File: test_test.py

package info (click to toggle)
python-cogent 1.4.1-1.2
  • links: PTS, VCS
  • area: non-free
  • in suites: squeeze
  • size: 13,260 kB
  • ctags: 20,087
  • sloc: python: 116,163; ansic: 732; makefile: 74; sh: 9
file content (986 lines) | stat: -rw-r--r-- 45,594 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
#!/usr/bin/env python
"""Unit tests for statistical tests and utility functions.
"""
from cogent.util.unit_test import TestCase, main
from cogent.maths.stats.test import tail, G_2_by_2,G_fit, likelihoods,\
    posteriors, bayes_updates, t_paired, t_one_sample, t_two_sample, \
    t_one_observation,correlation, correlation_matrix, z_test, z_tailed_prob, \
    t_tailed_prob, sign_test,\
    reverse_tails, ZeroExpectedError, combinations, multiple_comparisons, \
    multiple_inverse, multiple_n, fisher, regress, regress_major,\
    f_value, f_two_sample, calc_contingency_expected, G_fit_from_Dict2D, \
    chi_square_from_Dict2D, MonteCarloP, \
    regress_residuals, safe_sum_p_log_p, G_ind, regress_origin, stdev_from_mean, \
    regress_R2, permute_2d, mantel, kendall_correlation, std, median,\
    get_values_from_matrix, get_ltm_cells, distance_matrix_permutation_test,\
    ANOVA_one_way

from numpy import array, reshape, arange, ones, testing, cov, sqrt
from cogent.util.dict2d import Dict2D
import math
from cogent.maths.stats.util import Numbers

__author__ = "Rob Knight"
__copyright__ = "Copyright 2007-2009, The Cogent Project"
__credits__ = ["Rob Knight", "Catherine Lozupone", "Gavin Huttley",
                    "Sandra Smit", "Daniel McDonald"]
__license__ = "GPL"
__version__ = "1.4.1"
__maintainer__ = "Rob Knight"
__email__ = "rob@spot.colorado.edu"
__status__ = "Production"

class TestsTests(TestCase):
    """Tests miscellaneous functions."""
    def test_std(self):
        """Should produce a standard deviation of 1.0 for a std normal dist"""
        expected = 1.58113883008
        self.assertFloatEqual(std(array([1,2,3,4,5])), expected)

        expected_a = array([expected, expected, expected, expected, expected])
        a = array([[1,2,3,4,5],[5,1,2,3,4],[4,5,1,2,3],[3,4,5,1,2],[2,3,4,5,1]])
        self.assertFloatEqual(std(a,axis=0), expected_a)
        self.assertFloatEqual(std(a,axis=1), expected_a)
        self.assertRaises(ValueError, std, a, 5)

    def test_std_2d(self):
        """Should produce from 2darray the same stdevs as scipy.stats.std"""
        inp = array([[1,2,3],[4,5,6]])
        exps = ( #tuple(scipy_std(inp, ax) for ax in [None, 0, 1])
            1.8708286933869707,
            array([ 2.12132034,  2.12132034,  2.12132034]),
            array([ 1.,  1.]))
        results = tuple(std(inp, ax) for ax in [None, 0, 1])
        for obs, exp in zip(results, exps):
            testing.assert_almost_equal(obs, exp)
            
    def test_std_3d(self):
        """Should produce from 3darray the same std devs as scipy.stats.std"""
        inp3d = array(#2,2,3
                   [[[ 0,  2,  2],
                     [ 3,  4,  5]],

                    [[ 1,  9,  0],
                     [ 9, 10, 1]]])
        exp3d = (#for axis None, 0, 1, 2: calc from scipy.stats.std
            3.63901418552,
            array([[ 0.70710678,  4.94974747,  1.41421356],
                [ 4.24264069,  4.24264069,  2.82842712]]),
            array([[ 2.12132034,  1.41421356,  2.12132034],
                [ 5.65685425,  0.70710678,  0.70710678]]),
            array([[ 1.15470054,  1.        ],
                [ 4.93288286,  4.93288286]]))
        res = tuple(std(inp3d, ax) for ax in [None, 0, 1, 2])
        for obs, exp in zip(res, exp3d):
            testing.assert_almost_equal(obs, exp)
            
    def test_median(self):
        """_median should work similarly to numpy.mean (in terms of axis)"""
        m = array([[1,2,3],[4,5,6],[7,8,9],[10,11,12]])
        expected = 6.5
        observed = median(m, axis=None)
        self.assertEqual(observed, expected)

        expected = array([5.5, 6.5, 7.5])
        observed = median(m, axis=0)
        self.assertEqual(observed, expected)

        expected = array([2.0, 5.0, 8.0, 11.0])
        observed = median(m, axis=1)
        self.assertEqual(observed, expected)

        self.assertRaises(ValueError, median, m, 10)

    def test_tail(self):
        """tail should return x/2 if test is true; 1-(x/2) otherwise"""
        self.assertFloatEqual(tail(0.25, 'a'=='a'), 0.25/2)
        self.assertFloatEqual(tail(0.25, 'a'!='a'), 1-(0.25/2))

    def test_combinations(self):
        """combinations should return correct binomial coefficient"""
        self.assertFloatEqual(combinations(5,3), 10)
        self.assertFloatEqual(combinations(5,2), 10)
        #only one way to pick no items or the same number of items
        self.assertFloatEqual(combinations(123456789, 0), 1)
        self.assertFloatEqual(combinations(123456789, 123456789), 1)
        #n ways to pick one item
        self.assertFloatEqual(combinations(123456789, 1), 123456789)
        #n(n-1)/2 ways to pick 2 items
        self.assertFloatEqual(combinations(123456789, 2), 123456789*123456788/2)
        #check an arbitrary value in R
        self.assertFloatEqual(combinations(1234567, 12), 2.617073e64)
    
    def test_multiple_comparisons(self):
        """multiple_comparisons should match values from R"""
        self.assertFloatEqual(multiple_comparisons(1e-7, 10000), 1-0.9990005)
        self.assertFloatEqual(multiple_comparisons(0.05, 10), 0.4012631)
        self.assertFloatEqual(multiple_comparisons(1e-20, 1), 1e-20)
        self.assertFloatEqual(multiple_comparisons(1e-300, 1), 1e-300)
        self.assertFloatEqual(multiple_comparisons(0.95, 3),0.99987499999999996)
        self.assertFloatEqual(multiple_comparisons(0.75, 100),0.999999999999679)
        self.assertFloatEqual(multiple_comparisons(0.5, 1000),1)
        self.assertFloatEqual(multiple_comparisons(0.01, 1000),0.99995682875259)
        self.assertFloatEqual(multiple_comparisons(0.5, 5), 0.96875)
        self.assertFloatEqual(multiple_comparisons(1e-20, 10), 1e-19)

