File: maj-rule-bug2.trees.nexus

package info (click to toggle)
python-dendropy 4.2.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 68,392 kB
  • ctags: 3,947
  • sloc: python: 41,840; xml: 1,400; makefile: 15
file content (233 lines) | stat: -rw-r--r-- 30,813 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
#NEXUS 
begin taxa ;
	dimensions ntax = 59 ; 
taxlabels 
	Weinbergina
	Limuloides
	Euproops
	Limulus
	Tachypleus
	Baltoeurypterus
	Stylonurus
	Chasmataspis
	Diploaspis
	Octoberaspis
	Prokoenenia
	Eukoenenia
	Plesiosiro
	Palaeocharinus
	Gilboarachne
	Liphistius
	Aphonopelma
	Hypochilus
	Charinus
	Phrynus
	Stenochrus
	Protoschizomus
	Mastigoproctus
	Proschizomus
	Terpsicroton
	Poliochera
	Cryptocellus
	Ricinoides
	Neocarus
	Siamacarus
	Australothyrus
	Allothyrus
	Glyptholaspis
	Amblyomma
	Argas
	Alycus
	Allothrombium
	Microcaeculus
	Palaeacarus
	Archegozetes
	Cyphophthalmus
	Chileogovea
	Caddo
	Leiobunum
	Sclerobunus
	Gonyleptes
	Centruroides
	Hadrurus
	Heterometrus
	Prearcturus
	Palaeoscorpius
	Stoermeroscorpio
	Proscorpius
	Chthonius
	Neobisium
	Feaella
	Chelifer
	Eremocosta
	Galeodes;

end ;

Begin trees;  [Treefile saved Wed Feb  4 09:51:44 2009]
[!
>Data file = /Users/jeet/Scratch/bug/utest.tre
>Tree(s) input to PAUP* as user-defined tree(s)
]
	Translate
		1 Weinbergina,
		2 Limuloides,
		3 Euproops,
		4 Limulus,
		5 Tachypleus,
		6 Baltoeurypterus,
		7 Stylonurus,
		8 Chasmataspis,
		9 Diploaspis,
		10 Octoberaspis,
		11 Prokoenenia,
		12 Eukoenenia,
		13 Plesiosiro,
		14 Palaeocharinus,
		15 Gilboarachne,
		16 Liphistius,
		17 Aphonopelma,
		18 Hypochilus,
		19 Charinus,
		20 Phrynus,
		21 Stenochrus,
		22 Protoschizomus,
		23 Mastigoproctus,
		24 Proschizomus,
		25 Terpsicroton,
		26 Poliochera,
		27 Cryptocellus,
		28 Ricinoides,
		29 Neocarus,
		30 Siamacarus,
		31 Australothyrus,
		32 Allothyrus,
		33 Glyptholaspis,
		34 Amblyomma,
		35 Argas,
		36 Alycus,
		37 Allothrombium,
		38 Microcaeculus,
		39 Palaeacarus,
		40 Archegozetes,
		41 Cyphophthalmus,
		42 Chileogovea,
		43 Caddo,
		44 Leiobunum,
		45 Sclerobunus,
		46 Gonyleptes,
		47 Centruroides,
		48 Hadrurus,
		49 Heterometrus,
		50 Prearcturus,
		51 Palaeoscorpius,
		52 Stoermeroscorpio,
		53 Proscorpius,
		54 Chthonius,
		55 Neobisium,
		56 Feaella,
		57 Chelifer,
		58 Eremocosta,
		59 Galeodes
		;
tree PAUP_1 = [&U] (1,((2,(3,(4,5))),(((6,((8,9,10),(((((47,48),49),50),52,53),51))),7),(((11,((13,((14,15),((16,(17,18)),(19,(20,((21,22),23,24)))))),(58,59))),12),(25,26,(27,28),((((29,30),((41,42),(43,44,(45,46)))),(((31,32),33),(34,35))),(((36,(39,40)),(37,38)),(54,(55,57),56))))))));
tree PAUP_2 = [&U] (1,(2,(((((3,(4,5)),(((11,12),(((((13,(19,(20,((21,22),23,24)))),(16,(17,18))),(14,15)),(25,26,(27,28))),(((29,30),((31,(34,(35,((36,(39,40)),(37,38))))),32,33)),((54,(55,57),56),(58,59))))),((41,42),(43,44,(45,46),(((47,((48,49),50)),51),52,53))))),6,7),9,10),8)));
tree PAUP_3 = [&U] (1,((2,3,(4,5)),(((6,(8,9,10)),7),((((((11,(12,13)),((14,15),(16,(17,18)),(19,(20,((21,(22,24)),23))))),((((25,26,(27,28)),(29,30)),(((31,(32,33)),34),35)),((36,(39,40)),(37,38)))),(((54,(56,57)),55),(58,59))),((((47,48,51),50),49),52,53)),((41,42),(43,44,(45,46)))))));
tree PAUP_4 = [&U] (1,(2,(((3,(4,5)),8),((6,(7,((((11,13),12),(((14,15),((16,17,18),(19,(20,((21,(22,24)),23))))),((((25,26,(27,28)),((29,30),((31,34,35),(32,33)))),((36,(39,40)),(37,38))),((((54,56),57),55),(58,59))))),(((41,42),(43,44,(45,46))),((((47,48),49),50),51,52,53))))),9,10))));
tree PAUP_5 = [&U] (1,(2,(3,((4,5),(((6,(8,(9,10))),7),(((11,12),(((13,(19,(20,((21,22,24),23)))),(16,(17,18))),((14,15),(((25,26),27,28),((((29,(36,(((37,38),39),40))),30),((31,32),33)),(34,35))),((54,(55,57),56),(58,59))))),(((41,42),43,44,(45,46)),(((47,(48,49),50),51),52,53))))))));
