1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
|
#!/usr/bin/env python
"""Unit tests for statistical tests and utility functions.
"""
from cogent.util.unit_test import TestCase, main
from cogent.maths.stats.test import tail, G_2_by_2,G_fit, likelihoods,\
posteriors, bayes_updates, t_paired, t_one_sample, t_two_sample, \
t_one_observation,correlation, correlation_matrix, z_test, z_tailed_prob, \
t_tailed_prob, sign_test,\
reverse_tails, ZeroExpectedError, combinations, multiple_comparisons, \
multiple_inverse, multiple_n, fisher, regress, regress_major,\
f_value, f_two_sample, calc_contingency_expected, G_fit_from_Dict2D, \
chi_square_from_Dict2D, MonteCarloP, \
regress_residuals, safe_sum_p_log_p, G_ind, regress_origin, stdev_from_mean, \
regress_R2, permute_2d, mantel, kendall_correlation, std, median,\
get_values_from_matrix, get_ltm_cells, distance_matrix_permutation_test,\
ANOVA_one_way
from numpy import array, reshape, arange, ones, testing, cov, sqrt
from cogent.util.dict2d import Dict2D
import math
from cogent.maths.stats.util import Numbers
__author__ = "Rob Knight"
__copyright__ = "Copyright 2007-2009, The Cogent Project"
__credits__ = ["Rob Knight", "Catherine Lozupone", "Gavin Huttley",
"Sandra Smit", "Daniel McDonald"]
__license__ = "GPL"
__version__ = "1.4.1"
__maintainer__ = "Rob Knight"
__email__ = "rob@spot.colorado.edu"
__status__ = "Production"
class TestsTests(TestCase):
"""Tests miscellaneous functions."""
def test_std(self):
"""Should produce a standard deviation of 1.0 for a std normal dist"""
expected = 1.58113883008
self.assertFloatEqual(std(array([1,2,3,4,5])), expected)
expected_a = array([expected, expected, expected, expected, expected])
a = array([[1,2,3,4,5],[5,1,2,3,4],[4,5,1,2,3],[3,4,5,1,2],[2,3,4,5,1]])
self.assertFloatEqual(std(a,axis=0), expected_a)
self.assertFloatEqual(std(a,axis=1), expected_a)
self.assertRaises(ValueError, std, a, 5)
def test_std_2d(self):
"""Should produce from 2darray the same stdevs as scipy.stats.std"""
inp = array([[1,2,3],[4,5,6]])
exps = ( #tuple(scipy_std(inp, ax) for ax in [None, 0, 1])
1.8708286933869707,
array([ 2.12132034, 2.12132034, 2.12132034]),
array([ 1., 1.]))
results = tuple(std(inp, ax) for ax in [None, 0, 1])
for obs, exp in zip(results, exps):
testing.assert_almost_equal(obs, exp)
def test_std_3d(self):
"""Should produce from 3darray the same std devs as scipy.stats.std"""
inp3d = array(#2,2,3
[[[ 0, 2, 2],
[ 3, 4, 5]],
[[ 1, 9, 0],
[ 9, 10, 1]]])
exp3d = (#for axis None, 0, 1, 2: calc from scipy.stats.std
3.63901418552,
array([[ 0.70710678, 4.94974747, 1.41421356],
[ 4.24264069, 4.24264069, 2.82842712]]),
array([[ 2.12132034, 1.41421356, 2.12132034],
[ 5.65685425, 0.70710678, 0.70710678]]),
array([[ 1.15470054, 1. ],
[ 4.93288286, 4.93288286]]))
res = tuple(std(inp3d, ax) for ax in [None, 0, 1, 2])
for obs, exp in zip(res, exp3d):
testing.assert_almost_equal(obs, exp)
def test_median(self):
"""_median should work similarly to numpy.mean (in terms of axis)"""
m = array([[1,2,3],[4,5,6],[7,8,9],[10,11,12]])
expected = 6.5
observed = median(m, axis=None)
self.assertEqual(observed, expected)
expected = array([5.5, 6.5, 7.5])
observed = median(m, axis=0)
self.assertEqual(observed, expected)
expected = array([2.0, 5.0, 8.0, 11.0])
observed = median(m, axis=1)
self.assertEqual(observed, expected)
self.assertRaises(ValueError, median, m, 10)
def test_tail(self):
"""tail should return x/2 if test is true; 1-(x/2) otherwise"""
self.assertFloatEqual(tail(0.25, 'a'=='a'), 0.25/2)
self.assertFloatEqual(tail(0.25, 'a'!='a'), 1-(0.25/2))
def test_combinations(self):
"""combinations should return correct binomial coefficient"""
self.assertFloatEqual(combinations(5,3), 10)
self.assertFloatEqual(combinations(5,2), 10)
#only one way to pick no items or the same number of items
self.assertFloatEqual(combinations(123456789, 0), 1)
self.assertFloatEqual(combinations(123456789, 123456789), 1)
#n ways to pick one item
self.assertFloatEqual(combinations(123456789, 1), 123456789)
#n(n-1)/2 ways to pick 2 items
self.assertFloatEqual(combinations(123456789, 2), 123456789*123456788/2)
#check an arbitrary value in R
self.assertFloatEqual(combinations(1234567, 12), 2.617073e64)
def test_multiple_comparisons(self):