    def test_multiple_inverse(self):
        """multiple_inverse should invert multiple_comparisons results"""
        #NOTE: multiple_inverse not very accurate close to 1
        self.assertFloatEqual(multiple_inverse(1-0.9990005, 10000), 1e-7)
        self.assertFloatEqual(multiple_inverse(0.4012631 , 10), 0.05)
        self.assertFloatEqual(multiple_inverse(1e-20, 1), 1e-20)
        self.assertFloatEqual(multiple_inverse(1e-300, 1), 1e-300)
        self.assertFloatEqual(multiple_inverse(0.96875, 5), 0.5)
        self.assertFloatEqual(multiple_inverse(1e-19, 10), 1e-20)

    def test_multiple_n(self):
        """multiple_n should swap parameters in multiple_comparisons"""
        self.assertFloatEqual(multiple_n(1e-7, 1-0.9990005), 10000)
        self.assertFloatEqual(multiple_n(0.05, 0.4012631), 10)
        self.assertFloatEqual(multiple_n(1e-20, 1e-20), 1)
        self.assertFloatEqual(multiple_n(1e-300, 1e-300), 1)
        self.assertFloatEqual(multiple_n(0.95,0.99987499999999996),3)
        self.assertFloatEqual(multiple_n(0.5,0.96875),5)
        self.assertFloatEqual(multiple_n(1e-20, 1e-19), 10)

    def test_fisher(self):
        """fisher results should match p 795 Sokal and Rohlf"""
        self.assertFloatEqual(fisher([0.073,0.086,0.10,0.080,0.060]), 
            0.0045957946540917905)

    def test_regress(self):
        """regression slope, intercept should match p 459 Sokal and Rohlf"""
        x = [0, 12, 29.5,43,53,62.5,75.5,85,93]
        y = [8.98, 8.14, 6.67, 6.08, 5.90, 5.83, 4.68, 4.20, 3.72]
        self.assertFloatEqual(regress(x, y), (-0.05322, 8.7038), 0.001)
        #higher precision from OpenOffice
        self.assertFloatEqual(regress(x, y), (-0.05322215,8.70402730))

    def test_regress_origin(self):
        """regression slope constrained through origin should match Excel"""
        x = array([1,2,3,4])
        y = array([4,2,6,8])
        self.assertFloatEqual(regress_origin(x, y), (1.9333333,0))

    def test_regress_R2(self):
        """regress_R2 returns the R^2 value of a regression"""
        x = [1.0,2.0,3.0,4.0,5.0]
        y = [2.1,4.2,5.9,8.4,9.6]
        result = regress_R2(x, y)
        self.assertFloatEqual(result, 0.99171419347896)

    def test_regress_residuals(self):
        """regress_residuals reprts error for points in linear regression"""
        x = [1.0,2.0,3.0,4.0,5.0]
        y = [2.1,4.2,5.9,8.4,9.6]
        result = regress_residuals(x, y)
        self.assertFloatEqual(result, [-0.1, 0.08, -0.14, 0.44, -0.28])

    def test_stdev_from_mean(self):
        """stdev_from_mean returns num std devs from mean for each val in x"""
        x = [2.1, 4.2, 5.9, 8.4, 9.6]
        result = stdev_from_mean(x)
        self.assertFloatEqual(result, [-1.292463399014413, -0.60358696806764478, -0.045925095396451399, 0.77416589382589174, 1.1678095686526162])

    def test_regress_major(self):
        """major axis regression should match p 589 Sokal and Rohlf"""
        #Note that the Sokal and Rohlf example flips the axes, such that the
        #equation is for explaining x in terms of y, not y in terms of x.
        #Behavior here is the reverse, for easy comparison with regress.
        y = [159, 179, 100, 45, 384, 230, 100, 320, 80, 220, 320, 210]
        x = [14.40, 15.20, 11.30, 2.50, 22.70, 14.90, 1.41, 15.81, 4.19, 15.39,
             17.25, 9.52]
        self.assertFloatEqual(regress_major(x, y), (18.93633,-32.55208))
    
    def test_sign_test(self):
        """sign_test, should match values from R"""
        v = [("two sided", 26, 50, 0.88772482734078251),
             ("less", 26, 50, 0.6641),
             ("l", 10, 50, 1.193066583837777e-05),
             ("hi", 30, 50, 0.1013193755322703),
             ("h", 0, 50, 1.0),
             ("2", 30, 50, 0.20263875106454063),
             ("h", 49, 50, 4.5297099404706387e-14),
             ("h", 50, 50, 8.8817841970012543e-16)
             ]
        for alt, success, trials, p in v:
            result = sign_test(success, trials, alt=alt)
            self.assertFloatEqual(result, p, eps=1e-5)


class GTests(TestCase):
    """Tests implementation of the G tests for fit and independence."""
    def test_G_2_by_2_2tailed_equal(self):
        """G_2_by_2 should return 0 if all cell counts are equal"""
        self.assertFloatEqual(0, G_2_by_2(1, 1, 1, 1, False, False)[0])
        self.assertFloatEqual(0, G_2_by_2(100, 100, 100, 100, False, False)[0])
        self.assertFloatEqual(0, G_2_by_2(100, 100, 100, 100, True, False)[0])
   
    def test_G_2_by_2_bad_data(self):
        """G_2_by_2 should raise ValueError if any counts are negative"""
        self.assertRaises(ValueError, G_2_by_2, 1, -1, 1, 1)
   
    def test_G_2_by_2_2tailed_examples(self):
        """G_2_by_2 values should match examples in Sokal & Rohlf"""
        #example from p 731, Sokal and Rohlf (1995)
        #without correction
        self.assertFloatEqual(G_2_by_2(12, 22, 16, 50, False, False)[0],
            1.33249, 0.0001)
        self.assertFloatEqual(G_2_by_2(12, 22, 16, 50, False, False)[1],
            0.24836, 0.0001)
        #with correction
        self.assertFloatEqual(G_2_by_2(12, 22, 16, 50, True, False)[0],
            1.30277, 0.0001)
        self.assertFloatEqual(G_2_by_2(12, 22, 16, 50, True, False)[1],
            0.25371, 0.0001)

