File: test_continuous.py

package info (click to toggle)
python-dendropy 4.2.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 68,392 kB
  • ctags: 3,947
  • sloc: python: 41,840; xml: 1,400; makefile: 15
file content (294 lines) | stat: -rw-r--r-- 18,854 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
#! /usr/bin/env python

##############################################################################
##  DendroPy Phylogenetic Computing Library.
##
##  Copyright 2010-2015 Jeet Sukumaran and Mark T. Holder.
##  All rights reserved.
##
##  See "LICENSE.rst" for terms and conditions of usage.
##
##  If you use this work or any portion thereof in published work,
##  please cite it as:
##
##     Sukumaran, J. and M. T. Holder. 2010. DendroPy: a Python library
##     for phylogenetic computing. Bioinformatics 26: 1569-1571.
##
##############################################################################

"""
Continuous character tests.
"""

import unittest
import inspect
import dendropy
from dendropy.test.support import pathmap
from dendropy.test.support.mockrandom import MockRandom
from dendropy.test.support import dendropytest
from dendropy.model import continuous

class BounceConstrainTest(unittest.TestCase):

    def runTest(self):
        output = [continuous._bounce_constrain(0.5, .5 - 0.05*i, 0.0, 1.0) for i in range(100)]
        ref = [(0.5, 0.5), (0.45, 0.47499999999999998), (0.4, 0.45), (0.34999999999999998, 0.42499999999999999), (0.29999999999999999, 0.4), (0.25, 0.375), (0.19999999999999996, 0.34999999999999998), (0.14999999999999997, 0.32499999999999996), (0.099999999999999978, 0.29999999999999999), (0.049999999999999989, 0.275), (0.0, 0.25), (0.05, 0.22954545454545455), (0.1, 0.21666666666666665), (0.15, 0.20961538461538459), (0.2, 0.20714285714285713), (0.25, 0.20833333333333331), (0.3, 0.2125), (0.35, 0.21911764705882353), (0.4, 0.2277777777777778), (0.45, 0.23815789473684212), (0.5, 0.25), (0.55, 0.2630952380952381), (0.6, 0.27727272727272728), (0.65, 0.29239130434782612), (0.7, 0.30833333333333335), (0.75, 0.32499999999999996), (0.8, 0.34230769230769231), (0.85, 0.36018518518518516), (0.9, 0.37857142857142867), (0.95, 0.39741379310344832), (1.0, 0.41666666666666669), (0.94999999999999996, 0.43467741935483872), (0.89999999999999991, 0.45), (0.84999999999999987, 0.46287878787878789), (0.79999999999999982, 0.47352941176470598), (0.75, 0.48214285714285721), (0.69999999999999996, 0.48888888888888893), (0.64999999999999991, 0.49391891891891893), (0.59999999999999987, 0.49736842105263157), (0.54999999999999982, 0.49935897435897436), (0.5, 0.5), (0.44999999999999973, 0.49939024390243897), (0.39999999999999991, 0.49761904761904763), (0.35, 0.49476744186046517), (0.29999999999999982, 0.49090909090909085), (0.25, 0.48611111111111116), (0.19999999999999973, 0.48043478260869565), (0.14999999999999991, 0.47393617021276602), (0.099999999999999645, 0.46666666666666667), (0.049999999999999822, 0.45867346938775505), (0.0, 0.45), (0.05, 0.4416666666666666), (0.1, 0.43461538461538463), (0.15, 0.42877358490566037), (0.2, 0.42407407407407405), (0.25, 0.42045454545454541), (0.3, 0.41785714285714287), (0.35, 0.41622807017543861), (0.4, 0.41551724137931034), (0.45, 0.41567796610169494), (0.5, 0.41666666666666669), (0.55, 0.41844262295081969), (0.6, 0.42096774193548392), (0.65, 0.4242063492063492), (0.7, 0.428125), (0.75, 0.43269230769230771), (0.8, 0.43787878787878792), (0.85, 0.44365671641791049), (0.9, 0.45), (0.95, 0.45688405797101456), (1.0, 0.4642857142857143), (0.94999999999999973, 0.47147887323943666), (0.89999999999999991, 0.4777777777777778), (0.84999999999999964, 0.48321917808219184), (0.79999999999999982, 0.48783783783783785), (0.75, 0.4916666666666667), (0.69999999999999973, 0.49473684210526325), (0.64999999999999991, 0.49707792207792206), (0.59999999999999964, 0.49871794871794872), (0.54999999999999982, 0.49968354430379752), (0.5, 0.5), (0.45, 0.49969135802469133), (0.39999999999999947, 0.49878048780487805), (0.34999999999999964, 0.49728915662650602), (0.29999999999999982, 0.49523809523809526), (0.25, 0.49264705882352944), (0.2, 0.48953488372093024), (0.14999999999999947, 0.48591954022988504), (0.099999999999999645, 0.4818181818181817), (0.049999999999999822, 0.47724719101123586), (0.0, 0.47222222222222221), (0.049999999999999822, 0.46730769230769231), (0.1, 0.4630434782608695), (0.15, 0.45940860215053758), (0.2, 0.45638297872340422), (0.25, 0.4539473684210526), (0.3, 0.45208333333333334), (0.35, 0.45077319587628867), (0.4, 0.45), (0.45, 0.44974747474747473)]
        assert_mat_approx_equal(output, ref, tester=self)

