File: test_NaiveBayes.py

package info (click to toggle)
python-biopython 1.80%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 76,328 kB
  • sloc: python: 316,117; xml: 178,845; ansic: 14,577; sql: 1,208; makefile: 131; sh: 70
file content (125 lines) | stat: -rw-r--r-- 4,108 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
# This code is part of the Biopython distribution and governed by its
# license.  Please see the LICENSE file that should have been included
# as part of this package.

# coding=utf-8
"""Tests for NaiveBayes module."""

import copy
import unittest

from Bio import NaiveBayes

# Importing NaiveBayes will itself raise MissingPythonDependencyError
# if NumPy is unavailable.
import numpy

try:
    hash(numpy.float64(123.456))
except TypeError:
    # Due to a bug in NumPy 1.12.1, this is unhashable under
    # PyPy3.5 v5.7 beta - it has been fixed in NumPy
    from Bio import MissingPythonDependencyError

    raise MissingPythonDependencyError(
        "Please update NumPy if you want to use Bio.NaiveBayes "
        "(under this version numpy.float64 is unhashable)."
    ) from None
del numpy


class CarTest(unittest.TestCase):
    def test_car_data(self):
        """Simple example using car data."""
        # Car data from example 'Naive Bayes Classifier example'
        # by Eric Meisner November 22, 2003
        # http://www.inf.u-szeged.hu/~ormandi/teaching/mi2/02-naiveBayes-example.pdf
        xcar = [
            ["Red", "Sports", "Domestic"],
            ["Red", "Sports", "Domestic"],
            ["Red", "Sports", "Domestic"],
            ["Yellow", "Sports", "Domestic"],
            ["Yellow", "Sports", "Imported"],
            ["Yellow", "SUV", "Imported"],
            ["Yellow", "SUV", "Imported"],
            ["Yellow", "SUV", "Domestic"],
            ["Red", "SUV", "Imported"],
            ["Red", "Sports", "Imported"],
        ]

        ycar = ["Yes", "No", "Yes", "No", "Yes", "No", "Yes", "No", "No", "Yes"]

        carmodel = NaiveBayes.train(xcar, ycar)
        self.assertEqual(
            "Yes", NaiveBayes.classify(carmodel, ["Red", "Sports", "Domestic"])
        )
        self.assertEqual(
            "No", NaiveBayes.classify(carmodel, ["Red", "SUV", "Domestic"])
        )


class NaiveBayesTest(unittest.TestCase):
    def setUp(self):
        # Using example from https://en.wikipedia.org/wiki/Naive_Bayes_classifier
        # height (feet), weight (lbs), foot size (inches)
        self.xs = [
            [6, 180, 12],
            [5.92, 190, 11],
            [5.58, 170, 12],
            [5.92, 165, 10],
            [5, 100, 6],
            [5.5, 150, 8],
            [5.42, 130, 7],
            [5.75, 150, 9],
        ]
        self.ys = [
            "male",
            "male",
            "male",
            "male",
            "female",
            "female",
            "female",
            "female",
        ]
        self.model = NaiveBayes.train(self.xs, self.ys)
        self.test = [6, 130, 8]

    def test_train_function_no_training_set(self):
        self.assertRaises(ValueError, NaiveBayes.train, [], self.ys)

    def test_train_function_input_lengths(self):
        ys = copy.copy(self.ys)
        ys.pop()
        self.assertRaises(ValueError, NaiveBayes.train, self.xs, ys)

    def test_train_function_uneven_dimension_of_training_set(self):
        xs = copy.copy(self.xs)
        xs[0] = [1]
        self.assertRaises(ValueError, NaiveBayes.train, xs, self.ys)

    def test_train_function_with_priors(self):
        model = NaiveBayes.train(self.xs, self.ys, priors={"male": 0.1, "female": 0.9})
        result = NaiveBayes.calculate(model, self.test, scale=True)
        expected = -692.0
        self.assertEqual(expected, round(result["male"]))

    def test_classify_function(self):
        expected = "female"
        result = NaiveBayes.classify(self.model, self.test)
        self.assertEqual(expected, result)

    def test_calculate_function_wrong_dimensionality(self):
        xs = self.xs[0]
        xs.append(100)
        self.assertRaises(ValueError, NaiveBayes.calculate, self.model, xs)

    def test_calculate_function_with_scale(self):
        result = NaiveBayes.calculate(self.model, self.test, scale=True)
        expected = -689.0
        self.assertEqual(expected, round(result["male"]))


if __name__ == "__main__":
    runner = unittest.TextTestRunner(verbosity=2)
    unittest.main(testRunner=runner)