tree PAUP_6 = [&U] (1,(2,((3,(4,5)),(((6,(8,9,10)),7),(((((11,12),(((13,(19,(20,((21,22),23,24)))),(14,15),16,18),17)),((54,(55,57),56),(58,59))),((25,26,(27,28)),((((((29,30),39),40),36),(37,38)),(((31,32),(34,35)),33)))),(((41,42),(43,44,(45,46))),(((47,(48,49)),50),51,52,53)))))));
tree PAUP_7 = [&U] (1,(2,(((((((((((((3,45,46),43,44),(41,42)),(4,5)),((((11,12),(((29,30),((31,(32,33)),34,35)),((36,(37,38)),(39,40)))),(58,59)),(54,(55,57),56))),((6,7),((8,9,10),((47,(48,((49,50),51))),52,53)))),(14,15),(16,(17,18))),13),19),20),23,24),(21,22)),((25,26),27,28))));
tree PAUP_8 = [&U] (1,(2,(3,(4,5,(((6,7),(((((((((11,12),((((25,26,(27,28)),(29,30)),(((31,32),33),34,35)),((36,((37,38),39)),40))),13,(58,59)),((14,15),(16,17,18),(19,(20,((21,(22,24)),23))))),(54,(55,57),56)),((41,42),(43,44,(45,46)))),((47,48),49),50,52),53),51)),(8,9,10))))));
tree PAUP_9 = [&U] (1,((2,(3,(4,5)),(8,9,10)),(6,7,(((((((11,12),((25,26,(27,28)),((29,30),(((31,32),33),(34,35)))),(36,(((37,38),39),40))),(14,15)),((13,(19,(20,((21,22),23,24)))),(16,17,18))),((54,(55,57),56),(58,59))),((41,42),(43,44,(45,46)))),((((((47,48),49),50),52),53),51)))));
tree PAUP_10 = [&U] (1,((2,(((3,(4,5)),(((((11,((14,15),((16,(17,18)),(19,(20,((21,22,24),23)))))),12),((25,26,(27,28)),((((29,30),(((31,32),33),(34,35))),((54,(55,57),56),(58,59))),((36,(39,40)),(37,38))))),((((41,42),(43,44,(45,46))),((47,(48,49)),50),52,53),51)),13)),(8,9,10))),(6,7)));
tree PAUP_11 = [&U] (1,(2,((3,(4,5)),(((6,7),(8,(9,10))),((((((11,(((13,(19,(20,((21,22),23,24)))),(16,(17,18))),(14,15))),12),(((25,26,(27,28)),((29,(30,((36,40),((37,38),39)))),(((31,(34,35)),32),33))),(58,59))),(54,(55,57),56)),((((41,42),(43,44,(45,46))),((47,48),49)),50),51,52),53)))));
tree PAUP_12 = [&U] (1,((2,(3,(4,5))),(((6,(8,(9,10))),7),((((((11,12),((13,(19,(20,((21,22,24),23)))),(14,15),(16,17,18))),(((25,26,(27,28)),((29,30),((31,32),33,(34,35)))),((36,(39,40)),(37,38)))),((((54,56),57),55),(58,59))),((41,42),(43,(44,45,46)))),((((47,(48,49)),50),52,53),51)))));
tree PAUP_13 = [&U] (1,((2,(3,(4,5))),((6,(8,9,10)),7,((((11,12),(58,59)),(((13,(19,(20,((21,22),23,24)))),((14,15),(16,(17,18)))),(((25,26,(27,28)),((29,30),((31,32),33,(34,35)))),((36,(39,40)),(37,38))))),(((41,42),(43,44,(45,46))),(((((47,48),49),51),50,52,53),(54,(55,57),56)))))));
tree PAUP_14 = [&U] (1,(2,((3,(4,5)),((6,(8,(9,10))),7,((((((((11,12),(58,59)),(((29,30),(((31,(34,35)),32),33)),((36,(39,40)),(37,38)))),(25,26,(27,28))),((13,(19,(20,((21,22,24),23)))),(14,15),(16,(17,18)))),(54,(55,57),56)),((41,42),(43,(44,(45,46))))),((((47,(48,49,50)),52),53),51))))));
tree PAUP_15 = [&U] (1,(2,(3,((4,5),(((6,7,(((11,12),(((((13,(19,(20,((21,22),23,24)))),(16,(17,18))),(14,15)),(((25,26,(27,28)),((29,30),((31,(34,35)),(32,33)))),((36,(39,40)),(37,38)))),((((54,56),57),55),(58,59)))),(((41,42),43,44,(45,46)),(((((47,48),49),50),52,53),51)))),8),9,10)))));
tree PAUP_16 = [&U] (1,(2,(((((((3,5),4),((6,7,(8,9,10)),((((47,48),49,50),51,52),53))),((((13,((19,20),((21,(22,24)),23))),(16,(17,18))),(14,15)),((54,(55,57),56),(58,59)))),((41,42),(43,44,(45,46)))),((25,26,(27,28)),(((29,30),(((31,32),33),(34,35))),(36,(((37,38),39),40))))),11,12)));
tree PAUP_17 = [&U] (1,(2,(3,((4,5),((6,((8,9,10),((47,(((48,49),51),50)),52,53))),7,(((((11,12),(((29,30),((31,(32,33)),(34,35))),((36,(39,40)),(37,38)))),(25,26,(27,28))),(13,(14,15),(16,(17,18)),(19,(20,((21,22),23,24))))),((((54,56),57),55),(58,59)))),((41,42),(43,44,(45,46)))))));
tree PAUP_18 = [&U] (1,(2,(3,((4,5),(((6,(8,(9,10))),7),(((((11,12),(((13,(19,(20,((21,22),23,24)))),(16,17,18)),(14,15))),((((25,26,(27,28)),(29,30)),(((31,32),33),(34,35))),((36,(39,40)),(37,38)))),((54,(55,57),56),(58,59))),((41,42),((43,44,(45,46)),((47,(48,49,50)),51,52,53)))))))));
tree PAUP_19 = [&U] (1,(2,(3,((4,5),(((6,(8,9,10)),7),(((11,12),13),(((14,15),(16,(17,18)),(19,(20,(((21,24),22),23)))),((((25,26,(27,28)),((29,30),((31,32,33),(34,35)))),((36,(39,40)),(37,38))),(54,((55,(58,59)),57),56))),(((41,42),(43,44,(45,46))),((((47,(48,49)),50),52,53),51))))))));
