1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
|
# Copyright 2017 by Maximilian Greil. All rights reserved.
# This code is part of the Biopython distribution and governed by its
# license. Please see the LICENSE file that should have been included
# as part of this package.
"""Tests for QCPSuperimposer module."""
import unittest
try:
import numpy as np
except ImportError:
from Bio import MissingPythonDependencyError
raise MissingPythonDependencyError(
"Install NumPy if you want to use Bio.QCPSuperimposer."
) from None
from Bio.PDB import PDBParser
from Bio.PDB import Selection
from Bio.PDB.qcprot import QCPSuperimposer
from Bio.SVDSuperimposer import SVDSuperimposer
class QCPSuperimposerTest(unittest.TestCase):
def setUp(self):
self.x = np.array(
[
[51.65, -1.90, 50.07],
[50.40, -1.23, 50.65],
[50.68, -0.04, 51.54],
[50.22, -0.02, 52.85],
]
)
self.y = np.array(
[
[51.30, -2.99, 46.54],
[51.09, -1.88, 47.58],
[52.36, -1.20, 48.03],
[52.71, -1.18, 49.38],
]
)
# Public methods
def test_set(self):
"""Test setting of initial parameters."""
sup = QCPSuperimposer()
sup.set(self.x, self.y)
self.assertTrue(np.allclose(sup.reference_coords, self.x, atol=1e-6))
self.assertTrue(np.allclose(sup.coords, self.y, atol=1e-6))
self.assertIsNone(sup.transformed_coords)
self.assertIsNone(sup.rot)
self.assertIsNone(sup.tran)
self.assertIsNone(sup.rms)
self.assertIsNone(sup.init_rms)
def test_run(self):
"""Test QCP on dummy data."""
sup = QCPSuperimposer()
sup.set(self.x, self.y)
sup.run()
self.assertTrue(np.allclose(sup.reference_coords, self.x, atol=1e-6))
self.assertTrue(np.allclose(sup.coords, self.y, atol=1e-6))
self.assertIsNone(sup.transformed_coords)
calc_rot = [
[0.683, 0.537, 0.495],
[-0.523, 0.833, -0.181],
[-0.510, -0.135, 0.849],
]
calc_tran = [38.786, -20.655, -15.422]
self.assertTrue(np.allclose(np.array(calc_rot), sup.rot, atol=1e-3))
self.assertTrue(np.allclose(np.array(calc_tran), sup.tran, atol=1e-3))
# We can reduce precision here since we do a similar calculation
# for a full structure down below.
self.assertAlmostEqual(sup.rms, 0.003, places=3)
self.assertIsNone(sup.init_rms)
def test_compare_to_svd(self):
"""Compare results of QCP to SVD."""
sup = QCPSuperimposer()
sup.set(self.x, self.y)
sup.run()
svd_sup = SVDSuperimposer()
svd_sup.set(self.x, self.y)
svd_sup.run()
self.assertAlmostEqual(svd_sup.get_rms(), sup.rms, places=3)
self.assertTrue(np.allclose(svd_sup.rot, sup.rot, atol=1e-3))
self.assertTrue(np.allclose(svd_sup.tran, sup.tran, atol=1e-3))
self.assertTrue(
np.allclose(svd_sup.get_transformed(), sup.get_transformed(), atol=1e-3)
)
def test_get_transformed(self):
"""Test transformation of coordinates after QCP."""
sup = QCPSuperimposer()
sup.set(self.x, self.y)
sup.run()
transformed_coords = [
[51.652, -1.900, 50.071],
[50.398, -1.229, 50.649],
[50.680, -0.042, 51.537],
[50.220, -0.019, 52.853],
]
self.assertTrue(
np.allclose(sup.get_transformed(), np.array(transformed_coords), atol=1e-3)
)
def test_get_init_rms(self):
"""Test initial RMS calculation."""
x = np.array([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]])
y = np.array([[2.0, 0.0, 0.0], [1.0, 1.0, 0.0], [1.0, 0.0, 1.0]])
sup = QCPSuperimposer()
sup.set(x, y)
self.assertIsNone(sup.init_rms)
expected_init_rms = 1.0
self.assertAlmostEqual(sup.get_init_rms(), expected_init_rms, places=6)
def test_on_pdb(self):
"""Align a PDB to itself."""
pdb1 = "PDB/1A8O.pdb"
p = PDBParser()
s1 = p.get_structure("FIXED", pdb1)
fixed = Selection.unfold_entities(s1, "A")
s2 = p.get_structure("MOVING", pdb1)
moving = Selection.unfold_entities(s2, "A")
rot = np.eye(3, dtype=np.float64)
tran = np.array([1.0, 2.0, 3.0], dtype=np.float64)
for atom in moving:
atom.transform(rot, tran)
sup = QCPSuperimposer()
sup.set_atoms(fixed, moving)
self.assertTrue(np.allclose(sup.rotran[0], rot, atol=1e-3))
self.assertTrue(np.allclose(sup.rotran[1], -tran, atol=1e-3))
self.assertAlmostEqual(sup.rms, 0.0, places=6)
if __name__ == "__main__":
runner = unittest.TextTestRunner(verbosity=2)
unittest.main(testRunner=runner)
|