"""multiple_comparisons should match values from R"""
self.assertFloatEqual(multiple_comparisons(1e-7, 10000), 1-0.9990005)
self.assertFloatEqual(multiple_comparisons(0.05, 10), 0.4012631)
self.assertFloatEqual(multiple_comparisons(1e-20, 1), 1e-20)
self.assertFloatEqual(multiple_comparisons(1e-300, 1), 1e-300)
self.assertFloatEqual(multiple_comparisons(0.95, 3),0.99987499999999996)
self.assertFloatEqual(multiple_comparisons(0.75, 100),0.999999999999679)
self.assertFloatEqual(multiple_comparisons(0.5, 1000),1)
self.assertFloatEqual(multiple_comparisons(0.01, 1000),0.99995682875259)
self.assertFloatEqual(multiple_comparisons(0.5, 5), 0.96875)
self.assertFloatEqual(multiple_comparisons(1e-20, 10), 1e-19)
def test_multiple_inverse(self):
"""multiple_inverse should invert multiple_comparisons results"""
#NOTE: multiple_inverse not very accurate close to 1
self.assertFloatEqual(multiple_inverse(1-0.9990005, 10000), 1e-7)
self.assertFloatEqual(multiple_inverse(0.4012631 , 10), 0.05)
self.assertFloatEqual(multiple_inverse(1e-20, 1), 1e-20)
self.assertFloatEqual(multiple_inverse(1e-300, 1), 1e-300)
self.assertFloatEqual(multiple_inverse(0.96875, 5), 0.5)
self.assertFloatEqual(multiple_inverse(1e-19, 10), 1e-20)
def test_multiple_n(self):
"""multiple_n should swap parameters in multiple_comparisons"""
self.assertFloatEqual(multiple_n(1e-7, 1-0.9990005), 10000)
self.assertFloatEqual(multiple_n(0.05, 0.4012631), 10)
self.assertFloatEqual(multiple_n(1e-20, 1e-20), 1)
self.assertFloatEqual(multiple_n(1e-300, 1e-300), 1)
self.assertFloatEqual(multiple_n(0.95,0.99987499999999996),3)
self.assertFloatEqual(multiple_n(0.5,0.96875),5)
self.assertFloatEqual(multiple_n(1e-20, 1e-19), 10)
def test_fisher(self):
"""fisher results should match p 795 Sokal and Rohlf"""
self.assertFloatEqual(fisher([0.073,0.086,0.10,0.080,0.060]),
0.0045957946540917905)
def test_regress(self):
"""regression slope, intercept should match p 459 Sokal and Rohlf"""
x = [0, 12, 29.5,43,53,62.5,75.5,85,93]
y = [8.98, 8.14, 6.67, 6.08, 5.90, 5.83, 4.68, 4.20, 3.72]
self.assertFloatEqual(regress(x, y), (-0.05322, 8.7038), 0.001)
#higher precision from OpenOffice
self.assertFloatEqual(regress(x, y), (-0.05322215,8.70402730))
def test_regress_origin(self):
"""regression slope constrained through origin should match Excel"""
x = array([1,2,3,4])
y = array([4,2,6,8])
self.assertFloatEqual(regress_origin(x, y), (1.9333333,0))
def test_regress_R2(self):
"""regress_R2 returns the R^2 value of a regression"""
x = [1.0,2.0,3.0,4.0,5.0]
y = [2.1,4.2,5.9,8.4,9.6]
result = regress_R2(x, y)
self.assertFloatEqual(result, 0.99171419347896)
def test_regress_residuals(self):
"""regress_residuals reprts error for points in linear regression"""
x = [1.0,2.0,3.0,4.0,5.0]
y = [2.1,4.2,5.9,8.4,9.6]
result = regress_residuals(x, y)
self.assertFloatEqual(result, [-0.1, 0.08, -0.14, 0.44, -0.28])
def test_stdev_from_mean(self):
"""stdev_from_mean returns num std devs from mean for each val in x"""
x = [2.1, 4.2, 5.9, 8.4, 9.6]
result = stdev_from_mean(x)
self.assertFloatEqual(result, [-1.292463399014413, -0.60358696806764478, -0.045925095396451399, 0.77416589382589174, 1.1678095686526162])
def test_regress_major(self):
"""major axis regression should match p 589 Sokal and Rohlf"""
#Note that the Sokal and Rohlf example flips the axes, such that the
#equation is for explaining x in terms of y, not y in terms of x.
#Behavior here is the reverse, for easy comparison with regress.
y = [159, 179, 100, 45, 384, 230, 100, 320, 80, 220, 320, 210]
x = [14.40, 15.20, 11.30, 2.50, 22.70, 14.90, 1.41, 15.81, 4.19, 15.39,
17.25, 9.52]
self.assertFloatEqual(regress_major(x, y), (18.93633,-32.55208))
def test_sign_test(self):
"""sign_test, should match values from R"""
v = [("two sided", 26, 50, 0.88772482734078251),
("less", 26, 50, 0.6641),
("l", 10, 50, 1.193066583837777e-05),
("hi", 30, 50, 0.1013193755322703),
("h", 0, 50, 1.0),
("2", 30, 50, 0.20263875106454063),
("h", 49, 50, 4.5297099404706387e-14),
("h", 50, 50, 8.8817841970012543e-16)
]
for alt, success, trials, p in v:
result = sign_test(success, trials, alt=alt)
self.assertFloatEqual(result, p, eps=1e-5)
class GTests(TestCase):
"""Tests implementation of the G tests for fit and independence."""