tree PAUP_20 = [&U] (1,(2,((3,(4,5)),((6,(8,9,10)),7,((((((((11,((((((13,23),(21,22),24),20),19),(16,17,18)),(14,15))),12),((((41,42),(43,44,(45,46))),((((47,48),49,50),52,53),51)),(54,(55,57),56))),40),36),(((((25,26,(27,28)),(58,59)),(((31,(34,35)),32),33)),29),30)),39),37,38)))));
tree PAUP_21 = [&U] (1,((2,(8,9,10)),(((3,4,5),(((((11,12),(((25,26,(27,28)),(((31,(34,35)),32),33)),((29,30),((36,(37,38)),(39,40))))),(((13,(19,(20,((21,22),23,24)))),(16,17,18)),(14,15))),((54,(55,57),56),(58,59))),((41,42),(43,44,(45,46))),((((47,48),49),50),51,52,53))),6,7)));
tree PAUP_22 = [&U] (1,(2,(((3,(4,5)),8),((6,7,(((11,12),((((41,42),43,44,(45,46)),((((47,48),49),50,52,53),51)),((54,55,56,57),(58,59)))),(13,((14,15),(((25,26,(27,28)),((29,30),((31,(32,33)),(34,35)))),((36,(39,40)),(37,38)))),((16,(17,18)),(19,(20,((21,22),23,24))))))),9,10))));
tree PAUP_23 = [&U] (1,(2,((((((((((((3,5),4),(6,7)),((8,9,10),(((((47,48),49),50),52),51,53))),(((13,(19,(20,((21,22),23,24)))),(16,(17,18))),(14,15)),((((54,56),57),55),(58,59))),((41,42),(43,44,(45,46)))),(11,12)),((36,(37,38)),(39,40))),33),((31,32),(34,35))),(29,30)),(25,26,(27,28)))));
tree PAUP_24 = [&U] (1,((2,(3,4,5)),(((6,(8,9,10)),7),((((((11,12),(((25,26,(27,28)),((29,30),(((31,(34,35)),32),33)),((((36,40),39),38),37)),(58,59))),(((13,(19,(20,((21,22),23,24)))),(16,(17,18))),(14,15))),(((54,56),57),55)),((41,42),(43,44,(45,46)))),((((47,(48,49)),50),52,53),51)))));
tree PAUP_25 = [&U] (1,(2,((3,(4,5)),((6,(8,9,10)),7,(((((((11,12),(((((((13,23),((21,24),22)),20),19),(14,15)),16,18),17)),(58,59)),((29,30),((36,(37,38)),39,40))),(((31,32),33),(34,35))),(25,26,(27,28))),((41,42),(43,(44,45,46))),(((((47,48),49),50,52,53),51),(54,55,56,57)))))));
tree PAUP_26 = [&U] (1,((2,(((3,4,5),8),9,10)),((6,7),((11,12),((13,((((((29,30),(32,33)),31),34),35),((36,(39,40)),(37,38))),((((41,42),43,44,(45,46)),((((47,48,50),49),51),52,53)),((54,(55,57),56),(58,59)))),(((14,15),(25,26,(27,28))),((16,(17,18)),((19,20),((21,22),23,24)))))))));
tree PAUP_27 = [&U] (1,(2,(((3,(4,5)),(((((((((11,12),(((13,((19,20),((21,22),23,24))),(16,17,18)),(14,15))),(58,59)),((29,30),(36,(37,38),(39,40)))),((25,26),27,28)),(32,33)),31),34,35),(((41,42),(43,44,(45,46))),((((47,(48,49,50)),51),52,53),(54,(55,57),56))))),((6,(8,9,10)),7))));
tree PAUP_28 = [&U] (1,((2,(3,(4,5))),((6,(8,(9,10))),7,((((((11,12),(58,59)),((41,42),(43,44,(45,46)))),(((29,30),(((31,32),(34,35)),33)),(36,(37,38),(39,40)))),((14,15),(25,26,(27,28)))),((((13,(((21,22),24),23)),20),19),(16,(17,18))),((((((47,48),49),50),52,53),51),(54,55,(56,57)))))));
tree PAUP_29 = [&U] (1,(2,(((3,(4,5)),8),(((6,7),((((((11,12),(((13,((19,20),((21,22,24),23))),(16,(17,18))),(14,15))),((25,26,(27,28)),((29,30),(((31,32),33,(34,35)),(36,((37,38),39),40))))),(58,59)),(54,(55,57),56)),(((41,42),(43,44,(45,46))),(((47,48,50),49),51,52,53)))),9,10))));
tree PAUP_30 = [&U] (1,(2,((3,(4,5)),((6,(8,9,10)),7,((11,12),(((13,(19,(20,((21,22),23,24)))),(14,15),(16,17,18)),((((25,26,(27,28)),((((29,30),((31,32),33)),34),35)),((36,(39,40)),(37,38))),((54,(55,57),56),(58,59)))),(((41,42),43,44,(45,46)),(((((47,48),49),50),52,53),51)))))));
tree PAUP_31 = [&U] (1,(2,(((3,5),4),(((6,(8,9,10)),7),((((11,12),(((((25,26,(27,28)),(29,30)),((31,32),(34,35))),33),(36,(((37,38),39),40)))),(((13,(19,(20,((21,22),23,24)))),(16,(17,18))),(14,15)),((54,(55,57),56),(58,59))),(((41,42),(43,44,(45,46))),(((47,(48,49)),50),51,52,53)))))));
tree PAUP_32 = [&U] (1,((2,(3,(4,5),8),(9,10)),(6,7,((((11,12),(((25,26,(27,28)),((29,30),((31,(32,33)),(34,35)))),((36,(39,40)),(37,38)))),((((((13,((21,(22,24)),23)),20),19),(16,17,18)),(14,15)),((54,55,56,57),(58,59)))),(((41,42),(43,44,(45,46))),(((((47,48),49),50),52,53),51))))));
tree PAUP_33 = [&U] (1,((2,((3,(4,5)),(8,(9,10)))),((6,7),((11,12),(((((13,(19,(20,((21,(22,24)),23)))),(16,(17,18))),(14,15)),(((25,26,(27,28)),(((29,30),((31,32),33,(34,35))),((54,55,(56,57)),(58,59)))),(36,(((37,38),39),40)))),(((41,42),(43,44,(45,46))),(((47,(48,49)),50,51),52,53)))))));