    def test_G_2_by_2_1tailed_examples(self):
        """G_2_by_2 values should match values from codon_binding program"""
        #first up...the famous arginine case
        self.assertFloatEqualAbs(G_2_by_2(36, 16, 38, 106), (29.111609, 0),
            0.00001)
        #then some other miscellaneous positive and negative values
        self.assertFloatEqualAbs(G_2_by_2(0,52,12,132), (-7.259930, 0.996474),
            0.00001)
        self.assertFloatEqualAbs(G_2_by_2(5,47,14,130), (-0.000481, 0.508751),
            0.00001)
        self.assertFloatEqualAbs(G_2_by_2(5,47,36,108), (-6.065167, 0.993106),
            0.00001)

    def test_calc_contingency_expected(self):
        """calcContingencyExpected returns new matrix with expected freqs"""
        matrix = Dict2D({'rest_of_tree': {'env1': 2, 'env3': 1, 'env2': 0},
                  'b': {'env1': 1, 'env3': 1, 'env2': 3}})
        result = calc_contingency_expected(matrix)
        self.assertFloatEqual(result['rest_of_tree']['env1'], [2, 1.125])
        self.assertFloatEqual(result['rest_of_tree']['env3'], [1, 0.75])
        self.assertFloatEqual(result['rest_of_tree']['env2'], [0, 1.125])
        self.assertFloatEqual(result['b']['env1'], [1, 1.875])
        self.assertFloatEqual(result['b']['env3'], [1, 1.25])
        self.assertFloatEqual(result['b']['env2'], [3, 1.875])
        
    def test_Gfit_unequal_lists(self):
        """Gfit should raise errors if lists unequal"""
        #lists must be equal
        self.assertRaises(ValueError, G_fit, [1, 2, 3], [1, 2])

    def test_Gfit_negative_observeds(self):
        """Gfit should raise ValueError if any observeds are negative."""
        self.assertRaises(ValueError, G_fit, [-1, 2, 3], [1, 2, 3])
    
    def test_Gfit_nonpositive_expecteds(self):
        """Gfit should raise ZeroExpectedError if expecteds are zero/negative"""
        self.assertRaises(ZeroExpectedError, G_fit, [1, 2, 3], [0, 1, 2])
        self.assertRaises(ZeroExpectedError, G_fit, [1, 2, 3], [-1, 1, 2])
    
    def test_Gfit_good_data(self):
        """Gfit tests for fit should match examples in Sokal and Rohlf"""
        #example from p. 699, Sokal and Rohlf (1995)
        obs = [63, 31, 28, 12, 39, 16, 40, 12]
        exp = [ 67.78125, 22.59375, 22.59375, 7.53125, 45.18750,
                15.06250, 45.18750, 15.06250]
        #without correction
        self.assertFloatEqualAbs(G_fit(obs, exp, False)[0], 8.82397, 0.00002)
        self.assertFloatEqualAbs(G_fit(obs, exp, False)[1], 0.26554, 0.00002)
        #with correction
        self.assertFloatEqualAbs(G_fit(obs, exp)[0], 8.76938, 0.00002)
        self.assertFloatEqualAbs(G_fit(obs, exp)[1], 0.26964, 0.00002)
        
        #example from p. 700, Sokal and Rohlf (1995)
        obs = [130, 46]
        exp = [132, 44]
        #without correction
        self.assertFloatEqualAbs(G_fit(obs, exp, False)[0], 0.12002, 0.00002)
        self.assertFloatEqualAbs(G_fit(obs, exp, False)[1], 0.72901, 0.00002)
        #with correction
        self.assertFloatEqualAbs(G_fit(obs, exp)[0], 0.11968, 0.00002)
        self.assertFloatEqualAbs(G_fit(obs, exp)[1], 0.72938, 0.00002)

    def test_safe_sum_p_log_p(self):
        """safe_sum_p_log_p should ignore zero elements, not raise error"""
        m = array([2,4,0,8])
        self.assertEqual(safe_sum_p_log_p(m,2), 2*1+4*2+8*3)

    def test_G_ind(self):
        """G test for independence should match Sokal and Rohlf p 738 values"""
        a = array([[29,11],[273,191],[8,31],[64,64]])
        self.assertFloatEqual(G_ind(a)[0], 28.59642)
        self.assertFloatEqual(G_ind(a, True)[0], 28.31244)

    def test_G_fit_from_Dict2D(self):
        """G_fit_from_Dict2D runs G-fit on data in a Dict2D
        """
        matrix = Dict2D({'Marl': {'val':[2, 5.2]},
                        'Chalk': {'val':[10, 5.2]},
                        'Sandstone':{'val':[8, 5.2]},
                        'Clay':{'val':[2, 5.2]},
                        'Limestone':{'val':[4, 5.2]}
                        })
        g_val, prob = G_fit_from_Dict2D(matrix)
        self.assertFloatEqual(g_val, 9.84923)
        self.assertFloatEqual(prob, 0.04304536)

    def test_chi_square_from_Dict2D(self):
        """chi_square_from_Dict2D calcs a Chi-Square and p value from Dict2D"""
        #test1
        obs_matrix = Dict2D({'rest_of_tree': {'env1': 2, 'env3': 1, 'env2': 0},
                  'b': {'env1': 1, 'env3': 1, 'env2': 3}})
        input_matrix = calc_contingency_expected(obs_matrix)
        test, csp = chi_square_from_Dict2D(input_matrix)
        self.assertFloatEqual(test, 3.0222222222222221)
        #test2
        test_matrix_2 = Dict2D({'Marl': {'val':[2, 5.2]},
                                'Chalk': {'val':[10, 5.2]},
                                'Sandstone':{'val':[8, 5.2]},
                                'Clay':{'val':[2, 5.2]},
                                'Limestone':{'val':[4, 5.2]}
                                })
        test2, csp2 = chi_square_from_Dict2D(test_matrix_2)
        self.assertFloatEqual(test2, 10.1538461538)
        self.assertFloatEqual(csp2, 0.0379143890013)
        #test3
        matrix3_obs = Dict2D({'AIDS':{'Males':4, 'Females':2, 'Both':3},
                        'No_AIDS':{'Males':3, 'Females':16, 'Both':2}
                       })
        matrix3 = calc_contingency_expected(matrix3_obs)
        test3, csp3 = chi_square_from_Dict2D(matrix3)
        self.assertFloatEqual(test3, 7.6568405139833722)
        self.assertFloatEqual(csp3, 0.0217439383468)
    

class LikelihoodTests(TestCase):
    """Tests implementations of likelihood calculations."""

