1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
|
import sys
import gzip
from collections import OrderedDict
import numpy as np
from copy import deepcopy
import pyBigWig
from deeptools import getScorePerBigWigBin
from deeptools import mapReduce
from deeptools.utilities import toString, toBytes, smartLabels
from deeptools.heatmapper_utilities import getProfileTicks
old_settings = np.seterr(all='ignore')
def chopRegions(exonsInput, left=0, right=0):
"""
exons is a list of (start, end) tuples. The goal is to chop these into
separate lists of tuples, to take care or unscaled regions. "left" and
"right" denote regions of a given size to exclude from the normal binning
process (unscaled regions).
This outputs three lists of (start, end) tuples:
leftBins: 5' unscaled regions
bodyBins: body bins for scaling
rightBins: 3' unscaled regions
In addition are two integers
padLeft: Number of bases of padding on the left (due to not being able to fulfill "left")
padRight: As above, but on the right side
"""
leftBins = []
rightBins = []
padLeft = 0
padRight = 0
exons = deepcopy(exonsInput)
while len(exons) > 0 and left > 0:
width = exons[0][1] - exons[0][0]
if width <= left:
leftBins.append(exons[0])
del exons[0]
left -= width
else:
leftBins.append((exons[0][0], exons[0][0] + left))
exons[0] = (exons[0][0] + left, exons[0][1])
left = 0
if left > 0:
padLeft = left
while len(exons) > 0 and right > 0:
width = exons[-1][1] - exons[-1][0]
if width <= right:
rightBins.append(exons[-1])
del exons[-1]
right -= width
else:
rightBins.append((exons[-1][1] - right, exons[-1][1]))
exons[-1] = (exons[-1][0], exons[-1][1] - right)
right = 0
if right > 0:
padRight = right
return leftBins, exons, rightBins[::-1], padLeft, padRight
def chopRegionsFromMiddle(exonsInput, left=0, right=0):
"""
Like chopRegions(), above, but returns two lists of tuples on each side of
the center point of the exons.
The steps are as follow:
1) Find the center point of the set of exons (e.g., [(0, 200), (300, 400), (800, 900)] would be centered at 200)
* If a given exon spans the center point then the exon is split
2) The given number of bases at the end of the left-of-center list are extracted
* If the set of exons don't contain enough bases, then padLeft is incremented accordingly
3) As above but for the right-of-center list
4) A tuple of (#2, #3, pading on the left, and padding on the right) is returned
"""
leftBins = []
rightBins = []
size = sum([x[1] - x[0] for x in exonsInput])
middle = size // 2
cumulativeSum = 0
padLeft = 0
padRight = 0
exons = deepcopy(exonsInput)
# Split exons in half
for exon in exons:
size = exon[1] - exon[0]
if cumulativeSum >= middle:
rightBins.append(exon)
elif cumulativeSum + size < middle:
leftBins.append(exon)
else:
# Don't add 0-width exonic bins!
if exon[0] < exon[1] - cumulativeSum - size + middle:
leftBins.append((exon[0], exon[1] - cumulativeSum - size + middle))
if exon[1] - cumulativeSum - size + middle < exon[1]:
rightBins.append((exon[1] - cumulativeSum - size + middle, exon[1]))
cumulativeSum += size
# Trim leftBins/adjust padLeft
lSum = sum([x[1] - x[0] for x in leftBins])
if lSum > left:
lSum = 0
for i, exon in enumerate(leftBins[::-1]):
size = exon[1] - exon[0]
if lSum + size > left:
leftBins[-i - 1] = (exon[1] + lSum - left, exon[1])
break
lSum += size
if lSum == left:
break
i += 1
if i < len(leftBins):
leftBins = leftBins[-i:]
elif lSum < left:
padLeft = left - lSum
# Trim rightBins/adjust padRight
rSum = sum([x[1] - x[0] for x in rightBins])
if rSum > right:
rSum = 0
for i, exon in enumerate(rightBins):
size = exon[1] - exon[0]
if rSum + size > right:
rightBins[i] = (exon[0], exon[1] - rSum - size + right)
break
rSum += size
if rSum == right:
break
rightBins = rightBins[:i + 1]
elif rSum < right:
padRight = right - rSum
return leftBins, rightBins, padLeft, padRight
def trimZones(zones, maxLength, binSize, padRight):
"""
Given a (variable length) list of lists of (start, end) tuples, trim/remove and tuple that extends past maxLength (e.g., the end of a chromosome)
Returns the trimmed zones and padding
"""
output = []
for zone, nbins in zones:
outZone = []
changed = False
for reg in zone:
if reg[0] >= maxLength:
changed = True
padRight += reg[1] - reg[0]
continue
if reg[1] > maxLength:
changed = True
padRight += reg[1] - maxLength
reg = (reg[0], maxLength)
if reg[1] > reg[0]:
outZone.append(reg)
if changed:
nBins = sum(x[1] - x[0] for x in outZone) // binSize
else:
nBins = nbins
output.append((outZone, nBins))
return output, padRight
def compute_sub_matrix_wrapper(args):
return heatmapper.compute_sub_matrix_worker(*args)
class heatmapper(object):
"""
Class to handle the reading and
plotting of matrices.
"""
def __init__(self):
self.parameters = None
self.lengthDict = None
self.matrix = None
self.regions = None
self.blackList = None
self.quiet = True
# These are parameters that were single values in versions <3 but are now internally lists. See issue #614
self.special_params = set(['unscaled 5 prime', 'unscaled 3 prime', 'body', 'downstream', 'upstream', 'ref point', 'bin size'])
def getTicks(self, idx):
"""
This is essentially a wrapper around getProfileTicks to accomdate the fact that each column has its own ticks.
"""
xticks, xtickslabel = getProfileTicks(self, self.reference_point_label[idx], self.startLabel, self.endLabel, idx)
return xticks, xtickslabel
def computeMatrix(self, score_file_list, regions_file, parameters, blackListFileName=None, verbose=False, allArgs=None):
"""
Splits into
multiple cores the computation of the scores
per bin for each region (defined by a hash '#'
in the regions (BED/GFF) file.