def test_G_2_by_2_2tailed_equal(self):
"""G_2_by_2 should return 0 if all cell counts are equal"""
self.assertFloatEqual(0, G_2_by_2(1, 1, 1, 1, False, False)[0])
self.assertFloatEqual(0, G_2_by_2(100, 100, 100, 100, False, False)[0])
self.assertFloatEqual(0, G_2_by_2(100, 100, 100, 100, True, False)[0])
def test_G_2_by_2_bad_data(self):
"""G_2_by_2 should raise ValueError if any counts are negative"""
self.assertRaises(ValueError, G_2_by_2, 1, -1, 1, 1)
def test_G_2_by_2_2tailed_examples(self):
"""G_2_by_2 values should match examples in Sokal & Rohlf"""
#example from p 731, Sokal and Rohlf (1995)
#without correction
self.assertFloatEqual(G_2_by_2(12, 22, 16, 50, False, False)[0],
1.33249, 0.0001)
self.assertFloatEqual(G_2_by_2(12, 22, 16, 50, False, False)[1],
0.24836, 0.0001)
#with correction
self.assertFloatEqual(G_2_by_2(12, 22, 16, 50, True, False)[0],
1.30277, 0.0001)
self.assertFloatEqual(G_2_by_2(12, 22, 16, 50, True, False)[1],
0.25371, 0.0001)
def test_G_2_by_2_1tailed_examples(self):
"""G_2_by_2 values should match values from codon_binding program"""
#first up...the famous arginine case
self.assertFloatEqualAbs(G_2_by_2(36, 16, 38, 106), (29.111609, 0),
0.00001)
#then some other miscellaneous positive and negative values
self.assertFloatEqualAbs(G_2_by_2(0,52,12,132), (-7.259930, 0.996474),
0.00001)
self.assertFloatEqualAbs(G_2_by_2(5,47,14,130), (-0.000481, 0.508751),
0.00001)
self.assertFloatEqualAbs(G_2_by_2(5,47,36,108), (-6.065167, 0.993106),
0.00001)
def test_calc_contingency_expected(self):
"""calcContingencyExpected returns new matrix with expected freqs"""
matrix = Dict2D({'rest_of_tree': {'env1': 2, 'env3': 1, 'env2': 0},
'b': {'env1': 1, 'env3': 1, 'env2': 3}})
result = calc_contingency_expected(matrix)
self.assertFloatEqual(result['rest_of_tree']['env1'], [2, 1.125])
self.assertFloatEqual(result['rest_of_tree']['env3'], [1, 0.75])
self.assertFloatEqual(result['rest_of_tree']['env2'], [0, 1.125])
self.assertFloatEqual(result['b']['env1'], [1, 1.875])
self.assertFloatEqual(result['b']['env3'], [1, 1.25])
self.assertFloatEqual(result['b']['env2'], [3, 1.875])
def test_Gfit_unequal_lists(self):
"""Gfit should raise errors if lists unequal"""
#lists must be equal
self.assertRaises(ValueError, G_fit, [1, 2, 3], [1, 2])
def test_Gfit_negative_observeds(self):
"""Gfit should raise ValueError if any observeds are negative."""
self.assertRaises(ValueError, G_fit, [-1, 2, 3], [1, 2, 3])
def test_Gfit_nonpositive_expecteds(self):
"""Gfit should raise ZeroExpectedError if expecteds are zero/negative"""
self.assertRaises(ZeroExpectedError, G_fit, [1, 2, 3], [0, 1, 2])
self.assertRaises(ZeroExpectedError, G_fit, [1, 2, 3], [-1, 1, 2])
def test_Gfit_good_data(self):
"""Gfit tests for fit should match examples in Sokal and Rohlf"""
#example from p. 699, Sokal and Rohlf (1995)
obs = [63, 31, 28, 12, 39, 16, 40, 12]
exp = [ 67.78125, 22.59375, 22.59375, 7.53125, 45.18750,
15.06250, 45.18750, 15.06250]
#without correction
self.assertFloatEqualAbs(G_fit(obs, exp, False)[0], 8.82397, 0.00002)
self.assertFloatEqualAbs(G_fit(obs, exp, False)[1], 0.26554, 0.00002)
#with correction
self.assertFloatEqualAbs(G_fit(obs, exp)[0], 8.76938, 0.00002)
self.assertFloatEqualAbs(G_fit(obs, exp)[1], 0.26964, 0.00002)
#example from p. 700, Sokal and Rohlf (1995)
obs = [130, 46]
exp = [132, 44]
#without correction
self.assertFloatEqualAbs(G_fit(obs, exp, False)[0], 0.12002, 0.00002)
self.assertFloatEqualAbs(G_fit(obs, exp, False)[1], 0.72901, 0.00002)
#with correction
self.assertFloatEqualAbs(G_fit(obs, exp)[0], 0.11968, 0.00002)
self.assertFloatEqualAbs(G_fit(obs, exp)[1], 0.72938, 0.00002)
def test_safe_sum_p_log_p(self):
"""safe_sum_p_log_p should ignore zero elements, not raise error"""
m = array([2,4,0,8])
self.assertEqual(safe_sum_p_log_p(m,2), 2*1+4*2+8*3)
def test_G_ind(self):
"""G test for independence should match Sokal and Rohlf p 738 values"""
a = array([[29,11],[273,191],[8,31],[64,64]])
self.assertFloatEqual(G_ind(a)[0], 28.59642)
self.assertFloatEqual(G_ind(a, True)[0], 28.31244)
def test_G_fit_from_Dict2D(self):
"""G_fit_from_Dict2D runs G-fit on data in a Dict2D
"""
matrix = Dict2D({'Marl': {'val':[2, 5.2]},
'Chalk': {'val':[10, 5.2]},
'Sandstone':{'val':[8, 5.2]},
'Clay':{'val':[2, 5.2]},
'Limestone':{'val':[4, 5.2]}
})
g_val, prob = G_fit_from_Dict2D(matrix)
self.assertFloatEqual(g_val, 9.84923)
self.assertFloatEqual(prob, 0.04304536)
def test_chi_square_from_Dict2D(self):
"""chi_square_from_Dict2D calcs a Chi-Square and p value from Dict2D"""
#test1
obs_matrix = Dict2D({'rest_of_tree': {'env1': 2, 'env3': 1, 'env2': 0},
'b': {'env1': 1, 'env3': 1, 'env2': 3}})
input_matrix = calc_contingency_expected(obs_matrix)
test, csp = chi_square_from_Dict2D(input_matrix)
self.assertFloatEqual(test, 3.0222222222222221)
#test2
test_matrix_2 = Dict2D({'Marl': {'val':[2, 5.2]},
'Chalk': {'val':[10, 5.2]},
'Sandstone':{'val':[8, 5.2]},
'Clay':{'val':[2, 5.2]},
'Limestone':{'val':[4, 5.2]}
})
test2, csp2 = chi_square_from_Dict2D(test_matrix_2)
self.assertFloatEqual(test2, 10.1538461538)
self.assertFloatEqual(csp2, 0.0379143890013)
#test3
matrix3_obs = Dict2D({'AIDS':{'Males':4, 'Females':2, 'Both':3},
'No_AIDS':{'Males':3, 'Females':16, 'Both':2}
})
matrix3 = calc_contingency_expected(matrix3_obs)
test3, csp3 = chi_square_from_Dict2D(matrix3)
self.assertFloatEqual(test3, 7.6568405139833722)
self.assertFloatEqual(csp3, 0.0217439383468)
class LikelihoodTests(TestCase):
"""Tests implementations of likelihood calculations."""