    def test_likelihoods_unequal_list_lengths(self):
        """likelihoods should raise ValueError if input lists unequal length"""
        self.assertRaises(ValueError, likelihoods, [1, 2], [1])

    def test_likelihoods_equal_priors(self):
        """likelihoods should equal Pr(D|H) if priors the same"""
        equal = [0.25, 0.25, 0.25,0.25]
        unequal = [0.5, 0.25, 0.125, 0.125]
        equal_answer = [1, 1, 1, 1]
        unequal_answer = [2, 1, 0.5, 0.5]
        for obs, exp in zip(likelihoods(equal, equal), equal_answer):
            self.assertFloatEqual(obs, exp)

        for obs, exp in zip(likelihoods(unequal, equal), unequal_answer):
            self.assertFloatEqual(obs, exp)

    def test_likelihoods_equal_evidence(self):
        """likelihoods should return vector of 1's if evidence equal for all"""
        equal = [0.25, 0.25, 0.25,0.25]
        unequal = [0.5, 0.25, 0.125, 0.125]
        equal_answer = [1, 1, 1, 1]
        unequal_answer = [2, 1, 0.5, 0.5]
        not_unity = [0.7, 0.7, 0.7, 0.7]
        
        for obs, exp in zip(likelihoods(equal, unequal), equal_answer):
            self.assertFloatEqual(obs, exp)

        #should be the same if evidences don't sum to 1
        for obs, exp in zip(likelihoods(not_unity, unequal), equal_answer):
            self.assertFloatEqual(obs, exp)

    def test_likelihoods_unequal_evidence(self):
        """likelihoods should update based on weighted sum if evidence unequal"""
        not_unity = [1, 0.5, 0.25, 0.25]
        unequal = [0.5, 0.25, 0.125, 0.125]
        products = [1.4545455, 0.7272727, 0.3636364, 0.3636364]

        #if priors and evidence both unequal, likelihoods should change
        #(calculated using StarCalc)
        for obs, exp in zip(likelihoods(not_unity, unequal), products):
            self.assertFloatEqual(obs, exp)
        
    def test_posteriors_unequal_lists(self):
        """posteriors should raise ValueError if input lists unequal lengths"""
        self.assertRaises(ValueError, posteriors, [1, 2, 3], [1])

    def test_posteriors_good_data(self):
        """posteriors should return products of paired list elements"""
        first = [0, 0.25, 0.5, 1, 0.25]
        second = [0.25, 0.5, 0, 0.1, 1]
        product = [0, 0.125, 0, 0.1, 0.25]
        for obs, exp in zip(posteriors(first, second), product):
            self.assertFloatEqual(obs, exp)

class BayesUpdateTests(TestCase):
    """Tests implementation of Bayes calculations"""

    def setUp(self):
        first = [0.25, 0.25, 0.25]
        second = [0.1, 0.75, 0.3]
        third = [0.95, 1e-10, 0.2]
        fourth = [0.01, 0.9, 0.1]
        bad = [1, 2, 1, 1, 1]
        self.bad = [first, bad, second, third]
        self.test = [first, second, third, fourth]
        self.permuted = [fourth, first, third, second]
        self.deleted = [second, fourth, third]
        self.extra = [first, second, first, third, first, fourth, first]

        #BEWARE: low precision in second item, so need to adjust threshold
        #for assertFloatEqual accordingly (and use assertFloatEqualAbs).
        self.result = [0.136690646154, 0.000000009712, 0.863309344133]
       
    def test_bayes_updates_bad_data(self):
        """bayes_updates should raise ValueError on unequal-length lists"""
        self.assertRaises(ValueError, bayes_updates, self.bad)

    def test_bayes_updates_good_data(self):
        """bayes_updates should match hand calculations of probability updates"""
        #result for first -> fourth calculated by hand
        for obs, exp in zip(bayes_updates(self.test), self.result):
            self.assertFloatEqualAbs(obs, exp, 1e-11)

    def test_bayes_updates_permuted(self):
        """bayes_updates should not be affected by order of inputs"""
        for obs, exp in zip(bayes_updates(self.permuted), self.result):
            self.assertFloatEqualAbs(obs, exp, 1e-11)

    def test_bayes_update_nondiscriminating(self):
        """bayes_updates should be unaffected by extra nondiscriminating data"""
        #deletion of non-discriminating evidence should not affect result
        for obs, exp in zip(bayes_updates(self.deleted), self.result):
            self.assertFloatEqualAbs(obs, exp, 1e-11)
        #additional non-discriminating evidence should not affect result
        for obs, exp in zip(bayes_updates(self.extra), self.result):
            self.assertFloatEqualAbs(obs, exp, 1e-11)
        

class StatTests(TestCase):
    """Tests that the t and z tests are implemented correctly"""

    def setUp(self):
        self.x = [   
                7.33, 7.49, 7.27, 7.93, 7.56,
                7.81, 7.46, 6.94, 7.49, 7.44,
                7.95, 7.47, 7.04, 7.10, 7.64,
            ]

        self.y = [   
                7.53, 7.70, 7.46, 8.21, 7.81,
                8.01, 7.72, 7.13, 7.68, 7.66,
                8.11, 7.66, 7.20, 7.25, 7.79,
            ]


    def test_t_paired_2tailed(self):
        """t_paired should match values from Sokal & Rohlf p 353"""
        x, y = self.x, self.y
        #check value of t and the probability for 2-tailed
        self.assertFloatEqual(t_paired(y, x)[0], 19.7203, 1e-4)
        self.assertFloatEqual(t_paired(y, x)[1], 1.301439e-11, 1e-4)

    def test_t_paired_no_variance(self):
        """t_paired should return None if lists are invariant"""
        x = [1, 1, 1]
        y = [0, 0, 0]
        self.assertEqual(t_paired(x,x), (None, None))
        self.assertEqual(t_paired(x,y), (None, None))
        
    def test_t_paired_1tailed(self):
        """t_paired should match pre-calculated 1-tailed values"""
        x, y = self.x, self.y
        #check probability for 1-tailed low and high
        self.assertFloatEqual(
            t_paired(y, x, "low")[1], 1-(1.301439e-11/2), 1e-4)
        self.assertFloatEqual(
            t_paired(x, y, "high")[1], 1-(1.301439e-11/2), 1e-4)
        self.assertFloatEqual(
            t_paired(y, x, "high")[1], 1.301439e-11/2, 1e-4)
        self.assertFloatEqual(
            t_paired(x, y, "low")[1], 1.301439e-11/2, 1e-4)