tree PAUP_34 = [&U] (1,((2,(3,(4,5)),(8,(9,10))),((6,7),((((11,((14,15),((16,(17,18)),(19,(20,(((21,24),22),23)))))),12),13,(((25,26,(27,28)),((29,(30,((36,(39,40)),(37,38)))),((31,(34,35)),32,33))),((((54,56),57),55),(58,59)))),((41,42),((43,44,(45,46)),((47,((48,49),51),50),52,53)))))));
tree PAUP_35 = [&U] (1,((2,(3,(4,5))),(6,7,(8,9,10),((((((11,12),13,((16,(17,18)),(19,(20,((21,22),23,24))))),(14,15)),(58,59)),((25,26,(27,28)),(((29,30),(((31,32),33),(34,35))),((36,40),(37,(38,39)))))),(((41,42),(43,44,(45,46))),((((((47,48),49),50),52,53),51),(54,(55,57),56)))))));
tree PAUP_36 = [&U] (1,(2,((((3,5),4),(((11,12),((((13,(19,(20,((21,22),23,24)))),(16,(17,18))),(14,15)),((((25,26,(27,28)),(29,30)),(((31,32),33),(34,35))),(36,(((37,38),39),40))),((54,(55,57),56),(58,59)))),(((41,42),(43,44,(45,46))),(((47,(48,49)),50,52,53),51)))),((6,(8,(9,10))),7))));
tree PAUP_37 = [&U] (1,(2,((((3,(4,5)),8),((6,7),((((((11,12),(((13,(19,(20,((21,22),23,24)))),(16,(17,18))),(14,15))),(((25,26,(27,28)),((29,30),(((31,32),(34,35)),33))),((36,(39,40)),(37,38)))),((54,(55,57),56),(58,59))),((((41,42,(43,44,(45,46))),(47,(48,49))),50),51),52),53))),9,10)));
tree PAUP_38 = [&U] (1,(2,(((3,(4,5)),(((((((11,12),(((25,26,(27,28)),(29,30)),((36,(39,40)),(37,38)),(58,59))),(((31,(34,35)),32),33)),(((13,(19,(20,((21,22),23,24)))),(16,(17,18))),(14,15))),(54,(55,57),56)),((47,(48,49,50)),51,52,53)),((41,42),(43,44,(45,46))))),(6,(8,9,10)),7)));
tree PAUP_39 = [&U] (1,(2,((3,(4,5)),((6,7,(8,9,10)),((((11,12),((13,(19,(20,(((21,24),22),23)))),(14,15),(16,17,18))),(((25,26,(27,28)),((((29,30),((36,(39,40)),(37,38))),((31,(32,33)),(34,35))),((((54,56),57),55),(58,59)))),((41,42),(43,(44,45,46))))),(((((47,48),49),50,52),53),51))))));
tree PAUP_40 = [&U] (1,((2,(3,(4,5))),((6,(8,(9,10))),7,((((((11,12),(((13,(19,(20,((21,22),23,24)))),(16,(17,18))),(14,15))),(58,59)),((25,26,(27,28)),(((29,30),(((31,(34,35)),32),33)),((36,(39,40)),(37,38))))),((((47,48,50,51),49),52,53),(54,(55,57),56))),((41,42),(43,44,(45,46)))))));
tree PAUP_41 = [&U] (1,((2,(3,(4,5)),(8,(9,10))),(6,7,(((((11,12),(((25,26,(27,28)),((29,30),(((31,(34,35)),32),33))),((36,(39,40)),(37,38)))),((13,(14,15),((16,17,18),(19,(20,(((21,22),24),23))))),((54,55,56,57),(58,59)))),((41,42),(43,44,(45,46)))),(((47,(48,49)),50),51,52,53)))));
tree PAUP_42 = [&U] (1,(2,(((((3,(4,5)),8),9,10),6),7,((((((11,12),(58,59)),(((25,26,(27,28)),(((31,32),33),34,35)),((29,30),(36,(((37,38),39),40))))),13,((((41,42),43),44),45,46)),(14,15)),((16,(17,18)),((19,20),((21,22),23,24))),((((((47,50),51),48),49),52,53),(54,(55,57),56))))));
tree PAUP_43 = [&U] (1,(2,((((((((((((3,5),4),(6,7)),(((8,(9,10)),((47,(48,49,50)),51,52,53)),((41,42),(43,44,(45,46))))),(((((((25,26),27,28),(31,32),(34,35)),(29,30)),33),((36,(39,40)),(37,38))),((((54,56),57),55),(58,59)))),(11,12)),(14,15)),13,(16,(17,18))),19),20),(21,22),24),23)));
tree PAUP_44 = [&U] (1,((2,(3,(4,5))),(((6,(8,9,10)),7),(((((((11,12),(58,59)),((13,((19,20),((21,22),23,24))),((14,15),(16,(17,18))))),((((25,26,(27,28)),(29,30)),(((31,(32,33)),34),35)),((36,(39,40)),(37,38)))),(54,55,56,57)),((41,42),(43,44,(45,46)))),((((47,48),49),50),51,52,53)))));
tree PAUP_45 = [&U] (1,((2,((3,(4,5)),(8,(9,10)))),(6,7,(((((((11,12),((13,(19,(20,((21,22),23),24))),((14,15),(16,17,18)))),(58,59)),(29,30)),(25,26,(27,28))),((((31,(32,33)),34),35),((36,(39,40)),(37,38)))),(((41,42),(43,44,(45,46))),((((47,48),49),50,51,52,53),(54,(55,57),56)))))));
tree PAUP_46 = [&U] (1,(2,(3,(4,(5,(((6,(8,(9,10))),7),((((11,12),((25,26,(27,28)),(((29,30),((54,(55,57),56),(58,59))),((((31,(32,33)),34),35),((36,(39,40)),(37,38)))))),(((13,(19,(20,((21,22),23,24)))),(16,(17,18))),(14,15))),(((41,42),(43,44,(45,46))),(((47,(48,49),50),52,53),51)))))))));