"""
if parameters['body'] > 0 and \
parameters['body'] % parameters['bin size'] > 0:
exit("The --regionBodyLength has to be "
"a multiple of --binSize.\nCurrently the "
"values are {} {} for\nregionsBodyLength and "
"binSize respectively\n".format(parameters['body'],
parameters['bin size']))
# the beforeRegionStartLength is extended such that
# length is a multiple of binSize
if parameters['downstream'] % parameters['bin size'] > 0:
exit("Length of region after the body has to be "
"a multiple of --binSize.\nCurrent value "
"is {}\n".format(parameters['downstream']))
if parameters['upstream'] % parameters['bin size'] > 0:
exit("Length of region before the body has to be a multiple of "
"--binSize\nCurrent value is {}\n".format(parameters['upstream']))
if parameters['unscaled 5 prime'] % parameters['bin size'] > 0:
exit("Length of the unscaled 5 prime region has to be a multiple of "
"--binSize\nCurrent value is {}\n".format(parameters['unscaled 5 prime']))
if parameters['unscaled 3 prime'] % parameters['bin size'] > 0:
exit("Length of the unscaled 5 prime region has to be a multiple of "
"--binSize\nCurrent value is {}\n".format(parameters['unscaled 3 prime']))
if parameters['unscaled 5 prime'] + parameters['unscaled 3 prime'] > 0 and parameters['body'] == 0:
exit('Unscaled 5- and 3-prime regions only make sense with the scale-regions subcommand.\n')
# Take care of GTF options
transcriptID = "transcript"
exonID = "exon"
transcript_id_designator = "transcript_id"
keepExons = False
self.quiet = False
if allArgs is not None:
allArgs = vars(allArgs)
transcriptID = allArgs.get("transcriptID", transcriptID)
exonID = allArgs.get("exonID", exonID)
transcript_id_designator = allArgs.get("transcript_id_designator", transcript_id_designator)
keepExons = allArgs.get("keepExons", keepExons)
self.quiet = allArgs.get("quiet", self.quiet)
chromSizes, _ = getScorePerBigWigBin.getChromSizes(score_file_list)
res, labels = mapReduce.mapReduce([score_file_list, parameters],
compute_sub_matrix_wrapper,
chromSizes,
self_=self,
bedFile=regions_file,
blackListFileName=blackListFileName,
numberOfProcessors=parameters['proc number'],
includeLabels=True,
transcriptID=transcriptID,
exonID=exonID,
transcript_id_designator=transcript_id_designator,
keepExons=keepExons,
verbose=verbose)
# each worker in the pool returns a tuple containing
# the submatrix data, the regions that correspond to the
# submatrix, and the number of regions lacking scores
# Since this is largely unsorted, we need to sort by group
# merge all the submatrices into matrix
matrix = np.concatenate([r[0] for r in res], axis=0)
regions = []
regions_no_score = 0
for idx in range(len(res)):
if len(res[idx][1]):
regions.extend(res[idx][1])
regions_no_score += res[idx][2]
groups = [x[3] for x in regions]
foo = sorted(zip(groups, list(range(len(regions))), regions))
sortIdx = [x[1] for x in foo]
regions = [x[2] for x in foo]
matrix = matrix[sortIdx]
# mask invalid (nan) values
matrix = np.ma.masked_invalid(matrix)
assert matrix.shape[0] == len(regions), \
"matrix length does not match regions length"
if len(regions) == 0:
sys.stderr.write("\nERROR: Either the BED file does not contain any valid regions or there are none remaining after filtering.\n")
exit(1)
if regions_no_score == len(regions):
exit("\nERROR: None of the BED regions could be found in the bigWig"
"file.\nPlease check that the bigwig file is valid and "
"that the chromosome names between the BED file and "
"the bigWig file correspond to each other\n")
if regions_no_score > len(regions) * 0.75:
file_type = 'bigwig' if score_file_list[0].endswith(".bw") else "BAM"
prcnt = 100 * float(regions_no_score) / len(regions)
sys.stderr.write(
"\n\nWarning: {0:.2f}% of regions are *not* associated\n"
"to any score in the given {1} file. Check that the\n"
"chromosome names from the BED file are consistent with\n"
"the chromosome names in the given {2} file and that both\n"
"files refer to the same species\n\n".format(prcnt,
file_type,
file_type))
self.parameters = parameters
numcols = matrix.shape[1]
num_ind_cols = self.get_num_individual_matrix_cols()
sample_boundaries = list(range(0, numcols + num_ind_cols, num_ind_cols))
if allArgs is not None and allArgs['samplesLabel'] is not None:
sample_labels = allArgs['samplesLabel']
else:
sample_labels = smartLabels(score_file_list)
# Determine the group boundaries
group_boundaries = []
group_labels_filtered = []
last_idx = -1
for x in range(len(regions)):
if regions[x][3] != last_idx:
last_idx = regions[x][3]
group_boundaries.append(x)
group_labels_filtered.append(labels[last_idx])
group_boundaries.append(len(regions))
