1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
|
# Copyright 2016 by Peter Cock. All rights reserved.
# This code is part of the Biopython distribution and governed by its
# license. Please see the LICENSE file that should have been included
# as part of this package.
"""Bio.Align.AlignInfo related tests."""
import math
import unittest
from Bio import AlignIO
from Bio import BiopythonDeprecationWarning
from Bio.Align import MultipleSeqAlignment
from Bio.Align.AlignInfo import SummaryInfo
from Bio.Data import IUPACData
from Bio.motifs import Motif
from Bio.Seq import Seq
from Bio.SeqRecord import SeqRecord
class AlignInfoTests(unittest.TestCase):
"""Test basic usage."""
def assertAlmostEqualList(self, list1, list2, **kwargs):
self.assertEqual(len(list1), len(list2))
for v1, v2 in zip(list1, list2):
self.assertAlmostEqual(v1, v2, **kwargs)
def test_nucleotides(self):
filename = "GFF/multi.fna"
fmt = "fasta"
msa = AlignIO.read(filename, fmt)
summary = SummaryInfo(msa)
alignment = msa.alignment
motif = Motif("ACGT", alignment)
with self.assertWarns(BiopythonDeprecationWarning):
c = summary.dumb_consensus(threshold=0.1, ambiguous="N")
# dumb_consensus uses ambiguous if multiple letters have the same score
self.assertEqual(c, "ANGNCCCC")
c = motif.counts.calculate_consensus(identity=0.1)
# Instead, EMBOSS uses the first letter it encounters
self.assertEqual(c, "AaGcCCCC")
with self.assertWarns(BiopythonDeprecationWarning):
c = summary.dumb_consensus(ambiguous="N")
self.assertEqual(c, "NNNNNNNN")
c = motif.counts.calculate_consensus(identity=0.7)
self.assertEqual(c, "NNNNNNNN")
with self.assertWarns(BiopythonDeprecationWarning):
c = summary.gap_consensus(ambiguous="N")
self.assertEqual(c, "NNNNNNNN")
expected = {"A": 0.25, "G": 0.25, "T": 0.25, "C": 0.25}
with self.assertWarns(BiopythonDeprecationWarning):
m = summary.pos_specific_score_matrix(chars_to_ignore=["-"], axis_seq=c)
counts = motif.counts
for i in range(alignment.length):
for letter in "ACGT":
self.assertAlmostEqual(counts[letter][i], m[i][letter])
self.assertEqual(
str(m),
""" A C G T
N 2.0 0.0 1.0 0.0
N 1.0 1.0 1.0 0.0
N 1.0 0.0 2.0 0.0
N 0.0 1.0 1.0 1.0
N 1.0 2.0 0.0 0.0
N 0.0 2.0 1.0 0.0
N 1.0 2.0 0.0 0.0
N 0.0 2.0 1.0 0.0
""",
)