class KTBRatesTest(unittest.TestCase):

    def runTest(self):
        expected = [0.01, 0.00238612042332357, 0.00060046473606155989, 0.0032194690573412836, 0.0022181051458164411, 0.00017490090971284891, 0.022600788551531675, 0.014617722366202806, 0.00040617762499905189, 4.0911649525733303e-05, 0.51000000000000001, 0.12395537322536185, 0.41634777277597329, 0.018010492402013432, 0.077781889354748265, 0.039201420226780297, 0.0018067559608145154, 0.038064428026927236, 0.000468854154046173, 0.00027068933811426338, 1.01, 0.86242720407665974, 0.062893461668263165, 0.23334318118359176, 0.13647451390979612, 0.012908032460053776, 0.0036578960557443821, 0.024223063122821967, 0.14159784912709042, 0.082700071198721442, 1.51, 0.686445719853644, 3.3522062890772624, 2.4967837007875815, 0.056173355247824582, 0.0022005207631086566, 0.053495933645695409, 0.037267915554308549, 0.63252734941696775, 0.0078375963967802359, 2.0099999999999998, 2.1317309596278573, 1.5563076302280545, 0.83974983369284895, 0.023527204671999535, 0.022671617533422929, 0.13583576739840431, 0.33813396573401916, 0.036494567569726223, 0.00040501698299937316, 2.5099999999999998, 2.1818686975978907, 2.4488269166108831, 0.62237870951874186, 0.90954859339503202, 0.13834954150596895, 0.041786742411412607, 9.5704019633684995e-06, 0.19550604179155287, 2.3708404254904281, 3.0099999999999998, 2.4582221111663025, 0.32661845300155418, 0.059390570323355388, 0.9349562292466097, 0.45407795675810753, 0.27067855008521879, 0.1153677690757042, 0.085614112190463207, 0.029757425845535486, 3.5099999999999998, 5.5780589809075565, 0.14859621496133962, 1.1361638222601711, 0.47373053953720168, 12.559163966329541, 1.9442218373360938, 0.003988245875549439, 63.612522547967608, 0.62267918872625649, 4.0099999999999998, 10.110324482363417, 0.54728328439925211, 0.069082413746695395, 2.657686479590013, 0.16898912755533801, 0.39596036968888626, 0.030529950136951384, 0.0019733444343232381, 0.017929956714718788, 4.5099999999999998, 10.45969709101225, 3.3593154971792818, 1.0336291499040244, 0.84786240588642281, 2.278084793520756, 0.043356609471690816, 0.023168096061358393, 0.0059065469168308469, 0.62169733292424179]