# check if a given group is too small. Groups that
# are too small can't be plotted and an exception is thrown.
group_len = np.diff(group_boundaries)
if len(group_len) > 1:
sum_len = sum(group_len)
group_frac = [float(x) / sum_len for x in group_len]
if min(group_frac) <= 0.002:
sys.stderr.write(
"One of the groups defined in the bed file is "
"too small.\nGroups that are too small can't be plotted. "
"\n")
self.matrix = _matrix(regions, matrix,
group_boundaries,
sample_boundaries,
group_labels_filtered,
sample_labels)
if parameters['skip zeros']:
self.matrix.removeempty()
@staticmethod
def compute_sub_matrix_worker(self, chrom, start, end, score_file_list, parameters, regions):
"""
Returns
-------
numpy matrix
A numpy matrix that contains per each row the values found per each of the regions given
"""
if parameters['verbose']:
sys.stderr.write("Processing {}:{}-{}\n".format(chrom, start, end))
# read BAM or scores file
score_file_handles = []
for sc_file in score_file_list:
score_file_handles.append(pyBigWig.open(sc_file))
# determine the number of matrix columns based on the lengths
# given by the user, times the number of score files
matrix_cols = len(score_file_list) * \
((parameters['downstream'] +
parameters['unscaled 5 prime'] + parameters['unscaled 3 prime'] +
parameters['upstream'] + parameters['body']) //
parameters['bin size'])
# create an empty matrix to store the values
sub_matrix = np.zeros((len(regions), matrix_cols))
sub_matrix[:] = np.NAN
j = 0
sub_regions = []
regions_no_score = 0
for transcript in regions:
feature_chrom = transcript[0]
exons = transcript[1]
feature_start = exons[0][0]
feature_end = exons[-1][1]
feature_name = transcript[2]
feature_strand = transcript[4]
padLeft = 0
padRight = 0
padLeftNaN = 0
padRightNaN = 0
upstream = []
downstream = []
# get the body length
body_length = np.sum([x[1] - x[0] for x in exons]) - parameters['unscaled 5 prime'] - parameters['unscaled 3 prime']
# print some information
if parameters['body'] > 0 and \
body_length < parameters['bin size']:
if not self.quiet:
sys.stderr.write("A region that is shorter than the bin size (possibly only after accounting for unscaled regions) was found: "
"({0}) {1} {2}:{3}:{4}. Skipping...\n".format((body_length - parameters['unscaled 5 prime'] - parameters['unscaled 3 prime']),
feature_name, feature_chrom,
feature_start, feature_end))
coverage = np.zeros(matrix_cols)
if not parameters['missing data as zero']:
coverage[:] = np.nan
else:
if feature_strand == '-':
if parameters['downstream'] > 0:
upstream = [(feature_start - parameters['downstream'], feature_start)]
if parameters['upstream'] > 0:
downstream = [(feature_end, feature_end + parameters['upstream'])]
unscaled5prime, body, unscaled3prime, padLeft, padRight = chopRegions(exons, left=parameters['unscaled 3 prime'], right=parameters['unscaled 5 prime'])
# bins per zone
a = parameters['downstream'] // parameters['bin size']
b = parameters['unscaled 3 prime'] // parameters['bin size']
d = parameters['unscaled 5 prime'] // parameters['bin size']
e = parameters['upstream'] // parameters['bin size']
else:
if parameters['upstream'] > 0:
upstream = [(feature_start - parameters['upstream'], feature_start)]
if parameters['downstream'] > 0:
downstream = [(feature_end, feature_end + parameters['downstream'])]
unscaled5prime, body, unscaled3prime, padLeft, padRight = chopRegions(exons, left=parameters['unscaled 5 prime'], right=parameters['unscaled 3 prime'])
a = parameters['upstream'] // parameters['bin size']
b = parameters['unscaled 5 prime'] // parameters['bin size']
d = parameters['unscaled 3 prime'] // parameters['bin size']
e = parameters['downstream'] // parameters['bin size']
c = parameters['body'] // parameters['bin size']
# build zones (each is a list of tuples)
# zone0: region before the region start,
# zone1: unscaled 5 prime region
# zone2: the body of the region
# zone3: unscaled 3 prime region
# zone4: the region from the end of the region downstream
# the format for each zone is: [(start, end), ...], number of bins
# Note that for "reference-point", upstream/downstream will go
# through the exons (if requested) and then possibly continue
# on the other side (unless parameters['nan after end'] is true)
if parameters['body'] > 0:
zones = [(upstream, a), (unscaled5prime, b), (body, c), (unscaled3prime, d), (downstream, e)]
elif parameters['ref point'] == 'TES': # around TES
if feature_strand == '-':
downstream, body, unscaled3prime, padRight, _ = chopRegions(exons, left=parameters['upstream'])
if padRight > 0 and parameters['nan after end'] is True:
padRightNaN += padRight
elif padRight > 0:
downstream.append((downstream[-1][1], downstream[-1][1] + padRight))
padRight = 0
else:
unscale5prime, body, upstream, _, padLeft = chopRegions(exons, right=parameters['upstream'])
if padLeft > 0 and parameters['nan after end'] is True:
padLeftNaN += padLeft
elif padLeft > 0:
upstream.insert(0, (upstream[0][0] - padLeft, upstream[0][0]))
padLeft = 0
e = np.sum([x[1] - x[0] for x in downstream]) // parameters['bin size']
a = np.sum([x[1] - x[0] for x in upstream]) // parameters['bin size']
zones = [(upstream, a), (downstream, e)]
elif parameters['ref point'] == 'center': # at the region center
if feature_strand == '-':
upstream, downstream, padLeft, padRight = chopRegionsFromMiddle(exons, left=parameters['downstream'], right=parameters['upstream'])
else:
upstream, downstream, padLeft, padRight = chopRegionsFromMiddle(exons, left=parameters['upstream'], right=parameters['downstream'])
if padLeft > 0 and parameters['nan after end'] is True:
padLeftNaN += padLeft
elif padLeft > 0:
if len(upstream) > 0:
upstream.insert(0, (upstream[0][0] - padLeft, upstream[0][0]))
else:
upstream = [(downstream[0][0] - padLeft, downstream[0][0])]
padLeft = 0
if padRight > 0 and parameters['nan after end'] is True:
padRightNaN += padRight
elif padRight > 0:
downstream.append((downstream[-1][1], downstream[-1][1] + padRight))
padRight = 0
a = np.sum([x[1] - x[0] for x in upstream]) // parameters['bin size']
e = np.sum([x[1] - x[0] for x in downstream]) // parameters['bin size']
# It's possible for a/e to be floats or 0 yet upstream/downstream isn't empty
if a < 1:
upstream = []
a = 0
if e < 1:
downstream = []
e = 0
zones = [(upstream, a), (downstream, e)]
else: # around TSS
if feature_strand == '-':
unscale5prime, body, upstream, _, padLeft = chopRegions(exons, right=parameters['downstream'])
if padLeft > 0 and parameters['nan after end'] is True:
padLeftNaN += padLeft
elif padLeft > 0:
upstream.insert(0, (upstream[0][0] - padLeft, upstream[0][0]))
padLeft = 0
else:
downstream, body, unscaled3prime, padRight, _ = chopRegions(exons, left=parameters['downstream'])
if padRight > 0 and parameters['nan after end'] is True:
padRightNaN += padRight
elif padRight > 0:
downstream.append((downstream[-1][1], downstream[-1][1] + padRight))
padRight = 0
a = np.sum([x[1] - x[0] for x in upstream]) // parameters['bin size']
e = np.sum([x[1] - x[0] for x in downstream]) // parameters['bin size']
zones = [(upstream, a), (downstream, e)]
foo = parameters['upstream']
bar = parameters['downstream']
if feature_strand == '-':
foo, bar = bar, foo
if padLeftNaN > 0:
expected = foo // parameters['bin size']
padLeftNaN = int(round(float(padLeftNaN) / parameters['bin size']))
if expected - padLeftNaN - a > 0:
padLeftNaN += 1
if padRightNaN > 0:
expected = bar // parameters['bin size']
padRightNaN = int(round(float(padRightNaN) / parameters['bin size']))
if expected - padRightNaN - e > 0:
padRightNaN += 1
coverage = []