def test_likelihoods_unequal_list_lengths(self):
"""likelihoods should raise ValueError if input lists unequal length"""
self.assertRaises(ValueError, likelihoods, [1, 2], [1])
def test_likelihoods_equal_priors(self):
"""likelihoods should equal Pr(D|H) if priors the same"""
equal = [0.25, 0.25, 0.25,0.25]
unequal = [0.5, 0.25, 0.125, 0.125]
equal_answer = [1, 1, 1, 1]
unequal_answer = [2, 1, 0.5, 0.5]
for obs, exp in zip(likelihoods(equal, equal), equal_answer):
self.assertFloatEqual(obs, exp)
for obs, exp in zip(likelihoods(unequal, equal), unequal_answer):
self.assertFloatEqual(obs, exp)
def test_likelihoods_equal_evidence(self):
"""likelihoods should return vector of 1's if evidence equal for all"""
equal = [0.25, 0.25, 0.25,0.25]
unequal = [0.5, 0.25, 0.125, 0.125]
equal_answer = [1, 1, 1, 1]
unequal_answer = [2, 1, 0.5, 0.5]
not_unity = [0.7, 0.7, 0.7, 0.7]
for obs, exp in zip(likelihoods(equal, unequal), equal_answer):
self.assertFloatEqual(obs, exp)
#should be the same if evidences don't sum to 1
for obs, exp in zip(likelihoods(not_unity, unequal), equal_answer):
self.assertFloatEqual(obs, exp)
def test_likelihoods_unequal_evidence(self):
"""likelihoods should update based on weighted sum if evidence unequal"""
not_unity = [1, 0.5, 0.25, 0.25]
unequal = [0.5, 0.25, 0.125, 0.125]
products = [1.4545455, 0.7272727, 0.3636364, 0.3636364]
#if priors and evidence both unequal, likelihoods should change
#(calculated using StarCalc)
for obs, exp in zip(likelihoods(not_unity, unequal), products):
self.assertFloatEqual(obs, exp)
def test_posteriors_unequal_lists(self):
"""posteriors should raise ValueError if input lists unequal lengths"""
self.assertRaises(ValueError, posteriors, [1, 2, 3], [1])
def test_posteriors_good_data(self):
"""posteriors should return products of paired list elements"""
first = [0, 0.25, 0.5, 1, 0.25]
second = [0.25, 0.5, 0, 0.1, 1]
product = [0, 0.125, 0, 0.1, 0.25]
for obs, exp in zip(posteriors(first, second), product):
self.assertFloatEqual(obs, exp)
class BayesUpdateTests(TestCase):
"""Tests implementation of Bayes calculations"""
def setUp(self):
first = [0.25, 0.25, 0.25]
second = [0.1, 0.75, 0.3]
third = [0.95, 1e-10, 0.2]
fourth = [0.01, 0.9, 0.1]
bad = [1, 2, 1, 1, 1]
self.bad = [first, bad, second, third]
self.test = [first, second, third, fourth]
self.permuted = [fourth, first, third, second]
self.deleted = [second, fourth, third]
self.extra = [first, second, first, third, first, fourth, first]
#BEWARE: low precision in second item, so need to adjust threshold
#for assertFloatEqual accordingly (and use assertFloatEqualAbs).
self.result = [0.136690646154, 0.000000009712, 0.863309344133]
def test_bayes_updates_bad_data(self):
"""bayes_updates should raise ValueError on unequal-length lists"""
self.assertRaises(ValueError, bayes_updates, self.bad)
def test_bayes_updates_good_data(self):
"""bayes_updates should match hand calculations of probability updates"""
#result for first -> fourth calculated by hand
for obs, exp in zip(bayes_updates(self.test), self.result):
self.assertFloatEqualAbs(obs, exp, 1e-11)
def test_bayes_updates_permuted(self):
"""bayes_updates should not be affected by order of inputs"""
for obs, exp in zip(bayes_updates(self.permuted), self.result):
self.assertFloatEqualAbs(obs, exp, 1e-11)
def test_bayes_update_nondiscriminating(self):
"""bayes_updates should be unaffected by extra nondiscriminating data"""
#deletion of non-discriminating evidence should not affect result
for obs, exp in zip(bayes_updates(self.deleted), self.result):
self.assertFloatEqualAbs(obs, exp, 1e-11)
#additional non-discriminating evidence should not affect result
for obs, exp in zip(bayes_updates(self.extra), self.result):
self.assertFloatEqualAbs(obs, exp, 1e-11)
class StatTests(TestCase):
"""Tests that the t and z tests are implemented correctly"""
def setUp(self):
self.x = [
7.33, 7.49, 7.27, 7.93, 7.56,
7.81, 7.46, 6.94, 7.49, 7.44,
7.95, 7.47, 7.04, 7.10, 7.64,
]
self.y = [
7.53, 7.70, 7.46, 8.21, 7.81,
8.01, 7.72, 7.13, 7.68, 7.66,
8.11, 7.66, 7.20, 7.25, 7.79,
]
def test_t_paired_2tailed(self):
"""t_paired should match values from Sokal & Rohlf p 353"""
x, y = self.x, self.y
#check value of t and the probability for 2-tailed
self.assertFloatEqual(t_paired(y, x)[0], 19.7203, 1e-4)
self.assertFloatEqual(t_paired(y, x)[1], 1.301439e-11, 1e-4)
def test_t_paired_no_variance(self):
"""t_paired should return None if lists are invariant"""
x = [1, 1, 1]
y = [0, 0, 0]
self.assertEqual(t_paired(x,x), (None, None))
self.assertEqual(t_paired(x,y), (None, None))
def test_t_paired_1tailed(self):
"""t_paired should match pre-calculated 1-tailed values"""
x, y = self.x, self.y
#check probability for 1-tailed low and high
self.assertFloatEqual(
t_paired(y, x, "low")[1], 1-(1.301439e-11/2), 1e-4)
self.assertFloatEqual(
t_paired(x, y, "high")[1], 1-(1.301439e-11/2), 1e-4)
self.assertFloatEqual(
t_paired(y, x, "high")[1], 1.301439e-11/2, 1e-4)
self.assertFloatEqual(
t_paired(x, y, "low")[1], 1.301439e-11/2, 1e-4)
def test_t_paired_specific_difference(self):
"""t_paired should allow a specific difference to be passed"""
x, y = self.x, self.y
