "Partially edited. RNA editing generates receptor "
                "isoforms that differ in their ability to interact "
                "with the phospholipase C signaling cascade in a "
                "transfected cell line, suggesting that this RNA "
                "processing event may contribute to the modulation "
                "of serotonergic neurotransmission in the central "
                "nervous system."
            ],
        )
        self.assertEqual(
            seq_record.annotations["comment_PTM"],
            ["Acetylation at Lys-251 impairs antiapoptotic function."],
        )
        self.assertEqual(
            seq_record.annotations["comment_pharmaceutical"],
            [
                "Could be used as a possible therapeutic agent for "
                "treating rheumatoid arthritis."
            ],
        )
        self.assertEqual(
            seq_record.annotations["comment_polymorphism"],
            [
                "Position 23 is polymorphic; the frequencies in "
                "unrelated Caucasians are 0.87 for Cys and 0.13 "
                "for Ser."
            ],
        )
        self.assertEqual(
            seq_record.annotations["comment_similarity"],
            ["Belongs to the FARP (FMRFamide related peptide) family."],
        )
        self.assertEqual(
            seq_record.annotations["comment_subcellularlocation_location"], ["Secreted"]
        )
        self.assertEqual(seq_record.annotations["comment_subunit"], ["Homodimer."])
        self.assertEqual(
            seq_record.annotations["comment_tissuespecificity"],
            [
                "Each flp gene is expressed in a distinct set of "
                "neurons. Flp-13 is expressed in the ASE sensory "
                "neurons, the DD motor neurons, the 15, M3 and M5 "
                "cholinergic pharyngeal motoneurons, and the ASG, "
                "ASK and BAG neurons."
            ],
        )
        self.assertEqual(
            seq_record.annotations["comment_toxicdose"],
            [
                "LD(50) is 50 ug/kg in mouse by "
                "intracerebroventricular injection "
                "and 600 ng/g in Blatella germanica."
            ],
        )

    def test_sp016(self):
        """Parsing SwissProt file sp016."""
        filename = "sp016"
        # test the record parser

        datafile = os.path.join("SwissProt", filename)

        with open(datafile) as handle:
            seq_record = SeqIO.read(handle, "swiss")

        self.assertIsInstance(seq_record, SeqRecord)

        # test ProteinExistence (the numerical value describing the evidence for the existence of the protein)
        self.assertEqual(seq_record.annotations["protein_existence"], 1)
        # test Sequence version
        self.assertEqual(seq_record.annotations["sequence_version"], 1)
        # test Entry version
        self.assertEqual(seq_record.annotations["entry_version"], 93)

    def test_sp002(self):
        """Parsing SwissProt file sp002."""
        filename = "sp002"
        # test the record parser

        datafile = os.path.join("SwissProt", filename)

        with open(datafile) as handle:
            seq_record = SeqIO.read(handle, "swiss")

        self.assertIsInstance(seq_record, SeqRecord)

        # test Sequence version
        self.assertEqual(seq_record.annotations["sequence_version"], 34)
        # test Entry version
        self.assertEqual(seq_record.annotations["entry_version"], 36)

    def compare_txt_xml(self, old, new):
        """Compare text and XML based parser output."""
        self.assertEqual(old.id, new.id)
        self.assertEqual(old.name, new.name)
        self.assertEqual(len(old), len(new))
        self.assertEqual(str(old.seq), str(new.seq))
        for key in set(old.annotations).intersection(new.annotations):
            if key == "references":
                self.assertEqual(len(old.annotations[key]), len(new.annotations[key]))
                for r1, r2 in zip(old.annotations[key], new.annotations[key]):
                    # Tweak for line breaks in plain text SwissProt
                    r1.title = r1.title.replace("- ", "-")
                    r2.title = r2.title.replace("- ", "-")
                    r1.journal = r1.journal.rstrip(".")  # Should parser do this?
                    r1.medline_id = ""  # Missing in UniPort XML? TODO - check
                    # Lots of extra comments in UniProt XML
                    r1.comment = ""
                    r2.comment = ""
                    if not r2.journal:
                        r1.journal = ""
                    compare_reference(r1, r2)
            elif old.annotations[key] == new.annotations[key]:
                pass
            elif key in ["date"]:
                # TODO - Why is this a list vs str?
                pass
            elif not isinstance(old.annotations[key], type(new.annotations[key])):
                raise TypeError(
                    "%s gives %s vs %s"
                    % (key, old.annotations[key], new.annotations[key])
                )
            elif key in ["organism"]:
                if old.annotations[key] == new.annotations[key]:
                    pass
                elif old.annotations[key].startswith(new.annotations[key] + " "):
                    pass
                else:
                    raise ValueError(key)
            elif isinstance(old.annotations[key], list) and sorted(
                old.annotations[key]
            ) == sorted(new.annotations[key]):
                pass
            else:
                raise ValueError(
                    "%s gives %s vs %s"
                    % (key, old.annotations[key], new.annotations[key])
                )
        self.assertEqual(
            len(old.features),
            len(new.features),
            "Features in %s, %i vs %i" % (old.id, len(old.features), len(new.features)),
        )
        for f1, f2 in zip(old.features, new.features):
            """
            self.assertEqual(f1.location.nofuzzy_start, f2.location.nofuzzy_start,
                             "%s %s vs %s %s" %
                             (f1.location, f1.type, f2.location, f2.type))
            self.assertEqual(f1.location.nofuzzy_end, f2.location.nofuzzy_end,
                             "%s %s vs %s %s" %
                             (f1.location, f1.type, f2.location, f2.type))
            """
            self.assertEqual(
                repr(f1.location),
                repr(f2.location),
                "%s %s vs %s %s" % (f1.location, f1.type, f2.location, f2.type),
            )