# compute the values for each of the files being processed.
# "cov" is a numpy array of bins
for sc_handler in score_file_handles:
# We're only supporting bigWig files at this point
cov = heatmapper.coverage_from_big_wig(
sc_handler, feature_chrom, zones,
parameters['bin size'],
parameters['bin avg type'],
parameters['missing data as zero'],
not self.quiet)
if padLeftNaN > 0:
cov = np.concatenate([[np.nan] * padLeftNaN, cov])
if padRightNaN > 0:
cov = np.concatenate([cov, [np.nan] * padRightNaN])
if feature_strand == "-":
cov = cov[::-1]
coverage = np.hstack([coverage, cov])
if coverage is None:
regions_no_score += 1
if not self.quiet:
sys.stderr.write(
"No data was found for region "
"{0} {1}:{2}-{3}. Skipping...\n".format(
feature_name, feature_chrom,
feature_start, feature_end))
coverage = np.zeros(matrix_cols)
if not parameters['missing data as zero']:
coverage[:] = np.nan
try:
temp = coverage.copy()
temp[np.isnan(temp)] = 0
except:
if not self.quiet:
sys.stderr.write(
"No scores defined for region "
"{0} {1}:{2}-{3}. Skipping...\n".format(feature_name,
feature_chrom,
feature_start,
feature_end))
coverage = np.zeros(matrix_cols)
if not parameters['missing data as zero']:
coverage[:] = np.nan
if parameters['min threshold'] is not None and coverage.min() <= parameters['min threshold']:
continue
if parameters['max threshold'] is not None and coverage.max() >= parameters['max threshold']:
continue
if parameters['scale'] != 1:
coverage = parameters['scale'] * coverage
sub_matrix[j, :] = coverage
sub_regions.append(transcript)
j += 1
# remove empty rows
sub_matrix = sub_matrix[0:j, :]
if len(sub_regions) != len(sub_matrix[:, 0]):
sys.stderr.write("regions lengths do not match\n")
return sub_matrix, sub_regions, regions_no_score
@staticmethod
def coverage_from_array(valuesArray, zones, binSize, avgType):
try:
valuesArray[0]
except (IndexError, TypeError) as detail:
sys.stderr.write("{0}\nvalues array value: {1}, zones {2}\n".format(detail, valuesArray, zones))
cvglist = []
zoneEnd = 0
valStart = 0
valEnd = 0
for zone, nBins in zones:
if nBins:
# linspace is used to more or less evenly partition the data points into the given number of bins
zoneEnd += nBins
valStart = valEnd
valEnd += np.sum([x[1] - x[0] for x in zone])
counts_list = []
# Partition the space into bins
if nBins == 1:
pos_array = np.array([valStart])
else:
pos_array = np.linspace(valStart, valEnd, nBins, endpoint=False, dtype=int)
pos_array = np.append(pos_array, valEnd)
idx = 0
while idx < nBins:
idxStart = int(pos_array[idx])
idxEnd = max(int(pos_array[idx + 1]), idxStart + 1)
try:
counts_list.append(heatmapper.my_average(valuesArray[idxStart:idxEnd], avgType))
except Exception as detail:
sys.stderr.write("Exception found: {0}\n".format(detail))
idx += 1
cvglist.append(np.array(counts_list))
return np.concatenate(cvglist)
@staticmethod
def change_chrom_names(chrom):
"""
Changes UCSC chromosome names to ensembl chromosome names
and vice versa.
"""
if chrom.startswith('chr'):
# remove the chr part from chromosome name
chrom = chrom[3:]
if chrom == "M":
chrom = "MT"
else:
# prefix with 'chr' the chromosome name
chrom = 'chr' + chrom
if chrom == "chrMT":
chrom = "chrM"
return chrom
@staticmethod
def coverage_from_big_wig(bigwig, chrom, zones, binSize, avgType, nansAsZeros=False, verbose=True):
"""
uses pyBigWig
to query a region define by chrom and zones.
The output is an array that contains the bigwig
value per base pair. The summary over bins is
done in a later step when coverage_from_array is called.
This method is more reliable than querying the bins
directly from the bigwig, which should be more efficient.