tree PAUP_47 = [&U] (1,(2,((((3,5),4),(((11,12),((((13,(19,(20,((21,22),23,24)))),(16,(17,18))),(14,15)),((((25,26,(27,28)),(((54,(56,57)),55),(58,59))),((29,30),((31,(34,35)),(32,33)))),((36,(39,40)),(37,38))))),(((41,42),43,44,(45,46)),(((47,(48,49)),50,51),52,53)))),((6,(8,(9,10))),7))));
tree PAUP_48 = [&U] (1,(2,3,(((4,5),8),6,7,((11,12),(((((13,(((21,22),24),23)),20),19),(16,(17,18))),((14,15),((((((25,26),27,28),((((29,30),(31,(32,33))),34),35)),((36,(39,40)),(37,38))),(((41,42,(43,44,(45,46))),((((47,48),49),50,52,53),51)),(54,55,(56,57)))),(58,59)))))),(9,10)));
tree PAUP_49 = [&U] (1,(2,(3,((4,5),(((6,7),((8,(9,10)),51,(52,53))),(((11,12),((((13,((19,20),((21,22),23,24))),(16,(17,18))),(14,15)),((((25,26,(27,28)),((29,30),((((31,32),33),34),35))),((36,(39,40)),(37,38))),((((54,56),57),55),(58,59))))),((((41,42),((47,48,50),49)),43,44),(45,46))))))));
tree PAUP_50 = [&U] (1,(2,(((((((((((((3,5),4),(((((((((6,(8,9,10)),7),51),53),52),(47,(48,49)),50),41,42),43,44),(45,46))),(11,12)),(((25,26,(27,28)),((29,30),(((31,32),33),(34,35)))),((36,(39,40)),(37,38)))),((54,(55,57),56),(58,59))),(14,15)),(16,(17,18))),13),19),20),(21,22),24),23)));
tree PAUP_51 = [&U] (1,((2,(((3,4,5),8),(9,10))),((6,7),((((((11,12),((((25,26),27,28),((((29,30),(31,(32,33))),34),35)),((36,(39,40)),(37,38)))),13,((41,42),(43,44,(45,46)))),((((54,56),57),55),(58,59))),((14,15),((16,(17,18)),(19,(20,((21,22,24),23)))))),(((((47,(48,49)),50),52),51),53)))));
tree PAUP_52 = [&U] (1,(2,((((((((((((3,(4,5)),13),(((41,42),43,44),45,46)),(((6,(8,(9,10))),7),(((47,(48,49)),50),51,52,53))),((54,(55,57),56),(58,59))),(((11,12),(25,26,(27,28))),(((((29,30),(39,40)),36),(37,38)),(((31,(32,33)),34),35)))),(16,17,18)),(14,15)),19),20),((21,22),24)),23)));
tree PAUP_53 = [&U] (1,(2,(3,((4,5),(((6,(8,(9,10))),7),((((((11,12),(((14,15),(16,(17,18))),(19,(20,((21,22),23,24))))),13,(36,(((37,38),39),40))),(((25,26,(27,28)),((((54,56),57),55),58,59)),(29,30))),((31,(32,33)),(34,35))),((41,42),((43,44,(45,46)),(((47,48,49,50),51),52,53)))))))));
tree PAUP_54 = [&U] (1,(2,((((((3,(4,5)),8),9,10),((((((11,12),(58,59)),(((((13,(19,(20,((21,22),23,24)))),(16,17,18)),(14,15)),(((25,26),27,28),((31,32),33),(34,35))),((29,30),((36,(39,40)),(37,38))))),(((54,56),57),55)),((41,42),(43,44,(45,46)))),(((((47,48),49),50),52,53),51))),6),7)));
tree PAUP_55 = [&U] (1,(2,(((((3,(4,5)),8),(9,10)),(((11,12),(((((13,(16,17,18),((19,20,((21,22),23,24)),(25,26,(27,28)))),(14,15)),(((54,56),(55,57)),(58,59))),((29,30),(((31,32),33),(34,35)))),((36,(39,40)),(37,38)))),((((((41,42),(47,(48,(49,50)))),43),44),(45,46)),52,53),51)),(6,7))));
tree PAUP_56 = [&U] (1,(2,(((3,4,5),(((((11,12),13,(58,59)),((14,15),((16,(17,18)),(19,(20,((21,(22,24)),23)))))),((((25,26,(27,28)),(29,30)),((31,(32,33)),34,35)),(36,(((37,38),39),40)))),((41,42),(43,44,(45,46))),((((47,48,49,50),52,53),51),(54,(55,57),56)))),((6,(8,(9,10))),7))));
tree PAUP_57 = [&U] (1,(2,(3,((4,5),(((6,7),((8,9,10),((((47,(48,49)),50),52),53),51)),((((11,12),((14,15),((25,26,(27,28)),((((29,30),(((31,(34,35)),32),33)),((36,(39,40)),(37,38))),((54,(55,57),56),(58,59)))))),((13,(19,(20,((21,22),23,24)))),(16,(17,18)))),((41,42),(43,44,(45,46)))))))));
tree PAUP_58 = [&U] (1,(2,((((3,(4,5),((6,7),(8,9,10))),((41,42),((43,44,(45,46)),((((47,(48,49)),50),51),52,53)))),((((13,(19,(20,((21,22),23,24)))),(16,(17,18))),(14,15)),(((25,26,(27,28)),(((29,30),(((31,32),33),(34,35))),((36,(39,40)),(37,38)))),((54,55,(56,57)),(58,59))))),(11,12))));
tree PAUP_59 = [&U] (1,(2,(((((3,(4,5)),8),9,10),6),7,((((((11,12),((((41,42),43,44,(45,46)),(((((47,48),49),50),52,53),51)),((54,(55,57),56),(58,59)))),(((13,(19,20),((21,22),23,24)),(16,(17,18))),(14,15))),((29,30),(36,(((37,38),39),40)))),(25,26,(27,28))),(((31,32),33),(34,35))))));
