1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
|
import numpy as np
import matplotlib
matplotlib.use('Agg')
matplotlib.rcParams['pdf.fonttype'] = 42
matplotlib.rcParams['svg.fonttype'] = 'none'
from deeptools import cm # noqa: F401
import matplotlib.colors as pltcolors
import plotly.graph_objs as go
old_settings = np.seterr(all='ignore')
def plot_single(ax, ma, average_type, color, label, plot_type='lines'):
"""
Adds a line to the plot in the given ax using the specified method
Parameters
----------
ax : matplotlib axis
matplotlib axis
ma : numpy array
numpy array The data on this matrix is summarized according
to the `average_type` argument.
average_type : str
string values are sum mean median min max std
color : str
a valid color: either a html color name, hex
(e.g #002233), RGB + alpha tuple or list or RGB tuple or list
label : str
label
plot_type: str
type of plot. Either 'se' for standard error, 'std' for
standard deviation, 'overlapped_lines' to plot each line of the matrix,
fill to plot the area between the x axis and the value or any other string to
just plot the average line.
Returns
-------
ax
matplotlib axis
Examples
--------
>>> import matplotlib.pyplot as plt
>>> import os
>>> fig = plt.figure()
>>> ax = fig.add_subplot(111)
>>> matrix = np.array([[1,2,3],
... [4,5,6],
... [7,8,9]])
>>> ax = plot_single(ax, matrix -2, 'mean', color=[0.6, 0.8, 0.9], label='fill light blue', plot_type='fill')
>>> ax = plot_single(ax, matrix, 'mean', color='blue', label='red')
>>> ax = plot_single(ax, matrix + 5, 'mean', color='red', label='red', plot_type='std')
>>> ax = plot_single(ax, matrix + 10, 'mean', color='#cccccc', label='gray se', plot_type='se')
>>> ax = plot_single(ax, matrix + 20, 'mean', color=(0.9, 0.5, 0.9), label='violet', plot_type='std')
>>> ax = plot_single(ax, matrix + 30, 'mean', color=(0.9, 0.5, 0.9, 0.5), label='violet with alpha', plot_type='std')
>>> leg = ax.legend()
>>> plt.savefig("/tmp/test.pdf")
>>> plt.close()
>>> fig = plt.figure()
>>> os.remove("/tmp/test.pdf")
"""
summary = np.ma.__getattribute__(average_type)(ma, axis=0)
# only plot the average profiles without error regions
x = np.arange(len(summary))
if isinstance(color, np.ndarray):
color = pltcolors.to_hex(color, keep_alpha=True)
ax.plot(x, summary, color=color, label=label, alpha=0.9)
if plot_type == 'fill':
ax.fill_between(x, summary, facecolor=color, alpha=0.6, edgecolor='none')
if plot_type in ['se', 'std']:
if plot_type == 'se': # standard error
std = np.std(ma, axis=0) / np.sqrt(ma.shape[0])
else:
std = np.std(ma, axis=0)
alpha = 0.2
# an alpha channel has to be added to the color to fill the area
# between the mean (or median etc.) and the std or se
f_color = pltcolors.colorConverter.to_rgba(color, alpha)
ax.fill_between(x, summary, summary + std, facecolor=f_color, edgecolor='none')
ax.fill_between(x, summary, summary - std, facecolor=f_color, edgecolor='none')
ax.set_xlim(0, max(x))
return ax
def plotly_single(ma, average_type, color, label, plot_type='line'):
"""A plotly version of plot_single. Returns a list of traces"""
summary = list(np.ma.__getattribute__(average_type)(ma, axis=0))
x = list(np.arange(len(summary)))
if isinstance(color, str):
color = list(matplotlib.colors.to_rgb(color))
traces = [go.Scatter(x=x, y=summary, name=label, line={'color': "rgba({},{},{},0.9)".format(color[0], color[1], color[2])}, showlegend=False)]
if plot_type == 'fill':
traces[0].update(fill='tozeroy', fillcolor=color)
if plot_type in ['se', 'std']:
if plot_type == 'se': # standard error
std = np.std(ma, axis=0) / np.sqrt(ma.shape[0])
else:
std = np.std(ma, axis=0)
x_rev = x[::-1]
lower = summary - std
trace = go.Scatter(x=x + x_rev,
y=np.concatenate([summary + std, lower[::-1]]),
fill='tozerox',
fillcolor="rgba({},{},{},0.2)".format(color[0], color[1], color[2]),
line=go.Line(color='transparent'),
showlegend=False,
name=label)
traces.append(trace)
return traces
def getProfileTicks(hm, referencePointLabel, startLabel, endLabel, idx):
"""
returns the position and labelling of the xticks that
correspond to the heatmap
As of deepTools 3, the various parameters can be lists, in which case we then need to index things (the idx parameter)
As of matplotlib 3 the ticks in the heatmap need to have 0.5 added to them.
As of matplotlib 3.1 there is no longer padding added to all ticks. Reference point ticks will be adjusted by width/2
or width for spacing and the last half of scaled ticks will be shifed by 1 bin so the ticks are at the beginning of bins.
"""
w = hm.parameters['bin size']
b = hm.parameters['upstream']
a = hm.parameters['downstream']
if idx is not None:
w = w[idx]
b = b[idx]
a = a[idx]
try:
c = hm.parameters['unscaled 5 prime']
if idx is not None:
c = c[idx]
except:
c = 0
try:
d = hm.parameters['unscaled 3 prime']
if idx is not None:
d = d[idx]
except:
d = 0
m = hm.parameters['body']
if idx is not None:
m = m[idx]
if b < 1e5:
quotient = 1000
symbol = 'Kb'
else:
quotient = 1e6
symbol = 'Mb'
if m == 0:
xticks = [(k / w) for k in [0, b - 0.5 * w, b + a - w]]
xtickslabel = ['{0:.1f}'.format(-(float(b) / quotient)),
referencePointLabel,
'{0:.1f}{1}'.format(float(a) / quotient, symbol)]
else:
xticks_values = [0]
xtickslabel = []
# only if upstream region is set, add a x tick
if b > 0:
xticks_values.append(b)
xtickslabel.append('{0:.1f}'.format(-(float(b) / quotient)))
xtickslabel.append(startLabel)
# set the x tick for the body parameter, regardless if
# upstream is 0 (not set)
if c > 0:
xticks_values.append(b + c)
xtickslabel.append("")
if d > 0:
xticks_values.append(b + c + m)
xtickslabel.append("")
# We need to subtract the bin size from the last 2 point so they're placed at the beginning of the bin
xticks_values.append(b + c + m + d - w)
xtickslabel.append(endLabel)
if a > 0:
xticks_values.append(b + c + m + d + a - w)
xtickslabel.append('{0:.1f}{1}'.format(float(a) / quotient, symbol))
xticks = [(k / w) for k in xticks_values]
xticks = [max(x, 0) for x in xticks]
return xticks, xtickslabel
|