By default, any region, even if no chromosome match is found
on the bigwig file, produces a result. In other words
no regions are skipped.
zones: array as follows zone0: region before the region start,
zone1: 5' unscaled region (if present)
zone2: the body of the region (not always present)
zone3: 3' unscaled region (if present)
zone4: the region from the end of the region downstream
each zone is a tuple containing start, end, and number of bins
This is useful if several matrices wants to be merged
or if the sorted BED output of one computeMatrix operation
needs to be used for other cases
"""
nVals = 0
for zone, _ in zones:
for region in zone:
nVals += region[1] - region[0]
values_array = np.zeros(nVals)
if not nansAsZeros:
values_array[:] = np.nan
if chrom not in list(bigwig.chroms().keys()):
unmod_name = chrom
chrom = heatmapper.change_chrom_names(chrom)
if chrom not in list(bigwig.chroms().keys()):
if verbose:
sys.stderr.write("Warning: Your chromosome names do not match.\nPlease check that the "
"chromosome names in your BED file\ncorrespond to the names in your "
"bigWig file.\nAn empty line will be added to your heatmap.\nThe problematic "
"chromosome name is {0}\n\n".format(unmod_name))
# return empty nan array
return heatmapper.coverage_from_array(values_array, zones, binSize, avgType)
maxLen = bigwig.chroms(chrom)
startIdx = 0
endIdx = 0
for zone, _ in zones:
for region in zone:
startIdx = endIdx
if region[0] < 0:
endIdx += abs(region[0])
values_array[startIdx:endIdx] = np.nan
startIdx = endIdx
start = max(0, region[0])
end = min(maxLen, region[1])
endIdx += end - start
if start < end:
# This won't be the case if we extend off the front of a chromosome, such as (-100, 0)
values_array[startIdx:endIdx] = bigwig.values(chrom, start, end)
if end < region[1]:
startIdx = endIdx
endIdx += region[1] - end
values_array[startIdx:endIdx] = np.nan
# replaces nans for zeros
if nansAsZeros:
values_array[np.isnan(values_array)] = 0
return heatmapper.coverage_from_array(values_array, zones,
binSize, avgType)
@staticmethod
def my_average(valuesArray, avgType='mean'):
"""
computes the mean, median, etc but only for those values
that are not Nan
"""
valuesArray = np.ma.masked_invalid(valuesArray)
avg = np.ma.__getattribute__(avgType)(valuesArray)
if isinstance(avg, np.ma.core.MaskedConstant):
return np.nan
else:
return avg
def matrix_from_dict(self, matrixDict, regionsDict, parameters):
self.regionsDict = regionsDict
self.matrixDict = matrixDict
self.parameters = parameters
self.lengthDict = OrderedDict()
self.matrixAvgsDict = OrderedDict()
def read_matrix_file(self, matrix_file):
# reads a bed file containing the position
# of genomic intervals
# In case a hash sign '#' is found in the
# file, this is considered as a delimiter
# to split the heatmap into groups
import json
regions = []
matrix_rows = []
current_group_index = 0
max_group_bound = None
fh = gzip.open(matrix_file)
for line in fh:
line = toString(line).strip()
# read the header file containing the parameters
# used
if line.startswith("@"):
# the parameters used are saved using
# json
self.parameters = json.loads(line[1:].strip())
max_group_bound = self.parameters['group_boundaries'][1]
continue
# split the line into bed interval and matrix values
region = line.split('\t')
chrom, start, end, name, score, strand = region[0:6]
matrix_row = np.ma.masked_invalid(np.fromiter(region[6:], np.float))
matrix_rows.append(matrix_row)
starts = start.split(",")
ends = end.split(",")
regs = [(int(x), int(y)) for x, y in zip(starts, ends)]
# get the group index
if len(regions) >= max_group_bound:
current_group_index += 1
max_group_bound = self.parameters['group_boundaries'][current_group_index + 1]
regions.append([chrom, regs, name, max_group_bound, strand, score])
matrix = np.vstack(matrix_rows)
self.matrix = _matrix(regions, matrix, self.parameters['group_boundaries'],
self.parameters['sample_boundaries'],
group_labels=self.parameters['group_labels'],
sample_labels=self.parameters['sample_labels'])
if 'sort regions' in self.parameters:
self.matrix.set_sorting_method(self.parameters['sort regions'],
self.parameters['sort using'])
# Versions of computeMatrix before 3.0 didn't have an entry of these per column, fix that
nSamples = len(self.matrix.sample_labels)
h = dict()
for k, v in self.parameters.items():
if k in self.special_params and type(v) is not list:
v = [v] * nSamples
if len(v) == 0:
v = [None] * nSamples
h[k] = v
self.parameters = h
return
def save_matrix(self, file_name):
"""
saves the data required to reconstruct the matrix
the format is:
A header containing the parameters used to create the matrix
encoded as:
@key:value\tkey2:value2 etc...
The rest of the file has the same first 5 columns of a
BED file: chromosome name, start, end, name, score and strand,
all separated by tabs. After the fifth column the matrix
values are appended separated by tabs.
Groups are separated by adding a line starting with a hash (#)
and followed by the group name.
The file is gzipped.