    def test_t_paired_specific_difference(self):
        """t_paired should allow a specific difference to be passed"""
        x, y = self.x, self.y
        #difference is 0.2, so test should be non-significant if 0.2 passed
        self.failIf(t_paired(y, x, exp_diff=0.2)[0] > 1e-10)
        #same, except that reversing list order reverses sign of difference
        self.failIf(t_paired(x, y, exp_diff=-0.2)[0] > 1e-10)
        #check that there's no significant difference from the true mean
        self.assertFloatEqual(
            t_paired(y, x,exp_diff=0.2)[1], 1, 1e-4)
            
    def test_t_paired_bad_data(self):
        """t_paired should raise ValueError on lists of different lengths"""
        self.assertRaises(ValueError, t_paired, self.y, [1, 2, 3])

    def test_t_two_sample(self):
        """t_two_sample should match example on p.225 of Sokal and Rohlf"""
        I =  array([7.2, 7.1, 9.1, 7.2, 7.3, 7.2, 7.5])
        II = array([8.8, 7.5, 7.7, 7.6, 7.4, 6.7, 7.2])
        self.assertFloatEqual(t_two_sample(I, II), (-0.1184, 0.45385 * 2),
            0.001)

    def test_t_two_sample_no_variance(self):
        """t_two_sample should return None if lists are invariant"""
        x = array([1, 1, 1])
        y = array([0, 0, 0])
        self.assertEqual(t_two_sample(x,x), (None, None))
        self.assertEqual(t_two_sample(x,y), (None, None))

    def test_t_one_sample(self):
        """t_one_sample results should match those from R"""
        x = array(range(-5,5))
        y = array(range(-1,10))
        self.assertFloatEqualAbs(t_one_sample(x), (-0.5222, 0.6141), 1e-4)
        self.assertFloatEqualAbs(t_one_sample(y), (4, 0.002518), 1e-4)
        #do some one-tailed tests as well
        self.assertFloatEqualAbs(t_one_sample(y, tails='low'),(4, 0.9987),1e-4)
        self.assertFloatEqualAbs(t_one_sample(y,tails='high'),(4,0.001259),1e-4)
   
    def test_t_two_sample_switch(self):
        """t_two_sample should call t_one_observation if 1 item in sample."""
        sample = array([4.02, 3.88, 3.34, 3.87, 3.18])
        x = array([3.02])
        self.assertFloatEqual(t_two_sample(x,sample),(-1.5637254,0.1929248))
        self.assertFloatEqual(t_two_sample(sample, x),(-1.5637254,0.1929248))
        #can't do the test if both samples have single item
        self.assertEqual(t_two_sample(x,x), (None, None))
   
    def test_t_one_observation(self):
        """t_one_observation should match p. 228 of Sokal and Rohlf"""
        sample = array([4.02, 3.88, 3.34, 3.87, 3.18])
        x = 3.02
        #note that this differs after the 3rd decimal place from what's in the
        #book, because Sokal and Rohlf round their intermediate steps...
        self.assertFloatEqual(t_one_observation(x,sample),\
            (-1.5637254,0.1929248))
    
    def test_reverse_tails(self):
        """reverse_tails should return 'high' if tails was 'low' or vice versa"""
        self.assertEqual(reverse_tails('high'), 'low')
        self.assertEqual(reverse_tails('low'), 'high')
        self.assertEqual(reverse_tails(None), None)
        self.assertEqual(reverse_tails(3), 3)

    def test_tail(self):
        """tail should return prob/2 if test is true, or 1-(prob/2) if false"""
        self.assertFloatEqual(tail(0.25, True), 0.125)
        self.assertFloatEqual(tail(0.25, False), 0.875)
        self.assertFloatEqual(tail(1, True), 0.5)
        self.assertFloatEqual(tail(1, False), 0.5)
        self.assertFloatEqual(tail(0, True), 0)
        self.assertFloatEqual(tail(0, False), 1)

    def test_z_test(self):
        """z_test should give correct values"""
        sample = array([1,2,3,4,5])
        self.assertFloatEqual(z_test(sample, 3, 1), (0,1))
        self.assertFloatEqual(z_test(sample, 3, 2, 'high'), (0,0.5))
        self.assertFloatEqual(z_test(sample, 3, 2, 'low'), (0,0.5))
        #check that population mean and variance, and tails, can be set OK.
        self.assertFloatEqual(z_test(sample, 0, 1), (6.7082039324993694, \
            1.9703444711798951e-11))
        self.assertFloatEqual(z_test(sample, 1, 10), (0.44721359549995793, \
            0.65472084601857694))
        self.assertFloatEqual(z_test(sample, 1, 10, 'high'), \
            (0.44721359549995793, 0.65472084601857694/2))
        self.assertFloatEqual(z_test(sample, 1, 10, 'low'), \
            (0.44721359549995793, 1-(0.65472084601857694/2)))
    
class CorrelationTests(TestCase):
    """Tests of correlation coefficients."""
    def test_correlation(self):
        """Correlations and significance should match R's cor.test()"""
        x = [1,2,3,5]
        y = [0,0,0,0]
        z = [1,1,1,1]
        a = [2,4,6,8]
        b = [1.5, 1.4, 1.2, 1.1]
        c = [15, 10, 5, 20]

        bad = [1,2,3]   #originally gave r = 1.0000000002
        
        self.assertFloatEqual(correlation(x,x), (1, 0))
        self.assertFloatEqual(correlation(x,y), (0,1))
        self.assertFloatEqual(correlation(y,z), (0,1))
        self.assertFloatEqualAbs(correlation(x,a), (0.9827076, 0.01729), 1e-5)
        self.assertFloatEqualAbs(correlation(x,b), (-0.9621405, 0.03786), 1e-5)
        self.assertFloatEqualAbs(correlation(x,c), (0.3779645, 0.622), 1e-3)
        self.assertEqual(correlation(bad,bad), (1, 0))

    def test_correlation_matrix(self):
        """Correlations in matrix should match values from R"""
        a = [2,4,6,8]
        b = [1.5, 1.4, 1.2, 1.1]
        c = [15, 10, 5, 20]
        m = correlation_matrix([a,b,c])
        self.assertFloatEqual(m[0,0], [1.0])
        self.assertFloatEqual([m[1,0], m[1,1]], [correlation(b,a)[0], 1.0])
        self.assertFloatEqual(m[2], [correlation(c,a)[0], correlation(c,b)[0], \
            1.0])


class Ftest(TestCase):
    """Tests for the F test"""

    def test_f_value(self):
        """f_value: should calculate the correct F value if possible"""
        a = array([1,3,5,7,9,8,6,4,2])
        b = array([5,4,6,3,7,6,4,5])
        self.assertEqual(f_value(a,b), (8,7,4.375))
        self.assertFloatEqual(f_value(b,a), (7,8,0.2285714))
        too_short = array([4])
        self.assertRaises(ValueError, f_value, too_short, b)
    
    def test_f_two_sample(self):
        """f_two_sample should match values from R""" 
        