# provide the frequencies and chars to ignore explicitly.
with self.assertWarns(BiopythonDeprecationWarning):
ic = summary.information_content(
e_freq_table=expected, chars_to_ignore=["-"]
)
self.assertAlmostEqual(ic, 7.32029999423075)
ic = sum(motif.relative_entropy)
self.assertAlmostEqual(ic, 7.32029999423075)
def test_proteins(self):
letters = IUPACData.protein_letters
a = MultipleSeqAlignment(
[
SeqRecord(Seq("MHQAIFIYQIGYP*LKSGYIQSIRSPEYDNW-"), id="ID001"),
SeqRecord(Seq("MH--IFIYQIGYAYLKSGYIQSIRSPEY-NW*"), id="ID002"),
SeqRecord(Seq("MHQAIFIYQIGYPYLKSGYIQSIRSPEYDNW*"), id="ID003"),
]
)
self.assertEqual(32, a.get_alignment_length())
s = SummaryInfo(a)
alignment = a.alignment
motif = Motif(letters + "*", alignment)
counts = motif.counts
with self.assertWarns(BiopythonDeprecationWarning):
dumb_consensus = s.dumb_consensus()
self.assertEqual(dumb_consensus, "MHQAIFIYQIGYXXLKSGYIQSIRSPEYDNW*")
consensus = counts.calculate_consensus(identity=0.7)
self.assertEqual(consensus, dumb_consensus)
with self.assertWarns(BiopythonDeprecationWarning):
c = s.gap_consensus(ambiguous="X")
self.assertEqual(c, "MHXXIFIYQIGYXXLKSGYIQSIRSPEYXNWX")
with self.assertWarns(BiopythonDeprecationWarning):
m = s.pos_specific_score_matrix(chars_to_ignore=["-", "*"], axis_seq=c)
j = 0
all_letters = s._get_all_letters()
for i in range(alignment.length):
for letter in letters:
count = counts[letter][i]
if letter in all_letters:
self.assertAlmostEqual(count, m[j][letter])
else:
self.assertAlmostEqual(count, 0.0)
j += 1
self.assertEqual(
str(m),
""" A D E F G H I K L M N P Q R S W Y
M 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
H 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
X 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0
X 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
I 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
F 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
I 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Y 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0
Q 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0
I 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
G 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Y 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0
X 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0
X 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0
L 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
K 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
S 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0
G 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Y 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0
I 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Q 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0
S 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0
I 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
R 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0
S 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0
P 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0
E 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Y 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0
X 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
N 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0
W 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0
X 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
""",
)
base_freq = 1.0 / len(letters)
e_freq_table = {letter: base_freq for letter in letters}
with self.assertWarns(BiopythonDeprecationWarning):
ic = s.information_content(
e_freq_table=e_freq_table, chars_to_ignore=["-", "*"]
)
self.assertAlmostEqual(ic, 133.061475107)
motif = Motif(letters, alignment)
ic = sum(motif.relative_entropy)
self.assertAlmostEqual(ic, 133.061475107)
def test_pseudo_count(self):
# use example from
# http://biologie.univ-mrs.fr/upload/p202/01.4.PSSM_theory.pdf
msa = MultipleSeqAlignment(
[
SeqRecord(Seq("AACCACGTTTAA"), id="ID001"),
SeqRecord(Seq("CACCACGTGGGT"), id="ID002"),
SeqRecord(Seq("CACCACGTTCGC"), id="ID003"),
SeqRecord(Seq("GCGCACGTGGGG"), id="ID004"),
SeqRecord(Seq("TCGCACGTTGTG"), id="ID005"),
SeqRecord(Seq("TGGCACGTGTTT"), id="ID006"),
SeqRecord(Seq("TGACACGTGGGA"), id="ID007"),
SeqRecord(Seq("TTACACGTGCGC"), id="ID008"),
]
)
summary = SummaryInfo(msa)
expected = {"A": 0.325, "G": 0.175, "T": 0.325, "C": 0.175}
with self.assertWarns(BiopythonDeprecationWarning):
ic = summary.information_content(
e_freq_table=expected, log_base=math.exp(1), pseudo_count=1
)
self.assertAlmostEqual(ic, 7.546369561463767)
ic_vector = [
0.11112361,
0.08677812,
0.35598044,
1.29445419,
0.80272907,
1.29445419,
1.29445419,
0.80272907,
0.60929642,
0.39157892,
0.46539767,
0.03739368,
]
self.assertAlmostEqualList(summary.ic_vector, ic_vector)
# One more time, now using a new-style Alignment object:
alignment = msa.alignment
motif = Motif("ACGT", alignment)
motif.background = expected
motif.pseudocounts = expected
self.assertAlmostEqualList(motif.relative_entropy * math.log(2), ic_vector)
ic = sum(ic_vector)
self.assertAlmostEqual(ic, 7.546369561463767)
if __name__ == "__main__":
runner = unittest.TextTestRunner(verbosity=2)
unittest.main(testRunner=runner)
|