"""
import json
self.parameters['sample_labels'] = self.matrix.sample_labels
self.parameters['group_labels'] = self.matrix.group_labels
self.parameters['sample_boundaries'] = self.matrix.sample_boundaries
self.parameters['group_boundaries'] = self.matrix.group_boundaries
# Redo the parameters, ensuring things related to ticks and labels are repeated appropriately
nSamples = len(self.matrix.sample_labels)
h = dict()
for k, v in self.parameters.items():
if type(v) is list and len(v) == 0:
v = None
if k in self.special_params and type(v) is not list:
v = [v] * nSamples
if len(v) == 0:
v = [None] * nSamples
h[k] = v
fh = gzip.open(file_name, 'wb')
params_str = json.dumps(h, separators=(',', ':'))
fh.write(toBytes("@" + params_str + "\n"))
score_list = np.ma.masked_invalid(np.mean(self.matrix.matrix, axis=1))
for idx, region in enumerate(self.matrix.regions):
# join np_array values
# keeping nans while converting them to strings
if not np.ma.is_masked(score_list[idx]):
np.float(score_list[idx])
matrix_values = "\t".join(
np.char.mod('%f', self.matrix.matrix[idx, :]))
starts = ["{0}".format(x[0]) for x in region[1]]
ends = ["{0}".format(x[1]) for x in region[1]]
starts = ",".join(starts)
ends = ",".join(ends)
# BEDish format (we don't currently store the score)
fh.write(
toBytes('{0}\t{1}\t{2}\t{3}\t{4}\t{5}\t{6}\n'.format(
region[0],
starts,
ends,
region[2],
region[5],
region[4],
matrix_values)))
fh.close()
def save_tabulated_values(self, file_handle, reference_point_label='TSS', start_label='TSS', end_label='TES', averagetype='mean'):
"""
Saves the values averaged by col using the avg_type
given
Args:
file_handle: file name to save the file
reference_point_label: Name of the reference point label
start_label: Name of the star label
end_label: Name of the end label
averagetype: average type (e.g. mean, median, std)
"""
# get X labels
w = self.parameters['bin size']
b = self.parameters['upstream']
a = self.parameters['downstream']
c = self.parameters.get('unscaled 5 prime', 0)
d = self.parameters.get('unscaled 3 prime', 0)
m = self.parameters['body']
xticks = []
xtickslabel = []
for idx in range(self.matrix.get_num_samples()):
if b[idx] < 1e5:
quotient = 1000
symbol = 'Kb'
else:
quotient = 1e6
symbol = 'Mb'
if m[idx] == 0:
last = 0
if len(xticks):
last = xticks[-1]
xticks.extend([last + (k / w[idx]) for k in [w[idx], b[idx], b[idx] + a[idx]]])
xtickslabel.extend(['{0:.1f}{1}'.format(-(float(b[idx]) / quotient), symbol), reference_point_label,
'{0:.1f}{1}'.format(float(a[idx]) / quotient, symbol)])
else:
xticks_values = [w[idx]]
# only if upstream region is set, add a x tick
if b[idx] > 0:
xticks_values.append(b[idx])
xtickslabel.append('{0:.1f}{1}'.format(-(float(b[idx]) / quotient), symbol))
xtickslabel.append(start_label)
if c[idx] > 0:
xticks_values.append(b[idx] + c[idx])
xtickslabel.append("")
if d[idx] > 0:
xticks_values.append(b[idx] + c[idx] + m[idx])
xtickslabel.append("")
xticks_values.append(b[idx] + c[idx] + m[idx] + d[idx])
xtickslabel.append(end_label)
if a[idx] > 0:
xticks_values.append(b[idx] + c[idx] + m[idx] + d[idx] + a[idx])
xtickslabel.append('{0:.1f}{1}'.format(float(a[idx]) / quotient, symbol))
last = 0
if len(xticks):
last = xticks[-1]
xticks.extend([last + (k / w[idx]) for k in xticks_values])
x_axis = np.arange(xticks[-1]) + 1
labs = []
for x_value in x_axis:
if x_value in xticks and xtickslabel[xticks.index(x_value)]:
labs.append(xtickslabel[xticks.index(x_value)])
elif x_value in xticks:
labs.append("tick")
else:
labs.append("")
with open(file_handle, 'w') as fh:
# write labels
fh.write("bin labels\t\t{}\n".format("\t".join(labs)))
fh.write('bins\t\t{}\n'.format("\t".join([str(x) for x in x_axis])))
for sample_idx in range(self.matrix.get_num_samples()):
for group_idx in range(self.matrix.get_num_groups()):
sub_matrix = self.matrix.get_matrix(group_idx, sample_idx)
values = [str(x) for x in np.ma.__getattribute__(averagetype)(sub_matrix['matrix'], axis=0)]
fh.write("{}\t{}\t{}\n".format(sub_matrix['sample'], sub_matrix['group'], "\t".join(values)))
def save_matrix_values(self, file_name):
# print a header telling the group names and their length
fh = open(file_name, 'wb')
info = []
groups_len = np.diff(self.matrix.group_boundaries)
for i in range(len(self.matrix.group_labels)):
info.append("{}:{}".format(self.matrix.group_labels[i],
groups_len[i]))
fh.write(toBytes("#{}\n".format("\t".join(info))))
# add to header the x axis values
fh.write(toBytes("#downstream:{}\tupstream:{}\tbody:{}\tbin size:{}\tunscaled 5 prime:{}\tunscaled 3 prime:{}\n".format(
self.parameters['downstream'],
self.parameters['upstream'],
self.parameters['body'],
self.parameters['bin size'],
self.parameters.get('unscaled 5 prime', 0),
self.parameters.get('unscaled 3 prime', 0))))
sample_len = np.diff(self.matrix.sample_boundaries)
for i in range(len(self.matrix.sample_labels)):
info.extend([self.matrix.sample_labels[i]] * sample_len[i])
fh.write(toBytes("{}\n".format("\t".join(info))))
fh.close()
# reopen again using append mode
fh = open(file_name, 'ab')
np.savetxt(fh, self.matrix.matrix, fmt="%.4g", delimiter="\t")
fh.close()
def save_BED(self, file_handle):
boundaries = np.array(self.matrix.group_boundaries)
# Add a header
file_handle.write("#chrom\tstart\tend\tname\tscore\tstrand\tthickStart\tthickEnd\titemRGB\tblockCount\tblockSizes\tblockStart\tdeepTools_group")
if self.matrix.silhouette is not None:
file_handle.write("\tsilhouette")
file_handle.write("\n")
for idx, region in enumerate(self.matrix.regions):
# the label id corresponds to the last boundary
# that is smaller than the region index.
# for example for a boundary array = [0, 10, 20]
# and labels ['a', 'b', 'c'],
# for index 5, the label is 'a', for
# index 10, the label is 'b' etc
label_idx = np.flatnonzero(boundaries <= idx)[-1]
starts = ["{0}".format(x[0]) for x in region[1]]
ends = ["{0}".format(x[1]) for x in region[1]]
starts = ",".join(starts)
ends = ",".join(ends)
file_handle.write(
'{0}\t{1}\t{2}\t{3}\t{4}\t{5}\t{1}\t{2}\t0'.format(
region[0],
region[1][0][0],
region[1][-1][1],
region[2],
region[5],
region[4]))
file_handle.write(
'\t{0}\t{1}\t{2}\t{3}'.format(
len(region[1]),
",".join([str(int(y) - int(x)) for x, y in region[1]]),
",".join([str(int(x) - int(starts[0])) for x, y in region[1]]),
self.matrix.group_labels[label_idx]))
if self.matrix.silhouette is not None:
file_handle.write("\t{}".format(self.matrix.silhouette[idx]))
file_handle.write("\n")
file_handle.close()
@staticmethod
def matrix_avg(matrix, avgType='mean'):
matrix = np.ma.masked_invalid(matrix)
return np.ma.__getattribute__(avgType)(matrix, axis=0)
def get_individual_matrices(self, matrix):
"""In case multiple matrices are saved one after the other
this method splits them appart.