        #The expected values in this test are obtained through R.
        #In R the F test is var.test(x,y) different alternative hypotheses
        #can be specified (two sided, less, or greater).
        #The vectors are random samples from a particular normal distribution
        #(mean and sd specified).
        
        #a: 50 elem, mean=0 sd=1
        a = [-0.70701689, -1.24788845, -1.65516470,  0.10443876, -0.48526915,
        -0.71820656, -1.02603596,  0.03975982, -2.23404324, -0.21509363,
        0.08438468, -0.01970062, -0.67907971, -0.89853667,  1.11137131,
        0.05960496, -1.51172084, -0.79733957, -1.60040659,  0.80530639,
        -0.81715836, -0.69233474,  0.95750665,  0.99576429, -1.61340216,
        -0.43572590, -1.50862327,  0.92847551, -0.68382338, -1.12523522,
        -0.09147488,  0.66756023, -0.87277588, -1.36539039, -0.11748707,
        -1.63632578, -0.31343078, -0.28176086,  0.33854483, -0.51785630,
        2.25360559, -0.80761191, 1.18983499,  0.57080342, -1.44601700,
        -0.53906955, -0.01975266, -1.37147915, -0.31537616,  0.26877544]

        #b: 50 elem, mean=0, sd=1.2
        b=[0.081418743,  0.276571612, -1.864316504,  0.675213612, -0.769202643,
         0.140372825, -1.426250184,  0.058617884, -0.819287409, -0.007701916,
        -0.782722020, -0.285891593,  0.661980419,  0.383225191,  0.622444946,
        -0.192446150,  0.297150571,  0.408896059, -0.167359383, -0.552381362,
         0.982168338,  1.439730446,  1.967616101, -0.579607307,  1.095590943,
         0.240591302, -1.566937143, -0.199091349, -1.232983905,  0.362378169,
         1.166061081, -0.604676222, -0.536560206, -0.303117595,  1.519222792,
        -0.319146503,  2.206220810, -0.566351124, -0.720397392, -0.452001377,
         0.250890097,  0.320685395, -1.014632725, -3.010346273, -1.703955054,
         0.592587381, -1.237451255,  0.172243366, -0.452641122, -0.982148581]
       
        #c: 60 elem, mean=5, sd=1
        c=[4.654329, 5.242129, 6.272640, 5.781779, 4.391241, 3.800752,
        4.559463, 4.318922, 3.243020, 5.121280, 4.126385, 5.541131,
        4.777480, 5.646913, 6.972584, 3.817172, 6.128700, 4.731467,
        6.762068, 5.082983, 5.298511, 5.491125, 4.532369, 4.265552,
        5.697317, 5.509730, 2.935704, 4.507456, 3.786794, 5.548383,
        3.674487, 5.536556, 5.297847, 2.439642, 4.759836, 5.114649,
        5.986774, 4.517485, 4.579208, 4.579374, 2.502890, 5.190955,
        5.983194, 6.766645, 4.905079, 4.214273, 3.950364, 6.262393,
        8.122084, 6.330007, 4.767943, 5.194029, 3.503136, 6.039079,
        4.485647, 6.116235, 6.302268, 3.596693, 5.743316, 6.860152]

        #d: 30 elem, mean=0, sd =0.05 
        d=[ 0.104517366,  0.023039678,  0.005579091,  0.052928250,  0.020724823,
        -0.060823243, -0.019000890, -0.064133996, -0.016321594, -0.008898334,
        -0.027626992, -0.051946186,  0.085269587, -0.031190678,  0.065172938,
        -0.054628573,  0.019257306, -0.032427056, -0.058767356,  0.030927400,
         0.052247357, -0.042954937,  0.031842104,  0.094130522, -0.024828465,
         0.011320453, -0.016195062,  0.015631245, -0.050335598, -0.031658335]

        a,b,c,d = map(array,[a,b,c,d])
        self.assertEqual(map(len,[a,b,c,d]), [50, 50, 60, 30])
        
        #allowed error. This big, because results from R 
        #are rounded at 4 decimals
        error = 1e-4 
                
        self.assertFloatEqual(f_two_sample(a,a), (49, 49, 1, 1), eps=error)
        self.assertFloatEqual(f_two_sample(a,b), (49, 49, 0.8575, 0.5925),
            eps=error)
        self.assertFloatEqual(f_two_sample(b,a), (49, 49, 1.1662, 0.5925),
            eps=error)
        self.assertFloatEqual(f_two_sample(a,b, tails='low'),
            (49, 49, 0.8575, 0.2963), eps=error)
        self.assertFloatEqual(f_two_sample(a,b, tails='high'),
            (49, 49, 0.8575, 0.7037), eps=error)
        self.assertFloatEqual(f_two_sample(a,c),
            (49, 59, 0.6587, 0.1345), eps=error)
        #p value very small, so first check df's and F value
        self.assertFloatEqualAbs(f_two_sample(d,a, tails='low')[0:3],
            (29, 49, 0.0028), eps=error)
        assert f_two_sample(d,a, tails='low')[3] < 2.2e-16 #p value


    def test_MonteCarloP(self):
        """MonteCarloP calcs a p-value from a val and list of random vals"""
        val = 3.0
        random_vals = [0.0,1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0]

        #test for "high" tail (larger values than expected by chance)
        p_val = MonteCarloP(val, random_vals, 'high')
        self.assertEqual(p_val, 0.7)

