1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
|
import numpy as np
import multiprocessing
import time
from deeptools import countReadsPerBin
from deeptools.utilities import getTLen
from deeptoolsintervals import GTF
class SumCoveragePerBin(countReadsPerBin.CountReadsPerBin):
r"""This is an extension of CountReadsPerBin for use with plotFingerprint.
There, we need to sum the per-base coverage.
"""
def get_coverage_of_region(self, bamHandle, chrom, regions,
fragmentFromRead_func=None):
"""
Returns a numpy array that corresponds to the number of reads
that overlap with each tile.
>>> test = Tester()
>>> import pysam
>>> c = SumCoveragePerBin([], stepSize=1, extendReads=300)
For this case the reads are length 36. The number of overlapping
read fragments is 4 and 5 for the positions tested. Note that reads are
NOT extended, due to there being a 0 length input list of BAM files!
>>> c.get_coverage_of_region(pysam.AlignmentFile(test.bamFile_PE), 'chr2',
... [(5000833, 5000834), (5000834, 5000835)])
array([4., 5.])
In the following case the reads length is 50. Reads are not extended.
>>> c.extendReads=False
>>> c.get_coverage_of_region(pysam.AlignmentFile(test.bamFile2), '3R', [(148, 150), (150, 152), (152, 154)])
array([2., 4., 4.])
"""
if not fragmentFromRead_func:
fragmentFromRead_func = self.get_fragment_from_read
nbins = len(regions)
if len(regions[0]) == 3:
nbins = 0
for reg in regions:
nbins += (reg[1] - reg[0]) // reg[2]
coverages = np.zeros(nbins, dtype='float64')
if self.defaultFragmentLength == 'read length':
extension = 0
else:
extension = self.maxPairedFragmentLength
blackList = None
if self.blackListFileName is not None:
blackList = GTF(self.blackListFileName)
vector_start = 0
for idx, reg in enumerate(regions):
if len(reg) == 3:
tileSize = int(reg[2])
nRegBins = (reg[1] - reg[0]) // tileSize
else:
nRegBins = 1
tileSize = int(reg[1] - reg[0])
# Blacklisted regions have a coverage of 0
if blackList and blackList.findOverlaps(chrom, reg[0], reg[1]):
continue
regStart = int(max(0, reg[0] - extension))
regEnd = reg[1] + int(extension)
# If alignments are extended and there's a blacklist, ensure that no
# reads originating in a blacklist are fetched
if blackList and reg[0] > 0 and extension > 0:
o = blackList.findOverlaps(chrom, regStart, reg[0])
if o is not None and len(o) > 0:
regStart = o[-1][1]
o = blackList.findOverlaps(chrom, reg[1], regEnd)
if o is not None and len(o) > 0:
regEnd = o[0][0]
start_time = time.time()
# caching seems faster. TODO: profile the function
c = 0
try:
# BAM input
if chrom not in bamHandle.references:
raise NameError("chromosome {} not found in bam file".format(chrom))
except:
# bigWig input, as used by plotFingerprint
if bamHandle.chroms(chrom):
_ = np.array(bamHandle.stats(chrom, regStart, regEnd, type="mean", nBins=nRegBins), dtype=np.float)
_[np.isnan(_)] = 0.0
_ = _ * tileSize
coverages += _
continue
else:
raise NameError("chromosome {} not found in bigWig file with chroms {}".format(chrom, bamHandle.chroms()))
prev_pos = set()
lpos = None
# of previous processed read pair
for read in bamHandle.fetch(chrom, regStart, regEnd):
if read.is_unmapped:
continue
if self.minMappingQuality and read.mapq < self.minMappingQuality:
continue
# filter reads based on SAM flag
if self.samFlag_include and read.flag & self.samFlag_include != self.samFlag_include:
continue
if self.samFlag_exclude and read.flag & self.samFlag_exclude != 0:
continue
# Fragment lengths
tLen = getTLen(read)
if self.minFragmentLength > 0 and tLen < self.minFragmentLength:
continue
if self.maxFragmentLength > 0 and tLen > self.maxFragmentLength:
continue
# get rid of duplicate reads that have same position on each of the
# pairs
if self.ignoreDuplicates:
# Assuming more or less concordant reads, use the fragment bounds, otherwise the start positions
if tLen >= 0:
s = read.pos
e = s + tLen
else:
s = read.pnext
e = s - tLen
if read.reference_id != read.next_reference_id:
e = read.pnext
if lpos is not None and lpos == read.reference_start \
and (s, e, read.next_reference_id, read.is_reverse) in prev_pos:
continue
if lpos != read.reference_start:
prev_pos.clear()
lpos = read.reference_start
prev_pos.add((s, e, read.next_reference_id, read.is_reverse))
# since reads can be split (e.g. RNA-seq reads) each part of the
# read that maps is called a position block.
try:
position_blocks = fragmentFromRead_func(read)
except TypeError:
# the get_fragment_from_read functions returns None in some cases.
# Those cases are to be skipped, hence the continue line.
continue
last_eIdx = None
for fragmentStart, fragmentEnd in position_blocks:
if fragmentEnd is None or fragmentStart is None:
continue
fragmentLength = fragmentEnd - fragmentStart
if fragmentLength == 0:
continue
# skip reads that are not in the region being
# evaluated.
if fragmentEnd <= reg[0] or fragmentStart >= reg[1]:
continue
if fragmentStart < reg[0]:
fragmentStart = reg[0]
if fragmentEnd > reg[0] + len(coverages) * tileSize:
fragmentEnd = reg[0] + len(coverages) * tileSize
sIdx = vector_start + max((fragmentStart - reg[0]) // tileSize, 0)
eIdx = vector_start + min(np.ceil(float(fragmentEnd - reg[0]) / tileSize).astype('int'), nRegBins)
if eIdx >= len(coverages):
eIdx = len(coverages) - 1
if last_eIdx is not None:
sIdx = max(last_eIdx, sIdx)
if sIdx >= eIdx:
continue
# First bin
if fragmentEnd < reg[0] + (sIdx + 1) * tileSize:
_ = fragmentEnd - fragmentStart
else:
_ = reg[0] + (sIdx + 1) * tileSize - fragmentStart
if _ > tileSize:
_ = tileSize
coverages[sIdx] += _
_ = sIdx + 1
while _ < eIdx:
coverages[_] += tileSize
_ += 1
while eIdx - sIdx >= nRegBins:
eIdx -= 1
if eIdx > sIdx:
_ = fragmentEnd - (reg[0] + eIdx * tileSize)
if _ > tileSize:
_ = tileSize
elif _ < 0:
_ = 0
coverages[eIdx] += _
last_eIdx = eIdx
c += 1
if self.verbose:
endTime = time.time()
print("%s, processing %s (%.1f per sec) reads @ %s:%s-%s" % (
multiprocessing.current_process().name, c, c / (endTime - start_time), chrom, reg[0], reg[1]))
vector_start += nRegBins
# change zeros to NAN
if self.zerosToNans:
coverages[coverages == 0] = np.nan
return coverages
class Tester(object):
def __init__(self):
"""
The distribution of reads between the two bam files is as follows.
They cover 200 bp
0 100 200
|------------------------------------------------------------|
A ===============
===============
B =============== ===============
===============
===============
"""
import os
self.root = os.path.dirname(os.path.abspath(__file__)) + "/test/test_data/"
self.bamFile1 = self.root + "testA.bam"
self.bamFile2 = self.root + "testB.bam"
self.bamFile_PE = self.root + "test_paired2.bam"
self.chrom = '3R'
|