Returns a list containing the matrices
"""
num_cols = matrix.shape[1]
num_ind_cols = self.get_num_individual_matrix_cols()
matrices_list = []
for i in range(0, num_cols, num_ind_cols):
if i + num_ind_cols > num_cols:
break
matrices_list.append(matrix[:, i:i + num_ind_cols])
return matrices_list
def get_num_individual_matrix_cols(self):
"""
returns the number of columns that
each matrix should have. This is done because
the final matrix that is plotted can be composed
of smaller matrices that are merged one after
the other.
"""
matrixCols = ((self.parameters['downstream'] + self.parameters['upstream'] + self.parameters['body'] + self.parameters['unscaled 5 prime'] + self.parameters['unscaled 3 prime']) //
self.parameters['bin size'])
return matrixCols
def computeSilhouetteScore(d, idx, labels):
"""
Given a square distance matrix with NaN diagonals, compute the silhouette score
of a given row (idx). Each row should have an associated label (labels).
"""
keep = ~np.isnan(d[idx, ])
foo = np.bincount(labels[keep], weights=d[idx, ][keep])
groupSizes = np.bincount(labels[keep])
intraIdx = labels[idx]
if groupSizes[intraIdx] == 1:
return 0
intra = foo[labels[idx]] / groupSizes[intraIdx]
interMask = np.arange(len(foo))[np.arange(len(foo)) != labels[idx]]
inter = np.min(foo[interMask] / groupSizes[interMask])
return (inter - intra) / max(inter, intra)
class _matrix(object):
"""
class to hold heatmapper matrices
The base data is a large matrix
with definition to know the boundaries for row and col divisions.
Col divisions represent groups within a subset, e.g. Active and
inactive from PolII bigwig data.
Row division represent different samples, for example
PolII in males vs. PolII in females.
This is an internal class of the heatmapper class
"""
def __init__(self, regions, matrix, group_boundaries, sample_boundaries,
group_labels=None, sample_labels=None):
# simple checks
assert matrix.shape[0] == group_boundaries[-1], \
"row max do not match matrix shape"
assert matrix.shape[1] == sample_boundaries[-1], \
"col max do not match matrix shape"
self.regions = regions
self.matrix = matrix
self.group_boundaries = group_boundaries
self.sample_boundaries = sample_boundaries
self.sort_method = None
self.sort_using = None
self.silhouette = None
if group_labels is None:
self.group_labels = ['group {}'.format(x)
for x in range(len(group_boundaries) - 1)]
else:
assert len(group_labels) == len(group_boundaries) - 1, \
"number of group labels does not match number of groups"
self.group_labels = group_labels
if sample_labels is None:
self.sample_labels = ['sample {}'.format(x)
for x in range(len(sample_boundaries) - 1)]
else:
assert len(sample_labels) == len(sample_boundaries) - 1, \
"number of sample labels does not match number of samples"
self.sample_labels = sample_labels
def get_matrix(self, group, sample):
"""
Returns a sub matrix from the large
matrix. Group and sample are ids,
thus, row = 0, col=0 get the first group
of the first sample.
Returns
-------
dictionary containing the matrix,
the group label and the sample label
"""
group_start = self.group_boundaries[group]
group_end = self.group_boundaries[group + 1]
sample_start = self.sample_boundaries[sample]
sample_end = self.sample_boundaries[sample + 1]
return {'matrix': np.ma.masked_invalid(self.matrix[group_start:group_end, :][:, sample_start:sample_end]),
'group': self.group_labels[group],
'sample': self.sample_labels[sample]}
def get_num_samples(self):
return len(self.sample_labels)
def get_num_groups(self):
return len(self.group_labels)
def set_group_labels(self, new_labels):
""" sets new labels for groups
"""
if len(new_labels) != len(self.group_labels):
raise ValueError("length new labels != length original labels")
self.group_labels = new_labels
def set_sample_labels(self, new_labels):
""" sets new labels for groups
"""
if len(new_labels) != len(self.sample_labels):
raise ValueError("length new labels != length original labels")
self.sample_labels = new_labels
def set_sorting_method(self, sort_method, sort_using):
self.sort_method = sort_method
self.sort_using = sort_using
def get_regions(self):
"""Returns the regions per group
Returns
------
list
Each element of the list is itself a list
of dictionaries containing the regions info:
chrom, start, end, strand, name etc.
Each element of the list corresponds to each
of the groups
"""
regions = []
for idx in range(len(self.group_labels)):
start = self.group_boundaries[idx]
end = self.group_boundaries[idx + 1]
regions.append(self.regions[start:end])
return regions
def sort_groups(self, sort_using='mean', sort_method='no', sample_list=None):
"""
Sorts and rearranges the submatrices according to the
sorting method given.