        #test for "low" tail (smaller values than expected by chance)
        p_val = MonteCarloP(val, random_vals, 'low')
        self.assertEqual(p_val, 0.4)

    def test_permute_2d(self):
        """permute_2d permutes rows and cols of a matrix."""
        a = reshape(arange(9), (3,3))
        self.assertEqual(permute_2d(a, [0,1,2]), a)
        self.assertEqual(permute_2d(a, [2,1,0]), \
            array([[8,7,6],[5,4,3],[2,1,0]]))
        self.assertEqual(permute_2d(a, [1,2,0]), \
            array([[4,5,3],[7,8,6],[1,2,0]]))

    def test_mantel(self):
        """mantel should be significant for same matrix, not for random"""
        a = reshape(arange(25), (5,5))
        b = a.copy()
        b[-1,-1] = 26    #slight change
        m = mantel(a, b, 1000)
        #closely related -- should be significant
        assert m < 0.05
        c = reshape(ones(25), (5,5))
        c[-1,-1] = 3
        #not related -- should not be significant
        m = mantel(a,c,1000)
        assert m > 0.3, m

class KendallTests(TestCase):
    """check accuracy of Kendall tests against values from R"""
    
    def do_test(self, x, y, alt_expecteds):
        """conducts the tests for each alternate hypothesis against expecteds"""
        for alt, exp_p, exp_tau in alt_expecteds:
            tau, p_val = kendall_correlation(x, y, alt=alt, warn=False)
            self.assertFloatEqual(tau, exp_tau, eps=1e-3)
            self.assertFloatEqual(p_val, exp_p, eps=1e-3)
    
    def test_exact_calcs(self):
        """calculations of exact probabilities should match R"""
        x = (44.4, 45.9, 41.9, 53.3, 44.7, 44.1, 50.7, 45.2, 60.1)
        y = ( 2.6,  3.1,  2.5,  5.0,  3.6,  4.0,  5.2,  2.8,  3.8)
        expecteds = [["gt", 0.05972, 0.4444444],
                     ["lt",  0.9624, 0.4444444],
                     ["ts",  0.1194, 0.4444444]]
        self.do_test(x,y,expecteds)
    
    def test_with_ties(self):
        """tied values calculated from normal approx"""
        # R example with ties in x
        x = (44.4, 45.9, 41.9, 53.3, 44.4, 44.1, 50.7, 45.2, 60.1)
        y = ( 2.6,  3.1,  2.5,  5.0,  3.6,  4.0,  5.2,  2.8,  3.8)
        expecteds = [#["gt", 0.05793, 0.4225771],
                     ["lt", 0.942, 0.4225771],
                     ["ts", 0.1159, 0.4225771]]
        self.do_test(x,y,expecteds)
        
        # R example with ties in y
        x = (44.4, 45.9, 41.9, 53.3, 44.7, 44.1, 50.7, 45.2, 60.1)
        y = ( 2.6,  3.1,  2.5,  5.0,  3.1,  4.0,  5.2,  2.8,  3.8)
        expecteds = [["gt", 0.03737, 0.4789207],
                     ["lt",  0.9626, 0.4789207],
                     ["ts", 0.07474, 0.4789207]]
        self.do_test(x,y,expecteds)
        # R example with ties in x and y
        x = (44.4, 45.9, 41.9, 53.3, 44.7, 44.1, 50.7, 44.4, 60.1)
        y = ( 2.6,  3.6,  2.5,  5.0,  3.6,  4.0,  5.2,  2.8,  3.8)
        expecteds=[["gt", 0.02891, 0.5142857],
                   ["lt",   0.971, 0.5142857],
                   ["ts", 0.05782, 0.5142857]]
        self.do_test(x,y,expecteds)
    
    def test_bigger_vectors(self):
        """docstring for test_bigger_vectors"""
        # q < expansion
        x= (0.118583104633, 0.227860069338, 0.143856130991, 0.935362617582,
            0.0471303856799, 0.659819202174, 0.739247965907, 0.268929000278,
            0.848250568194, 0.307764819102, 0.733949480141, 0.271662210481,
            0.155903098872)
        y= (0.749762144455, 0.407571703468, 0.934176427266, 0.188638794706,
            0.184844781493, 0.391485553856, 0.735504815302, 0.363655952442,
            0.18489971978, 0.851075466765, 0.139932273818, 0.333675110224,
            0.570250937033)
        expecteds = [["gt", 0.9183, -0.2820513],
                     ["lt", 0.1022, -0.2820513],
                     ["ts", 0.2044, -0.2820513]]
        self.do_test(x,y,expecteds)
        # q > expansion
        x= (0.2602556958, 0.441506392849, 0.930624643531, 0.728461775775,
            0.234341774892, 0.725677256368, 0.354788882728, 0.475882541956,
            0.347533553428, 0.608578046857, 0.144697962102, 0.784502692164,
            0.872607603407)
        y= (0.753056395718, 0.454332072011, 0.791882395707, 0.622853579015,
            0.127030232518, 0.232086215578, 0.586604349918, 0.0139051260749,
            0.579079370051, 0.0550643809812, 0.94798878249, 0.318410679439,
            0.86725134615)
        expecteds = [["gt", 0.4762, 0.02564103],
                     ["lt", 0.5711, 0.02564103],
                     ["ts", 0.9524, 0.02564103]]
        self.do_test(x,y,expecteds)

class TestDistMatrixPermutationTest(TestCase):
    """Tests of distance_matrix_permutation_test"""

    def setUp(self):
        """sets up variables for testing"""
        self.matrix = array([[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16]])
        self.cells = [(0,1), (1,3)]
        self.cells2 = [(0,2), (2,3)]

    def test_get_ltm_cells(self):
        "get_ltm_cells converts indices to be below the diagonal"
        cells = [(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2)]
        result = get_ltm_cells(cells)
        self.assertEqual(result, [(2, 0), (1, 0), (2, 1)])
        cells = [(0,1),(0,2)]
        result = get_ltm_cells(cells)
        self.assertEqual(result, [(2, 0), (1, 0)])

    def test_get_values_from_matrix(self):
        """get_values_from_matrix returns the special and other values from matrix"""
        matrix = self.matrix
        cells = [(1,0),(0,1),(2,0),(2,1)]
        #test that works for a symmetric matrix
        cells_sym = get_ltm_cells(cells)
        special_vals, other_vals = get_values_from_matrix(matrix, cells_sym,\
         cells2=None, is_symmetric=True)
        special_vals.sort()
        other_vals.sort()
        self.assertEqual(special_vals, [5,9,10])
        self.assertEqual(other_vals, [13,14,15])