#difference is 0.2, so test should be non-significant if 0.2 passed
self.failIf(t_paired(y, x, exp_diff=0.2)[0] > 1e-10)
#same, except that reversing list order reverses sign of difference
self.failIf(t_paired(x, y, exp_diff=-0.2)[0] > 1e-10)
#check that there's no significant difference from the true mean
self.assertFloatEqual(
t_paired(y, x,exp_diff=0.2)[1], 1, 1e-4)
def test_t_paired_bad_data(self):
"""t_paired should raise ValueError on lists of different lengths"""
self.assertRaises(ValueError, t_paired, self.y, [1, 2, 3])
def test_t_two_sample(self):
"""t_two_sample should match example on p.225 of Sokal and Rohlf"""
I = array([7.2, 7.1, 9.1, 7.2, 7.3, 7.2, 7.5])
II = array([8.8, 7.5, 7.7, 7.6, 7.4, 6.7, 7.2])
self.assertFloatEqual(t_two_sample(I, II), (-0.1184, 0.45385 * 2),
0.001)
def test_t_two_sample_no_variance(self):
"""t_two_sample should return None if lists are invariant"""
x = array([1, 1, 1])
y = array([0, 0, 0])
self.assertEqual(t_two_sample(x,x), (None, None))
self.assertEqual(t_two_sample(x,y), (None, None))
def test_t_one_sample(self):
"""t_one_sample results should match those from R"""
x = array(range(-5,5))
y = array(range(-1,10))
self.assertFloatEqualAbs(t_one_sample(x), (-0.5222, 0.6141), 1e-4)
self.assertFloatEqualAbs(t_one_sample(y), (4, 0.002518), 1e-4)
#do some one-tailed tests as well
self.assertFloatEqualAbs(t_one_sample(y, tails='low'),(4, 0.9987),1e-4)
self.assertFloatEqualAbs(t_one_sample(y,tails='high'),(4,0.001259),1e-4)
def test_t_two_sample_switch(self):
"""t_two_sample should call t_one_observation if 1 item in sample."""
sample = array([4.02, 3.88, 3.34, 3.87, 3.18])
x = array([3.02])
self.assertFloatEqual(t_two_sample(x,sample),(-1.5637254,0.1929248))
self.assertFloatEqual(t_two_sample(sample, x),(-1.5637254,0.1929248))
#can't do the test if both samples have single item
self.assertEqual(t_two_sample(x,x), (None, None))
def test_t_one_observation(self):
"""t_one_observation should match p. 228 of Sokal and Rohlf"""
sample = array([4.02, 3.88, 3.34, 3.87, 3.18])
x = 3.02
#note that this differs after the 3rd decimal place from what's in the
#book, because Sokal and Rohlf round their intermediate steps...
self.assertFloatEqual(t_one_observation(x,sample),\
(-1.5637254,0.1929248))
def test_reverse_tails(self):
"""reverse_tails should return 'high' if tails was 'low' or vice versa"""
self.assertEqual(reverse_tails('high'), 'low')
self.assertEqual(reverse_tails('low'), 'high')
self.assertEqual(reverse_tails(None), None)
self.assertEqual(reverse_tails(3), 3)
def test_tail(self):
"""tail should return prob/2 if test is true, or 1-(prob/2) if false"""
self.assertFloatEqual(tail(0.25, True), 0.125)
self.assertFloatEqual(tail(0.25, False), 0.875)
self.assertFloatEqual(tail(1, True), 0.5)
self.assertFloatEqual(tail(1, False), 0.5)
self.assertFloatEqual(tail(0, True), 0)
self.assertFloatEqual(tail(0, False), 1)
def test_z_test(self):
"""z_test should give correct values"""
sample = array([1,2,3,4,5])
self.assertFloatEqual(z_test(sample, 3, 1), (0,1))
self.assertFloatEqual(z_test(sample, 3, 2, 'high'), (0,0.5))
self.assertFloatEqual(z_test(sample, 3, 2, 'low'), (0,0.5))
#check that population mean and variance, and tails, can be set OK.
self.assertFloatEqual(z_test(sample, 0, 1), (6.7082039324993694, \
1.9703444711798951e-11))
self.assertFloatEqual(z_test(sample, 1, 10), (0.44721359549995793, \
0.65472084601857694))
self.assertFloatEqual(z_test(sample, 1, 10, 'high'), \
(0.44721359549995793, 0.65472084601857694/2))
self.assertFloatEqual(z_test(sample, 1, 10, 'low'), \
(0.44721359549995793, 1-(0.65472084601857694/2)))
class CorrelationTests(TestCase):
"""Tests of correlation coefficients."""
def test_correlation(self):
"""Correlations and significance should match R's cor.test()"""
x = [1,2,3,5]
y = [0,0,0,0]
z = [1,1,1,1]
a = [2,4,6,8]
b = [1.5, 1.4, 1.2, 1.1]
c = [15, 10, 5, 20]
bad = [1,2,3] #originally gave r = 1.0000000002
self.assertFloatEqual(correlation(x,x), (1, 0))
self.assertFloatEqual(correlation(x,y), (0,1))
self.assertFloatEqual(correlation(y,z), (0,1))
self.assertFloatEqualAbs(correlation(x,a), (0.9827076, 0.01729), 1e-5)
self.assertFloatEqualAbs(correlation(x,b), (-0.9621405, 0.03786), 1e-5)
self.assertFloatEqualAbs(correlation(x,c), (0.3779645, 0.622), 1e-3)
self.assertEqual(correlation(bad,bad), (1, 0))
def test_correlation_matrix(self):
"""Correlations in matrix should match values from R"""
a = [2,4,6,8]
b = [1.5, 1.4, 1.2, 1.1]
c = [15, 10, 5, 20]
m = correlation_matrix([a,b,c])
self.assertFloatEqual(m[0,0], [1.0])
self.assertFloatEqual([m[1,0], m[1,1]], [correlation(b,a)[0], 1.0])
self.assertFloatEqual(m[2], [correlation(c,a)[0], correlation(c,b)[0], \
1.0])
class Ftest(TestCase):
"""Tests for the F test"""
def test_f_value(self):
"""f_value: should calculate the correct F value if possible"""
a = array([1,3,5,7,9,8,6,4,2])
b = array([5,4,6,3,7,6,4,5])
self.assertEqual(f_value(a,b), (8,7,4.375))
self.assertFloatEqual(f_value(b,a), (7,8,0.2285714))
too_short = array([4])
self.assertRaises(ValueError, f_value, too_short, b)
def test_f_two_sample(self):
"""f_two_sample should match values from R"""
#The expected values in this test are obtained through R.