tree PAUP_60 = [&U] (1,(2,(((((((3,(4,5)),13),(((6,(8,(9,10))),7),((47,48,49,50,51),52,53)),((41,42),(43,44,(45,46)))),((((29,30),((31,32),33,(34,35))),((36,(39,40)),(37,38))),((((54,56),57),55),(58,59)))),(25,26,(27,28))),((14,15),((16,17,18),(19,(20,((21,(22,24)),23)))))),11,12)));
tree PAUP_61 = [&U] (1,(2,(((((3,5),4),(((((11,12),((13,(19,(20,((21,22),23,24)))),(14,15),(16,(17,18)))),(((25,26),27,28),((((29,(30,((36,(37,38)),39,40))),((31,32),33)),34),35))),((54,(55,57),56),(58,59))),(41,42,(43,44,(45,46))))),((((47,(48,49,50)),52),53),51)),(6,(8,9,10)),7)));
tree PAUP_62 = [&U] (1,(2,(((((3,(4,5)),8),9,10),6),7,(((((11,12),((25,26,(27,28)),((29,(30,((36,(37,38)),(39,40)))),((31,32),33,(34,35))))),(((41,42),43,44,(45,46)),(((((47,48),49,50),52,53),51),(54,(55,57),56))),(58,59)),(14,15)),(13,(19,(20,((21,22),23,24)))),(16,(17,18))))));
tree PAUP_63 = [&U] (1,(2,((3,(4,5)),(((6,(7,((((((11,12),((((13,(19,(20,((21,22),23,24)))),(16,17,18)),(14,15)),((((54,56),57),55),(58,59)))),((36,(39,40)),(37,38))),((29,30),(((31,32),(34,35)),33))),(25,26,(27,28))),((41,42),(43,44,(45,46)))))),8,9,(((((47,48),49,50),52),53),51)),10))));
tree PAUP_64 = [&U] (1,(2,(((3,4,5),(((11,12),(((13,((14,15),(16,(17,18))),(19,(20,((21,22),23,24)))),((((25,26,(27,28)),(29,30)),(((31,(32,33)),34),35)),((36,(39,40)),(37,38)))),((54,(55,57),56),(58,59)))),(((41,42),(43,44,(45,46))),(((((47,48),49),50),52,53),51)))),((6,(8,9,10)),7))));
tree PAUP_65 = [&U] (1,((2,(3,(4,5))),((6,7),(((8,9,10),(((41,42),(43,44,(45,46))),(((47,48),49),50),52,53),51),((11,12),13,((14,15),(16,17,18),(19,(20,((21,22),23,24))))),((((25,26,(27,28)),((29,30),((31,(32,33)),(34,35)))),((36,(39,40)),(37,38))),(((54,56,57),55),(58,59)))))));
tree PAUP_66 = [&U] (1,((2,(8,9,10)),((((3,4,5),((41,42,((47,(48,49)),(50,51,52,53))),(43,44,(45,46)))),(((((11,12),((((29,30),(((31,32),33),(34,35))),(36,((37,38),39),40)),(58,59))),(25,26,(27,28))),(13,((14,15),(16,17,18)),(19,(20,(((21,24),22),23))))),(54,(55,57),56))),6,7)));
tree PAUP_67 = [&U] (1,((2,(3,(4,5)),(8,9,10)),((6,7),((((11,12),(((((13,((14,15),(16,(17,18)))),19),20),23,24),(21,22))),(((25,26),27,28),((((29,30),(((36,40),39),(37,38))),((31,32),33)),(34,35)))),((((41,42),(43,44,(45,46))),(((47,48),49),50,51,52,53)),(54,((55,(58,59)),57),56))))));
tree PAUP_68 = [&U] (1,(2,((((3,(4,5)),(((((11,12),(19,(20,(((21,24),22),23)))),13),(14,15),(16,(17,18))),((((25,26,(27,28)),(((29,30),(((36,40),39),37,38)),(58,59))),(((31,32),33),(34,35))),(((41,42),(43,44,(45,46))),((((47,48,49,50),52,53),51),(54,(55,57),56)))))),(6,7)),(8,9,10))));
tree PAUP_69 = [&U] (1,(2,(((((3,(4,5)),((((((11,12),13),((14,15),((16,17,18),(19,(20,((21,22,24),23)))))),(((25,26,(27,28)),(58,59)),(29,30),((36,(39,40)),(37,38)))),(((31,32),33),(34,35))),(((41,42),(43,44,(45,46))),(((((47,(48,49)),50),52,53),51),(54,(55,57),56))))),(6,7)),8),9,10)));
tree PAUP_70 = [&U] (1,(2,(3,4,5),(((6,7,(((11,12),((((13,(19,(20,((21,22),23,24)))),(16,(17,18))),(14,15)),((((25,26,(27,28)),((29,30),((31,(34,35)),(32,33)))),((36,(39,40)),(37,38))),((54,(55,57),56),(58,59))))),(((41,42),(43,44,(45,46))),((47,((48,49),50)),51,52,53)))),8,9),10)));
tree PAUP_71 = [&U] (1,(2,(3,(4,5)),((6,7,(8,9,10)),((((((11,(((13,(19,(20,((21,22),23,24)))),(16,(17,18))),(14,15))),12),((54,(55,57),56),(58,59))),(((25,26,(27,28)),(29,30),(((31,32),33),34,35)),((36,(39,40)),(37,38)))),((41,42),(43,44,(45,46)))),((47,48,50),49),51,52,53))));
tree PAUP_72 = [&U] (1,(2,(((((((((((((((((((3,(4,5)),10),8,9),(6,7)),51),53),((47,48),49),50,52),((41,42),(43,44,(45,46)))),(54,55,(56,57))),(58,59)),(((25,26,(27,28)),((29,30),(((31,32),33),(34,35)))),((36,(39,40)),(37,38)))),(11,12)),(14,15)),(16,(17,18))),13),19),20),(21,22),24),23)));
tree PAUP_73 = [&U] (1,(2,(3,((4,5),((6,(8,9,10)),7),(((11,12),(13,(((14,15),((16,(17,18)),(19,(20,((21,22),23,24))))),(((((((47,48),49),50),52,53),51),54,(55,57),56),(58,59))),(((25,26,(27,28)),((29,30),(((31,32),33),(34,35)))),((36,(39,40)),(37,38))))),((41,42),(43,44,(45,46))))))));