    def test_Q13639(self):
        """Compare SwissProt text and uniprot XML versions of Q13639."""
        old = SeqIO.read("SwissProt/Q13639.txt", "swiss")
        new = SeqIO.read("SwissProt/Q13639.xml", "uniprot-xml")
        self.compare_txt_xml(old, new)

    def test_H2CNN8(self):
        """Compare SwissProt text and uniprot XML versions of H2CNN8."""
        old = SeqIO.read("SwissProt/H2CNN8.txt", "swiss")
        new = SeqIO.read("SwissProt/H2CNN8.xml", "uniprot-xml")
        self.compare_txt_xml(old, new)

    def test_F2CXE6(self):
        """Compare SwissProt text and uniprot XML versions of F2CXE6."""
        # This evil record has a semi-colon in the gene name,
        # GN   Name=HvPIP2;8 {ECO:0000313|EMBL:BAN04711.1};
        # <gene><name type="primary" evidence="3">HvPIP2;8</name></gene>
        old = SeqIO.read("SwissProt/F2CXE6.txt", "swiss")
        new = SeqIO.read("SwissProt/F2CXE6.xml", "uniprot-xml")
        self.compare_txt_xml(old, new)
        # TODO - Why the mismatch gene_name vs gene_name_primary?
        # TODO - Handle evidence codes on GN line (see GitHub isse #416)
        self.assertEqual(
            old.annotations["gene_name"], "Name=HvPIP2;8 {ECO:0000313|EMBL:BAN04711.1};"
        )
        self.assertEqual(new.annotations["gene_name_primary"], "HvPIP2;8")
        self.assertEqual(old.name, "F2CXE6_HORVD")
        self.assertEqual(new.name, "F2CXE6_HORVD")

    def test_P84001(self):
        """Parse mass spec structured comment with unknown loc."""
        xml = list(SeqIO.parse("SwissProt/P84001.xml", "uniprot-xml"))[0]
        self.assertEqual(xml.id, "P84001")
        self.assertEqual(len(xml.annotations["comment_massspectrometry"]), 1)
        self.assertEqual(
            xml.annotations["comment_massspectrometry"][0],
            "undefined:9571|Electrospray",
        )

    def test_multi_ex(self):
        """Compare SwissProt text and uniprot XML versions of several examples."""
        txt_list = list(SeqIO.parse("SwissProt/multi_ex.txt", "swiss"))
        xml_list = list(SeqIO.parse("SwissProt/multi_ex.xml", "uniprot-xml"))
        fas_list = list(SeqIO.parse("SwissProt/multi_ex.fasta", "fasta"))
        with open("SwissProt/multi_ex.list") as handle:
            ids = [x.strip() for x in handle]
        self.assertEqual(len(txt_list), len(ids))
        self.assertEqual(len(txt_list), len(fas_list))
        self.assertEqual(len(txt_list), len(xml_list))
        for txt, xml, fas, id in zip(txt_list, xml_list, fas_list, ids):
            self.assertEqual(txt.id, id)
            self.assertIn(txt.id, fas.id.split("|"))
            self.assertEqual(str(txt.seq), str(fas.seq))
            self.compare_txt_xml(txt, xml)

    def test_multi_ex_index(self):
        """Index SwissProt text and uniprot XML versions of several examples."""
        txt_list = list(SeqIO.parse("SwissProt/multi_ex.txt", "swiss"))
        xml_list = list(SeqIO.parse("SwissProt/multi_ex.xml", "uniprot-xml"))
        with open("SwissProt/multi_ex.list") as handle:
            ids = [x.strip() for x in handle]
        txt_index = SeqIO.index("SwissProt/multi_ex.txt", "swiss")
        xml_index = SeqIO.index("SwissProt/multi_ex.xml", "uniprot-xml")
        self.assertEqual(sorted(txt_index), sorted(ids))
        self.assertEqual(sorted(xml_index), sorted(ids))
        # Check SeqIO.parse() versus SeqIO.index() for plain text "swiss"
        for old in txt_list:
            new = txt_index[old.id]
            compare_record(old, new)
        # Check SeqIO.parse() versus SeqIO.index() for XML "uniprot-xml"
        for old in xml_list:
            new = xml_index[old.id]
            compare_record(old, new)
        txt_index.close()
        xml_index.close()

    def test_submittedName_allowed(self):
        """Checks if parser supports new XML Element (submittedName)."""
        with open("SwissProt/R5HY77.xml") as handle:
            for entry in SeqIO.parse(handle, "uniprot-xml"):
                self.assertEqual(entry.id, "R5HY77")
                self.assertEqual(entry.description, "Elongation factor Ts")


if __name__ == "__main__":
    runner = unittest.TextTestRunner(verbosity=2)
    unittest.main(testRunner=runner)