#In R the F test is var.test(x,y) different alternative hypotheses
#can be specified (two sided, less, or greater).
#The vectors are random samples from a particular normal distribution
#(mean and sd specified).
#a: 50 elem, mean=0 sd=1
a = [-0.70701689, -1.24788845, -1.65516470, 0.10443876, -0.48526915,
-0.71820656, -1.02603596, 0.03975982, -2.23404324, -0.21509363,
0.08438468, -0.01970062, -0.67907971, -0.89853667, 1.11137131,
0.05960496, -1.51172084, -0.79733957, -1.60040659, 0.80530639,
-0.81715836, -0.69233474, 0.95750665, 0.99576429, -1.61340216,
-0.43572590, -1.50862327, 0.92847551, -0.68382338, -1.12523522,
-0.09147488, 0.66756023, -0.87277588, -1.36539039, -0.11748707,
-1.63632578, -0.31343078, -0.28176086, 0.33854483, -0.51785630,
2.25360559, -0.80761191, 1.18983499, 0.57080342, -1.44601700,
-0.53906955, -0.01975266, -1.37147915, -0.31537616, 0.26877544]
#b: 50 elem, mean=0, sd=1.2
b=[0.081418743, 0.276571612, -1.864316504, 0.675213612, -0.769202643,
0.140372825, -1.426250184, 0.058617884, -0.819287409, -0.007701916,
-0.782722020, -0.285891593, 0.661980419, 0.383225191, 0.622444946,
-0.192446150, 0.297150571, 0.408896059, -0.167359383, -0.552381362,
0.982168338, 1.439730446, 1.967616101, -0.579607307, 1.095590943,
0.240591302, -1.566937143, -0.199091349, -1.232983905, 0.362378169,
1.166061081, -0.604676222, -0.536560206, -0.303117595, 1.519222792,
-0.319146503, 2.206220810, -0.566351124, -0.720397392, -0.452001377,
0.250890097, 0.320685395, -1.014632725, -3.010346273, -1.703955054,
0.592587381, -1.237451255, 0.172243366, -0.452641122, -0.982148581]
#c: 60 elem, mean=5, sd=1
c=[4.654329, 5.242129, 6.272640, 5.781779, 4.391241, 3.800752,
4.559463, 4.318922, 3.243020, 5.121280, 4.126385, 5.541131,
4.777480, 5.646913, 6.972584, 3.817172, 6.128700, 4.731467,
6.762068, 5.082983, 5.298511, 5.491125, 4.532369, 4.265552,
5.697317, 5.509730, 2.935704, 4.507456, 3.786794, 5.548383,
3.674487, 5.536556, 5.297847, 2.439642, 4.759836, 5.114649,
5.986774, 4.517485, 4.579208, 4.579374, 2.502890, 5.190955,
5.983194, 6.766645, 4.905079, 4.214273, 3.950364, 6.262393,
8.122084, 6.330007, 4.767943, 5.194029, 3.503136, 6.039079,
4.485647, 6.116235, 6.302268, 3.596693, 5.743316, 6.860152]
#d: 30 elem, mean=0, sd =0.05
d=[ 0.104517366, 0.023039678, 0.005579091, 0.052928250, 0.020724823,
-0.060823243, -0.019000890, -0.064133996, -0.016321594, -0.008898334,
-0.027626992, -0.051946186, 0.085269587, -0.031190678, 0.065172938,
-0.054628573, 0.019257306, -0.032427056, -0.058767356, 0.030927400,
0.052247357, -0.042954937, 0.031842104, 0.094130522, -0.024828465,
0.011320453, -0.016195062, 0.015631245, -0.050335598, -0.031658335]
a,b,c,d = map(array,[a,b,c,d])
self.assertEqual(map(len,[a,b,c,d]), [50, 50, 60, 30])
#allowed error. This big, because results from R
#are rounded at 4 decimals
error = 1e-4
self.assertFloatEqual(f_two_sample(a,a), (49, 49, 1, 1), eps=error)
self.assertFloatEqual(f_two_sample(a,b), (49, 49, 0.8575, 0.5925),
eps=error)
self.assertFloatEqual(f_two_sample(b,a), (49, 49, 1.1662, 0.5925),
eps=error)
self.assertFloatEqual(f_two_sample(a,b, tails='low'),
(49, 49, 0.8575, 0.2963), eps=error)
self.assertFloatEqual(f_two_sample(a,b, tails='high'),
(49, 49, 0.8575, 0.7037), eps=error)
self.assertFloatEqual(f_two_sample(a,c),
(49, 59, 0.6587, 0.1345), eps=error)
#p value very small, so first check df's and F value
self.assertFloatEqualAbs(f_two_sample(d,a, tails='low')[0:3],
(29, 49, 0.0028), eps=error)
assert f_two_sample(d,a, tails='low')[3] < 2.2e-16 #p value
def test_MonteCarloP(self):
"""MonteCarloP calcs a p-value from a val and list of random vals"""
val = 3.0
random_vals = [0.0,1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0]
#test for "high" tail (larger values than expected by chance)
p_val = MonteCarloP(val, random_vals, 'high')
self.assertEqual(p_val, 0.7)
#test for "low" tail (smaller values than expected by chance)
p_val = MonteCarloP(val, random_vals, 'low')
self.assertEqual(p_val, 0.4)
def test_permute_2d(self):
"""permute_2d permutes rows and cols of a matrix."""