tree PAUP_74 = [&U] (1,(2,(((((3,(4,5)),8),((((((11,12),(((13,(19,(20,((21,22),23,24)))),(16,(17,18))),(14,15))),((54,(55,57),56),(58,59))),(((25,26,(27,28)),((29,30),((31,(32,33)),(34,35)))),((36,(39,40)),(37,38)))),((41,42),(43,44,(45,46)))),(((((47,48),49),50),52,53),51))),9,10),(6,7))));
tree PAUP_75 = [&U] (1,((2,(3,(4,5))),((6,(8,9,10)),7,((((((11,12),(((13,(19,(20,((21,22),23,24)))),(16,(17,18))),(14,15))),(((25,26),27,28),((((29,30),(31,32),33),34),35)),((36,((37,38),39)),40)),(54,(55,57,(58,59)),56)),((41,42),(43,44,(45,46)))),((((47,48),49),50,52,53),51)))));
tree PAUP_76 = [&U] (1,((2,(3,(4,5)),(8,9,10)),(6,7,(((11,12),((((13,((14,15),((16,17,18),(19,(20,((21,22),23,24)))))),(25,26,(27,28))),((((31,(32,33)),34),35),((36,(39,40)),(37,38)))),((29,30),((54,(55,57),56),(58,59))))),(((41,42),43,44,(45,46)),(((47,(48,49)),50),51,52,53))))));
tree PAUP_77 = [&U] (1,(2,(3,((4,5),(((6,(8,(9,10))),7),(((11,12),13),(((14,15),((((25,26,(27,28)),(((36,(39,40)),(37,38)),(54,(55,57),56))),((29,30),((31,32,33),(34,35)))),(58,59))),((16,17,18),(19,(20,((21,22,24),23))))),((((41,42),(43,44,(45,46))),(47,(48,49,50)),52,53),51)))))));
tree PAUP_78 = [&U] (1,(2,(((3,(4,5)),(((((11,((14,15),((16,17,18),(19,(20,((21,22),23,24)))))),12),13),((((((25,26,(27,28)),(29,30)),((31,32),(34,35))),33),((36,(39,40)),(37,38))),((((54,56),57),55),(58,59)))),(((41,42),(43,44,(45,46))),(((47,48,49),50),51,52,53)))),((6,(8,9,10)),7))));
tree PAUP_79 = [&U] (1,(2,(3,(4,5)),(((6,(8,9,10)),7),(((11,(12,(((25,26,(27,28)),((29,30),((((31,32),((41,42),(43,44,(45,46)))),34,35),33))),((36,(39,40)),(37,38)),((((54,56),57),55),(58,59))))),(((((13,(19,(20,((21,22),23,24)))),(14,15)),16),18),17)),(((((47,48,49),50),52),53),51)))));
tree PAUP_80 = [&U] (1,(2,(((3,4,5),(((((11,12),((41,42),(43,44,(45,46)))),(((((25,26,(27,28)),(29,30)),((31,32),(34,35))),33),((36,(39,40)),(37,38)))),(((13,(19,(20,((21,22),23,24)))),(16,(17,18))),(14,15)),((54,(55,57),56),(58,59))),(((47,(48,49)),50),51,52,53))),(6,(8,9,10)),7)));
tree PAUP_81 = [&U] (1,(2,((((3,5),4),(((11,12),((13,((14,15),(16,17,18)),(19,(20,((21,22),23,24)))),((25,26,(27,28)),((((29,30),(((31,32),33),(34,35))),(58,59)),(36,((37,38),(39,40))))))),(((41,42),(43,44,(45,46))),((((((47,48),49),50),52,53),51),(54,(55,57),56))))),6,7,(8,9,10))));
tree PAUP_82 = [&U] (1,(2,((((((3,4),5),(((((11,12),(((14,15),((16,(17,18)),(19,(20,((21,22),23,24))))),((25,26,(27,28)),((((29,30),((31,(34,35)),(32,33))),((((54,56),57),55),(58,59))),((36,(39,40)),(37,38)))))),13),43,44,(45,46)),(41,42))),((((47,(48,49)),50),52),51,53)),(8,9,10)),(6,7))));
tree PAUP_83 = [&U] (1,(2,(3,((4,5),((6,7),(((11,12),(((((13,(19,(20,((21,22),23,24)))),(16,(17,18))),(14,15)),((54,(55,57),56),(58,59))),((((25,26),27,28),((((31,32),33),34),35)),((((29,30),((37,38),39)),40),36)))),((41,42,(43,44,(45,46))),(((47,(48,49),50),52,53),51)))),(8,9,10)))));
tree PAUP_84 = [&U] (1,((2,(3,(4,5))),((6,(8,(9,10))),7,(((((((11,12),(13,((14,15),((16,17,18),(19,(20,((21,22),23,24))))))),(58,59)),(((25,26,(27,28)),((29,30),((31,(34,35)),(32,33)))),((36,(39,40)),(37,38)))),(54,(55,57),56)),((41,42),(43,44,(45,46)))),(((((47,48),49),50),52,53),51)))));
tree PAUP_85 = [&U] (1,((2,(3,(4,5)),(8,(9,10))),((6,7),((11,12),(((((13,(19,(20,((21,22),23,24)))),(16,(17,18))),(14,15)),(((25,26,(27,28)),((29,30),(((31,32),33),(34,35)))),(36,(37,38),(39,40)))),((((41,42),43,44,(45,46)),((((47,48,50),49),52,53),51)),((54,(55,57),56),(58,59))))))));
tree PAUP_86 = [&U] (1,(2,(((((((((3,(4,5)),(((8,(9,10)),(((47,48),49),50),51,52,53),((41,42),(43,44,(45,46))))),(6,7)),(((11,12),((((14,15),(((31,(34,35)),32),33)),(29,30)),(58,59)),((36,(39,40)),(37,38))),13,(25,26,(27,28))),(54,(55,57),56)),(16,(17,18))),19),20),(21,22),24),23)));
tree PAUP_87 = [&U] (1,(2,((3,(4,5)),((6,(8,9,10)),7,(((((11,12),((((25,26,(27,28)),((31,(34,35)),32,33)),(29,30)),((36,((37,38),39)),40))),((((13,(19,(20,((21,22),23,24)))),(16,(17,18))),(14,15)),((54,55,56,57),(58,59)))),((41,42),(43,44,(45,46)))),((((47,48),49),50,52,53),51))))));