        rng = MockRandom()
        y = [continuous._calc_KTB_rate(0.01+.5*i, 1, j, rng) for i in range(10) for j in range(10)]
        assert_vec_approx_equal(y, expected, tester=self)

        rng = MockRandom()
        y = [continuous._calc_KTB_rate(0.01+.5*i, j, 1, rng) for i in range(10) for j in range(10)]
        assert_vec_approx_equal(y, expected, tester=self)

        self.assertRaises(ValueError, continuous._calc_KTB_rate, 0, 1 , 1 , rng)

class TKPRatesTest(unittest.TestCase):

    def runTest(self):
        expected = [0.01, 0.0039340474963855641, 0.001632232380666595, 0.014428659286578023, 0.016389703355764434, 0.0021307292762983254, 0.45394897294494657, 0.48407248276349046, 0.022176546909804414, 0.0036827493270788596, 0.51000000000000001, 0.20436786045422725, 1.1317505850563239, 0.080717426949510368, 0.57473474392305157, 0.47757106516375003, 0.036289663562129378, 1.2605207376608101, 0.025598569446275875, 0.02436667769068299, 1.01, 1.4219020757916292, 0.17096215398172529, 1.0457715847484181, 1.008417839353775, 0.15725202748916964, 0.073470806288836357, 0.80215768313618252, 7.7309806110114048, 7.4444231676578108, 1.51, 1.1317576595037642, 9.1122414408448513, 11.189808222817929, 0.41506807319133626, 0.02680783090697382, 1.0744945504810126, 1.2341438671393068, 34.534823123534657, 0.70551794392946265, 2.0099999999999998, 3.5146301765484438, 4.2304827507410794, 3.7634976514794487, 0.17384383517242785, 0.27619684368030367, 2.7283343215701814, 11.197459097867025, 1.9925358755666318, 0.036458466937595801, 2.5099999999999998, 3.5972933316044275, 6.6566017084647564, 2.7893078600612546, 6.720705581299355, 1.6854424538625612, 0.83930915760416014, 0.00031692818644330357, 10.67426820212137, 213.41625387395686, 3.0099999999999998, 4.0529230827852576, 0.88784100563352941, 0.26617006989932601, 6.9084440279478647, 5.5318019658942186, 5.436724012051565, 3.8204558144079903, 4.6743721423293518, 2.678678109503108, 3.5099999999999998, 9.1966644910421707, 0.40392639090720356, 5.0919329843369292, 3.5004215324170675, 153.00193917129431, 39.050739500681885, 0.13207256469121023, 3473.1260500607032, 56.051794289673808, 4.0099999999999998, 16.669107027752826, 1.4876702070018706, 0.30960589864113691, 19.637794491060113, 2.0587090258674543, 7.9530766255051635, 1.0110130970614859, 0.1077409554922503, 1.6140032678015137, 4.5099999999999998, 17.245125079032153, 9.1315662720433046, 4.6324044639076911, 6.2649028812690863, 27.752754239037028, 0.87084078040787383, 0.76722197209428222, 0.32248653474293604, 55.963410447025701]

        rng = MockRandom()
        y = [continuous._calc_TKP_rate(0.01+.5*i, 1, j, rng) for i in range(10) for j in range(10)]
        assert_vec_approx_equal(y, expected, tester=self)

        rng = MockRandom()
        y = [continuous._calc_TKP_rate(0.01+.5*i, j, 1, rng) for i in range(10) for j in range(10)]
        assert_vec_approx_equal(y, expected, tester=self)

        try:
            continuous._calc_TKP_rate(0, 1, 1, rng)
        except ValueError:
            pass
        except OverflowError:
            pass