        #test that work for a non symmetric matrix
        special_vals, other_vals = get_values_from_matrix(matrix, cells,\
         cells2=None, is_symmetric=False)
        special_vals.sort()
        other_vals.sort()
        self.assertEqual(special_vals, [2,5,9,10])
        self.assertEqual(other_vals, [1,3,4,6,7,8,11,12,13,14,15,16])

        #test that works on a symmetric matrix when cells2 is defined
        cells2 = [(3,0),(3,2),(0,3)]
        cells2_sym = get_ltm_cells(cells2)
        special_vals, other_vals = get_values_from_matrix(matrix, cells_sym,\
         cells2=cells2_sym, is_symmetric=True)
        special_vals.sort()
        other_vals.sort()
        self.assertEqual(special_vals, [5,9,10])
        self.assertEqual(other_vals, [13,15])

        #test that works when cells2 is defined and not symmetric
        special_vals, other_vals = get_values_from_matrix(matrix, cells, cells2=cells2,\
         is_symmetric=False)
        special_vals.sort()
        other_vals.sort()
        self.assertEqual(special_vals, [2,5,9,10])
        self.assertEqual(other_vals, [4,13,15])

    def test_distance_matrix_permutation_test_non_symmetric(self):
        """ evaluate empirical p-values for a non symmetric matrix 

            To test the empirical p-values, we look at a simple 3x3 matrix 
             b/c it is easy to see what t score every permutation will 
             generate -- there's only 6 permutations. 
             Running dist_matrix_test with n=1000, we expect that each 
             permutation will show up 160 times, so we know how many 
             times to expect to see more extreme t scores. We therefore 
             know what the empirical p-values will be. (n=1000 was chosen
             empirically -- smaller values seem to lead to much more frequent
             random failures.)


        """
        def make_result_list(*args, **kwargs):
            return [distance_matrix_permutation_test(*args,**kwargs)[2] \
                for i in range(10)]

        m = arange(9).reshape((3,3))
        n = 100
        # looks at each possible permutation n times --
        # compare first row to rest
        r = make_result_list(m, [(0,0),(0,1),(0,2)],n=n,is_symmetric=False)
        self.assertSimilarMeans(r, 0./6.)
        r = make_result_list(m, [(0,0),(0,1),(0,2)],n=n,is_symmetric=False,\
            tails='high')
        self.assertSimilarMeans(r, 4./6.)
        r = make_result_list(m, [(0,0),(0,1),(0,2)],n=n,is_symmetric=False,\
            tails='low')
        self.assertSimilarMeans(r, 0./6.)
        
        # looks at each possible permutation n times --
        # compare last row to rest
        r = make_result_list(m, [(2,0),(2,1),(2,2)],n=n,is_symmetric=False)
        self.assertSimilarMeans(r, 0./6.)
        r = make_result_list(m, [(2,0),(2,1),(2,2)],n=n,is_symmetric=False,\
            tails='high')
        self.assertSimilarMeans(r, 0./6.)
        r = make_result_list(m, [(2,0),(2,1),(2,2)],n=n,is_symmetric=False,\
            tails='low')
        self.assertSimilarMeans(r, 4./6.)

    def test_distance_matrix_permutation_test_symmetric(self):
        """ evaluate empirical p-values for symmetric matrix

            See test_distance_matrix_permutation_test_non_symmetric 
            doc string for a description of how this test works. 

        """
        def make_result_list(*args, **kwargs):
            return [distance_matrix_permutation_test(*args)[2] for i in range(10)]

        m = array([[0,1,3],[1,2,4],[3,4,5]])
        # looks at each possible permutation n times -- 
        # compare first row to rest
        n = 100

        # looks at each possible permutation n times --
        # compare first row to rest
        r = make_result_list(m, [(0,0),(0,1),(0,2)],n=n)
        self.assertSimilarMeans(r, 0./6.)
        r = make_result_list(m, [(0,0),(0,1),(0,2)],n=n,tails='high')
        self.assertSimilarMeans(r, 0.77281447417149496,0)
        r = make_result_list(m, [(0,0),(0,1),(0,2)],n=n,tails='low')
        self.assertSimilarMeans(r, 4./6.)

        ## The following lines are not part of the test code, but are useful in 
        ## figuring out what t-scores all of the permutations will yield. 
        #permutes = [[0, 1, 2], [0, 2, 1], [1, 0, 2],\
        # [1, 2, 0], [2, 0, 1], [2, 1, 0]]
        #results = []
        #for p in permutes:
        #    p_m = permute_2d(m,p)
        #    results.append(t_two_sample(\
        #     [p_m[0,1],p_m[0,2]],[p_m[2,1]],tails='high'))
        #print results

    def test_distance_matrix_permutation_test_alt_stat(self):
        def fake_stat_test(a,b,tails=None):
            return 42.,42.
        m = array([[0,1,3],[1,2,4],[3,4,5]])
        self.assertEqual(distance_matrix_permutation_test(m,\
            [(0,0),(0,1),(0,2)],n=5,f=fake_stat_test),(42.,42.,0.))

    def test_distance_matrix_permutation_test_return_scores(self):
        """ return_scores=True functions as expected """
        # use alt statistical test to make results simple
        def fake_stat_test(a,b,tails=None):
            return 42.,42.
        m = array([[0,1,3],[1,2,4],[3,4,5]])
        self.assertEqual(distance_matrix_permutation_test(\
            m,[(0,0),(0,1),(0,2)],\
            n=5,f=fake_stat_test,return_scores=True),(42.,42.,0.,[42.]*5))
    
    def test_ANOVA_one_way(self):
        """ANOVA one way returns same values as ANOVA on a stats package
        """
        g1 = Numbers([10.0, 11.0, 10.0, 5.0, 6.0])
        g2 = Numbers([1.0, 2.0, 3.0, 4.0, 1.0, 2.0])
        g3 = Numbers([6.0, 7.0, 5.0, 6.0, 7.0])
        i = [g1, g2, g3]
        dfn, dfd, F, between_MS, within_MS, group_means, prob = ANOVA_one_way(i)
        self.assertEqual(dfn, 2)
        self.assertEqual(dfd, 13)
        self.assertFloatEqual(F, 18.565450643776831)
        self.assertFloatEqual(between_MS, 55.458333333333343)
        self.assertFloatEqual(within_MS, 2.9871794871794868)
        self.assertFloatEqual(group_means, [8.4000000000000004, 2.1666666666666665, 6.2000000000000002])
        self.assertFloatEqual(prob, 0.00015486238993089464)

#execute tests if called from command line
if __name__ == '__main__':
    main()