tree PAUP_88 = [&U] (1,(2,(3,((4,5),(6,7,((11,12),(((((13,(19,(20,((21,22),23,24)))),(16,(17,18))),(14,15)),((54,(55,57),56),(58,59))),(((25,26,(27,28)),((29,30),((31,(32,33)),(34,35)))),((36,(39,40)),(37,38)))),((((((41,42),(43,44,(45,46))),((47,48),49)),50),52,53),51))),(8,9,10)))));
tree PAUP_89 = [&U] (1,((2,(3,(4,5))),((6,7,((((((11,((13,((14,15),(16,17,18))),(19,(20,((21,22,24),23))))),12),(((29,30),(((31,32),33),(34,35))),((36,(39,40)),(37,38)))),(58,59)),(25,26,(27,28))),((41,42),(43,44,(45,46))),((((((47,48),49),50),52,53),51),(((54,56),57),55)))),(8,9,10))));
tree PAUP_90 = [&U] (1,(2,(((3,5),4),(((6,((8,9,10),((((((47,48),49),50),52),53),51))),7),(((((11,12),((41,42),43,44,(45,46))),(((25,26,(27,28)),((29,30),((31,(32,33)),(34,35)))),((36,(39,40)),(37,38)))),(58,59)),((13,(19,(20,((21,22,24),23)))),(14,15),(16,(17,18))),(54,(55,57),56))))));
tree PAUP_91 = [&U] (1,(2,(3,((4,5),(((6,(8,(9,10))),7),(((((11,((14,15),((16,17,18),(19,(20,((21,22,24),23)))))),12),13),(((25,26,(27,28)),(((29,30),(((31,32),33),(34,35))),(((36,40),39),37,38))),((((54,56),57),55),(58,59)))),((41,42),((43,44,(45,46)),((47,(((48,49),50),51)),52,53)))))))));
tree PAUP_92 = [&U] (1,((2,(8,9,10)),(((3,(4,5)),((((11,12),((14,15),((((25,26,(27,28)),(29,30),(58,59)),((31,(32,33)),(34,35))),(36,(((37,38),39),40))))),((13,(19,(20,((21,22),23,24)))),(16,(17,18)))),((((41,42),(43,44,(45,46))),(((47,48,50),49),51,52,53)),(54,(55,57),56)))),(6,7))));
tree PAUP_93 = [&U] (1,(2,(((((((3,(4,5)),13),((11,12),((((((14,15),(16,(17,18))),(19,(20,((21,22,24),23)))),(25,26,(27,28))),(54,(55,57),56)),(58,59)),(((29,30),(((31,(34,35)),32),33)),((36,(39,40)),(37,38)))),((41,42),(43,44,(45,46)))),((((47,48),49),52,53),50,51)),(6,7)),8),9,10)));
tree PAUP_94 = [&U] (1,((2,(3,(4,5))),((6,7,(8,(9,10))),((11,12),((((((13,((19,20),((21,22),23,24))),(16,(17,18))),(14,15)),((54,55,(56,57)),(58,59))),((((25,26),27,28),(((31,32),33),34),35),((29,30),((36,(37,38)),(39,40))))),(((41,42),(43,44,(45,46))),(((47,(48,49)),50,51),52,53)))))));
tree PAUP_95 = [&U] (1,((2,(3,(4,5)),(8,9,10)),((6,7),((((((11,12),((13,(19,(20,(((21,22),24),23)))),(14,15),(16,(17,18)))),(((25,26,(27,28)),((29,30),((31,(34,35)),32,33))),((36,(39,40)),(37,38)))),((((54,56),57),55),(58,59))),((41,42),(43,44,(45,46)))),((((47,48,49),50),52,53),51)))));
tree PAUP_96 = [&U] (1,(2,((3,(4,5),((((11,12),13,((14,15),((16,(17,18)),(19,(20,((21,22),23,24)))))),(((25,26,(27,28)),((29,30),(((31,(34,(35,((36,(39,40)),(37,38))))),32),33))),((((54,56),57),55),(58,59)))),(((41,42),(43,44,(45,46))),((((47,(48,49)),50),51),52,53)))),((6,(8,9,10)),7))));
tree PAUP_97 = [&U] (1,(2,((3,(4,5)),(((6,(8,9,10)),7),((((((11,12),((((29,30),((31,(34,35)),32)),33),(58,59))),(((36,40),39),37,38)),((((13,((19,20),((21,22),23,24))),(16,(17,18))),(14,15)),(25,26,(27,28)))),(((54,56),57),55)),(((41,42),(43,44,(45,46))),((((47,48),49),50,52,53),51)))))));
tree PAUP_98 = [&U] (1,(2,((((((3,(4,5)),(6,7,((8,9,10),(((((47,48),49),50,52),53),51)))),(((41,42),(43,44,(45,46))),((54,(55,57),56),(58,59)))),((13,((19,20),((21,22),23,24))),(14,15),(16,(17,18)))),(((29,30),(((31,32),33),(34,35))),((36,(39,40)),(37,38)))),(11,12),(25,26,(27,28)))));
tree PAUP_99 = [&U] (1,(2,((3,(4,5)),(((6,(8,(9,10))),7),((((((((11,12),((13,(16,(17,18)),(19,(20,((21,22),23,24)))),(14,15))),(58,59)),(((29,30),((36,(37,38)),(39,40))),(((31,32),33),(34,35)))),(54,55,56,57)),(25,26,(27,28))),((41,42),(43,44,(45,46)))),(((47,(48,49,50)),51),52,53))))));
tree PAUP_100 = [&U] (1,(2,(((((3,(4,5)),8),9,10),6),7,((((((11,12),((((25,26,(27,28)),((29,30),(((31,32),33),(34,35)))),((36,(39,40)),(37,38))),(58,59))),((13,(19,(20,(((21,24),22),23)))),(14,15),(16,(17,18)))),(54,(55,57),56)),((41,42),(43,44,(45,46)))),(((((47,48),49),50),52,53),51)))));
End;