a = reshape(arange(9), (3,3))
self.assertEqual(permute_2d(a, [0,1,2]), a)
self.assertEqual(permute_2d(a, [2,1,0]), \
array([[8,7,6],[5,4,3],[2,1,0]]))
self.assertEqual(permute_2d(a, [1,2,0]), \
array([[4,5,3],[7,8,6],[1,2,0]]))
def test_mantel(self):
"""mantel should be significant for same matrix, not for random"""
a = reshape(arange(25), (5,5))
b = a.copy()
b[-1,-1] = 26 #slight change
m = mantel(a, b, 1000)
#closely related -- should be significant
assert m < 0.05
c = reshape(ones(25), (5,5))
c[-1,-1] = 3
#not related -- should not be significant
m = mantel(a,c,1000)
assert m > 0.3, m
class KendallTests(TestCase):
"""check accuracy of Kendall tests against values from R"""
def do_test(self, x, y, alt_expecteds):
"""conducts the tests for each alternate hypothesis against expecteds"""
for alt, exp_p, exp_tau in alt_expecteds:
tau, p_val = kendall_correlation(x, y, alt=alt, warn=False)
self.assertFloatEqual(tau, exp_tau, eps=1e-3)
self.assertFloatEqual(p_val, exp_p, eps=1e-3)
def test_exact_calcs(self):
"""calculations of exact probabilities should match R"""
x = (44.4, 45.9, 41.9, 53.3, 44.7, 44.1, 50.7, 45.2, 60.1)
y = ( 2.6, 3.1, 2.5, 5.0, 3.6, 4.0, 5.2, 2.8, 3.8)
expecteds = [["gt", 0.05972, 0.4444444],
["lt", 0.9624, 0.4444444],
["ts", 0.1194, 0.4444444]]
self.do_test(x,y,expecteds)
def test_with_ties(self):
"""tied values calculated from normal approx"""
# R example with ties in x
x = (44.4, 45.9, 41.9, 53.3, 44.4, 44.1, 50.7, 45.2, 60.1)
y = ( 2.6, 3.1, 2.5, 5.0, 3.6, 4.0, 5.2, 2.8, 3.8)
expecteds = [#["gt", 0.05793, 0.4225771],
["lt", 0.942, 0.4225771],
["ts", 0.1159, 0.4225771]]
self.do_test(x,y,expecteds)
# R example with ties in y
x = (44.4, 45.9, 41.9, 53.3, 44.7, 44.1, 50.7, 45.2, 60.1)
y = ( 2.6, 3.1, 2.5, 5.0, 3.1, 4.0, 5.2, 2.8, 3.8)
expecteds = [["gt", 0.03737, 0.4789207],
["lt", 0.9626, 0.4789207],
["ts", 0.07474, 0.4789207]]
self.do_test(x,y,expecteds)
# R example with ties in x and y
x = (44.4, 45.9, 41.9, 53.3, 44.7, 44.1, 50.7, 44.4, 60.1)
y = ( 2.6, 3.6, 2.5, 5.0, 3.6, 4.0, 5.2, 2.8, 3.8)
expecteds=[["gt", 0.02891, 0.5142857],
["lt", 0.971, 0.5142857],
["ts", 0.05782, 0.5142857]]
self.do_test(x,y,expecteds)
def test_bigger_vectors(self):
"""docstring for test_bigger_vectors"""
# q < expansion
x= (0.118583104633, 0.227860069338, 0.143856130991, 0.935362617582,
0.0471303856799, 0.659819202174, 0.739247965907, 0.268929000278,
0.848250568194, 0.307764819102, 0.733949480141, 0.271662210481,
0.155903098872)
y= (0.749762144455, 0.407571703468, 0.934176427266, 0.188638794706,
0.184844781493, 0.391485553856, 0.735504815302, 0.363655952442,
0.18489971978, 0.851075466765, 0.139932273818, 0.333675110224,
0.570250937033)
expecteds = [["gt", 0.9183, -0.2820513],
["lt", 0.1022, -0.2820513],
["ts", 0.2044, -0.2820513]]
self.do_test(x,y,expecteds)
# q > expansion
x= (0.2602556958, 0.441506392849, 0.930624643531, 0.728461775775,
0.234341774892, 0.725677256368, 0.354788882728, 0.475882541956,
0.347533553428, 0.608578046857, 0.144697962102, 0.784502692164,
0.872607603407)
y= (0.753056395718, 0.454332072011, 0.791882395707, 0.622853579015,
0.127030232518, 0.232086215578, 0.586604349918, 0.0139051260749,
0.579079370051, 0.0550643809812, 0.94798878249, 0.318410679439,
0.86725134615)
expecteds = [["gt", 0.4762, 0.02564103],
["lt", 0.5711, 0.02564103],
["ts", 0.9524, 0.02564103]]
self.do_test(x,y,expecteds)
class TestDistMatrixPermutationTest(TestCase):
"""Tests of distance_matrix_permutation_test"""
def setUp(self):
"""sets up variables for testing"""
self.matrix = array([[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16]])
self.cells = [(0,1), (1,3)]
self.cells2 = [(0,2), (2,3)]
def test_get_ltm_cells(self):
"get_ltm_cells converts indices to be below the diagonal"
cells = [(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2)]
result = get_ltm_cells(cells)
self.assertEqual(result, [(2, 0), (1, 0), (2, 1)])
cells = [(0,1),(0,2)]
result = get_ltm_cells(cells)
self.assertEqual(result, [(2, 0), (1, 0)])
def test_get_values_from_matrix(self):
"""get_values_from_matrix returns the special and other values from matrix"""
matrix = self.matrix
cells = [(1,0),(0,1),(2,0),(2,1)]
#test that works for a symmetric matrix
cells_sym = get_ltm_cells(cells)
special_vals, other_vals = get_values_from_matrix(matrix, cells_sym,\
cells2=None, is_symmetric=True)
special_vals.sort()
other_vals.sort()
self.assertEqual(special_vals, [5,9,10])
self.assertEqual(other_vals, [13,14,15])
#test that work for a non symmetric matrix
special_vals, other_vals = get_values_from_matrix(matrix, cells,\
cells2=None, is_symmetric=False)
special_vals.sort()
other_vals.sort()
self.assertEqual(special_vals, [2,5,9,10])
self.assertEqual(other_vals, [1,3,4,6,7,8,11,12,13,14,15,16])
#test that works on a symmetric matrix when cells2 is defined
cells2 = [(3,0),(3,2),(0,3)]
cells2_sym = get_ltm_cells(cells2)
special_vals, other_vals = get_values_from_matrix(matrix, cells_sym,\
cells2=cells2_sym, is_symmetric=True)
special_vals.sort()
other_vals.sort()
self.assertEqual(special_vals, [5,9,10])
self.assertEqual(other_vals, [13,15])
#test that works when cells2 is defined and not symmetric
special_vals, other_vals = get_values_from_matrix(matrix, cells, cells2=cells2,\
is_symmetric=False)
special_vals.sort()
other_vals.sort()
self.assertEqual(special_vals, [2,5,9,10])
self.assertEqual(other_vals, [4,13,15])
def test_distance_matrix_permutation_test_non_symmetric(self):
""" evaluate empirical p-values for a non symmetric matrix
To test the empirical p-values, we look at a simple 3x3 matrix
b/c it is easy to see what t score every permutation will
generate -- there's only 6 permutations.