"""
if sort_method == 'no':
return
if (sample_list is not None) and (len(sample_list) > 0):
# get the ids that correspond to the selected sample list
idx_to_keep = []
for sample_idx in sample_list:
idx_to_keep += range(self.sample_boundaries[sample_idx], self.sample_boundaries[sample_idx + 1])
matrix = self.matrix[:, idx_to_keep]
else:
matrix = self.matrix
# compute the row average:
if sort_using == 'region_length':
matrix_avgs = list()
for x in self.regions:
matrix_avgs.append(np.sum([bar[1] - bar[0] for bar in x[1]]))
matrix_avgs = np.array(matrix_avgs)
elif sort_using == 'mean':
matrix_avgs = np.nanmean(matrix, axis=1)
elif sort_using == 'mean':
matrix_avgs = np.nanmean(matrix, axis=1)
elif sort_using == 'median':
matrix_avgs = np.nanmedian(matrix, axis=1)
elif sort_using == 'max':
matrix_avgs = np.nanmax(matrix, axis=1)
elif sort_using == 'min':
matrix_avgs = np.nanmin(matrix, axis=1)
elif sort_using == 'sum':
matrix_avgs = np.nansum(matrix, axis=1)
else:
sys.exit("{} is an unsupported sorting method".format(sort_using))
# order per group
_sorted_regions = []
_sorted_matrix = []
for idx in range(len(self.group_labels)):
start = self.group_boundaries[idx]
end = self.group_boundaries[idx + 1]
order = matrix_avgs[start:end].argsort()
if sort_method == 'descend':
order = order[::-1]
_sorted_matrix.append(self.matrix[start:end, :][order, :])
# sort the regions
_reg = self.regions[start:end]
for idx in order:
_sorted_regions.append(_reg[idx])
self.matrix = np.vstack(_sorted_matrix)
self.regions = _sorted_regions
self.set_sorting_method(sort_method, sort_using)
def hmcluster(self, k, evaluate_silhouette=True, method='kmeans', clustering_samples=None):
matrix = np.asarray(self.matrix)
matrix_to_cluster = matrix
if clustering_samples is not None:
assert all(i > 0 for i in clustering_samples),\
"all indices should be bigger than or equal to 1."
assert all(i <= len(self.sample_labels) for i in
clustering_samples),\
"each index should be smaller than or equal to {}(total "\
"number of samples.)".format(len(self.sample_labels))
clustering_samples = np.asarray(clustering_samples) - 1
samples_cols = []
for idx in clustering_samples:
samples_cols += range(self.sample_boundaries[idx],
self.sample_boundaries[idx + 1])
matrix_to_cluster = matrix_to_cluster[:, samples_cols]
if np.any(np.isnan(matrix_to_cluster)):
# replace nans for 0 otherwise kmeans produces a weird behaviour
sys.stderr.write("*Warning* For clustering nan values have to be replaced by zeros \n")
matrix_to_cluster[np.isnan(matrix_to_cluster)] = 0
if method == 'kmeans':
from scipy.cluster.vq import vq, kmeans
centroids, _ = kmeans(matrix_to_cluster, k)
# order the centroids in an attempt to
# get the same cluster order
cluster_labels, _ = vq(matrix_to_cluster, centroids)
if method == 'hierarchical':
# normally too slow for large data sets
from scipy.cluster.hierarchy import fcluster, linkage
Z = linkage(matrix_to_cluster, method='ward', metric='euclidean')
cluster_labels = fcluster(Z, k, criterion='maxclust')
# hierarchical clustering labels from 1 .. k
# while k-means labels 0 .. k -1
# Thus, for consistency, we subtract 1
cluster_labels -= 1
# sort clusters
_clustered_mean = []
_cluster_ids_list = []
for cluster in range(k):
cluster_ids = np.flatnonzero(cluster_labels == cluster)
_cluster_ids_list.append(cluster_ids)
_clustered_mean.append(matrix_to_cluster[cluster_ids, :].mean())
# reorder clusters based on mean
cluster_order = np.argsort(_clustered_mean)[::-1]
# create groups using the clustering
self.group_labels = []
self.group_boundaries = [0]
_clustered_regions = []
_clustered_matrix = []
cluster_number = 1
for cluster in cluster_order:
self.group_labels.append("cluster_{}".format(cluster_number))
cluster_number += 1
cluster_ids = _cluster_ids_list[cluster]
self.group_boundaries.append(self.group_boundaries[-1] +
len(cluster_ids))
_clustered_matrix.append(self.matrix[cluster_ids, :])
for idx in cluster_ids:
_clustered_regions.append(self.regions[idx])
self.regions = _clustered_regions
self.matrix = np.vstack(_clustered_matrix)
return idx
def computeSilhouette(self, k):
if k > 1:
from scipy.spatial.distance import pdist, squareform
silhouette = np.repeat(0.0, self.group_boundaries[-1])
groupSizes = np.subtract(self.group_boundaries[1:], self.group_boundaries[:-1])
labels = np.repeat(np.arange(k), groupSizes)
d = pdist(self.matrix)
d2 = squareform(d)
np.fill_diagonal(d2, np.nan) # This excludes the diagonal
for idx in range(len(labels)):
silhouette[idx] = computeSilhouetteScore(d2, idx, labels)
sys.stderr.write("The average silhouette score is: {}\n".format(np.mean(silhouette)))
self.silhouette = silhouette
def removeempty(self):
"""
removes matrix rows containing only zeros or nans
"""
to_keep = []
score_list = np.ma.masked_invalid(np.mean(self.matrix, axis=1))
for idx, region in enumerate(self.regions):
if np.ma.is_masked(score_list[idx]) or np.float(score_list[idx]) == 0:
continue
else:
to_keep.append(idx)
self.regions = [self.regions[x] for x in to_keep]
self.matrix = self.matrix[to_keep, :]
# adjust sample boundaries
to_keep = np.array(to_keep)
self.group_boundaries = [len(to_keep[to_keep < x]) for x in self.group_boundaries]
def flatten(self):
"""
flatten and remove nans from matrix. Useful
to get max and mins from matrix.
:return flattened matrix
"""
matrix_flatten = np.asarray(self.matrix.flatten())
# nans are removed from the flattened array
matrix_flatten = matrix_flatten[~np.isnan(matrix_flatten)]
if len(matrix_flatten) == 0:
num_nan = len(np.flatnonzero(np.isnan(self.matrix.flatten())))
raise ValueError("matrix only contains nans "
"(total nans: {})".format(num_nan))
return matrix_flatten
|