Running dist_matrix_test with n=1000, we expect that each
permutation will show up 160 times, so we know how many
times to expect to see more extreme t scores. We therefore
know what the empirical p-values will be. (n=1000 was chosen
empirically -- smaller values seem to lead to much more frequent
random failures.)
"""
def make_result_list(*args, **kwargs):
return [distance_matrix_permutation_test(*args,**kwargs)[2] \
for i in range(10)]
m = arange(9).reshape((3,3))
n = 100
# looks at each possible permutation n times --
# compare first row to rest
r = make_result_list(m, [(0,0),(0,1),(0,2)],n=n,is_symmetric=False)
self.assertSimilarMeans(r, 0./6.)
r = make_result_list(m, [(0,0),(0,1),(0,2)],n=n,is_symmetric=False,\
tails='high')
self.assertSimilarMeans(r, 4./6.)
r = make_result_list(m, [(0,0),(0,1),(0,2)],n=n,is_symmetric=False,\
tails='low')
self.assertSimilarMeans(r, 0./6.)
# looks at each possible permutation n times --
# compare last row to rest
r = make_result_list(m, [(2,0),(2,1),(2,2)],n=n,is_symmetric=False)
self.assertSimilarMeans(r, 0./6.)
r = make_result_list(m, [(2,0),(2,1),(2,2)],n=n,is_symmetric=False,\
tails='high')
self.assertSimilarMeans(r, 0./6.)
r = make_result_list(m, [(2,0),(2,1),(2,2)],n=n,is_symmetric=False,\
tails='low')
self.assertSimilarMeans(r, 4./6.)
def test_distance_matrix_permutation_test_symmetric(self):
""" evaluate empirical p-values for symmetric matrix
See test_distance_matrix_permutation_test_non_symmetric
doc string for a description of how this test works.
"""
def make_result_list(*args, **kwargs):
return [distance_matrix_permutation_test(*args)[2] for i in range(10)]
m = array([[0,1,3],[1,2,4],[3,4,5]])
# looks at each possible permutation n times --
# compare first row to rest
n = 100
# looks at each possible permutation n times --
# compare first row to rest
r = make_result_list(m, [(0,0),(0,1),(0,2)],n=n)
self.assertSimilarMeans(r, 0./6.)
r = make_result_list(m, [(0,0),(0,1),(0,2)],n=n,tails='high')
self.assertSimilarMeans(r, 0.77281447417149496,0)
r = make_result_list(m, [(0,0),(0,1),(0,2)],n=n,tails='low')
self.assertSimilarMeans(r, 4./6.)
## The following lines are not part of the test code, but are useful in
## figuring out what t-scores all of the permutations will yield.
#permutes = [[0, 1, 2], [0, 2, 1], [1, 0, 2],\
# [1, 2, 0], [2, 0, 1], [2, 1, 0]]
#results = []
#for p in permutes:
# p_m = permute_2d(m,p)
# results.append(t_two_sample(\
# [p_m[0,1],p_m[0,2]],[p_m[2,1]],tails='high'))
#print results
def test_distance_matrix_permutation_test_alt_stat(self):
def fake_stat_test(a,b,tails=None):
return 42.,42.
m = array([[0,1,3],[1,2,4],[3,4,5]])
self.assertEqual(distance_matrix_permutation_test(m,\
[(0,0),(0,1),(0,2)],n=5,f=fake_stat_test),(42.,42.,0.))
def test_distance_matrix_permutation_test_return_scores(self):
""" return_scores=True functions as expected """
# use alt statistical test to make results simple
def fake_stat_test(a,b,tails=None):
return 42.,42.
m = array([[0,1,3],[1,2,4],[3,4,5]])
self.assertEqual(distance_matrix_permutation_test(\
m,[(0,0),(0,1),(0,2)],\
n=5,f=fake_stat_test,return_scores=True),(42.,42.,0.,[42.]*5))
def test_ANOVA_one_way(self):
"""ANOVA one way returns same values as ANOVA on a stats package
"""
g1 = Numbers([10.0, 11.0, 10.0, 5.0, 6.0])
g2 = Numbers([1.0, 2.0, 3.0, 4.0, 1.0, 2.0])
g3 = Numbers([6.0, 7.0, 5.0, 6.0, 7.0])
i = [g1, g2, g3]
dfn, dfd, F, between_MS, within_MS, group_means, prob = ANOVA_one_way(i)
self.assertEqual(dfn, 2)
self.assertEqual(dfd, 13)
self.assertFloatEqual(F, 18.565450643776831)
self.assertFloatEqual(between_MS, 55.458333333333343)
self.assertFloatEqual(within_MS, 2.9871794871794868)
self.assertFloatEqual(group_means, [8.4000000000000004, 2.1666666666666665, 6.2000000000000002])
self.assertFloatEqual(prob, 0.00015486238993089464)
#execute tests if called from command line
if __name__ == '__main__':
main()
|