class KTBEvolveCrop(unittest.TestCase):

    def runTest(self):
        rng = MockRandom()
        newick = "((t5:1611.75,t6:1611.75):3922.93,((t4:1043.81,(t2:754.11,t1:754.11):2896.9):6584.0,t3:1702.21):3832.47);"
        tree = dendropy.Tree.get_from_string(newick, "newick")
        root = tree.seed_node
        root.mutation_rate = 1e-5
        root.mean_edge_rate = root.mutation_rate
        continuous.evolve_continuous_char(root, rng, roeotroe=0.01,
                            min_rate=1.0e-6, max_rate=1.0e-3, model='KTB',
                            time_attr='edge_length', val_attr='mutation_rate',
                            mean_val_attr='mean_edge_rate',
                            constrain_rate_mode="crop")
        for i in tree.preorder_node_iter():
            if i.edge_length is not None:
                i.edge_length *= i.mean_edge_rate

class KTBEvolveLinearBounce(unittest.TestCase):

    def runTest(self):
        rng = MockRandom()
        newick = "((t5:1611.75,t6:1611.75):3922.93,((t4:1043.81,(t2:754.11,t1:754.11):2896.9):6584.0,t3:1702.21):3832.47);"
        tree = dendropy.Tree.get_from_string(newick, "newick")
        root = tree.seed_node
        root.mutation_rate = 1e-5
        root.mean_edge_rate = root.mutation_rate
        continuous.evolve_continuous_char(root, rng, roeotroe=0.01,
                            min_rate=1.0e-6, max_rate=1.0e-3, model='KTB',
                            time_attr='edge_length', val_attr='mutation_rate',
                            mean_val_attr='mean_edge_rate',
                            constrain_rate_mode="linear_bounce")
        for i in tree.preorder_node_iter():
            if i.edge_length is not None:
                i.edge_length *= i.mean_edge_rate

class BifurcatingTreePICTest(dendropytest.ExtendedTestCase):

    def setUp(self):
        tree_str = "[&R] ((((Homo:0.21,Pongo:0.21)N1:0.28,Macaca:0.49)N2:0.13,Ateles:0.62)N3:0.38,Galago:1.00)N4:0.0;"
        data_str = """
    #NEXUS
    BEGIN DATA;
        DIMENSIONS  NTAX=5 NCHAR=2;
        FORMAT DATATYPE = CONTINUOUS GAP = - MISSING = ?;
        MATRIX
            Homo      4.09434   4.74493
            Pongo     3.61092   3.33220
            Macaca    2.37024   3.36730
            Ateles    2.02815   2.89037
            Galago   -1.46968   2.30259
        ;
    END;
    """
        taxa = dendropy.TaxonNamespace()
        self.tree = dendropy.Tree.get_from_string(tree_str, 'newick', taxon_namespace=taxa)
        self.char_matrix = dendropy.ContinuousCharacterMatrix.get_from_string(data_str,
                'nexus',
                taxon_namespace=taxa)
        self.pic = continuous.PhylogeneticIndependentConstrasts(tree=self.tree,
                char_matrix=self.char_matrix)
        self.expected_vals = []
        self.expected_vals.append({
            # state, corrected edge length, contrast, contrast_var
            "N1": (3.852630000, 0.385000000, 0.483420000, 0.420000000),
            "N2": (3.200378400, 0.345600000, 1.482390000, 0.875000000),
            "N3": (2.780823579, 0.601905551, 1.172228400, 0.965600000),
            "N4": (1.183724613, 0.375743470, 4.250503579, 1.601905551),
            })
        self.expected_vals.append({
            # state, corrected edge length, contrast, contrast_var
            "N1": (4.038565000, 0.385000000, 1.412730000, 0.420000000),
            "N2": (3.743208400, 0.345600000, 0.671265000, 0.875000000),
            "N3": (3.437967150, 0.601905551, 0.852838400, 0.965600000),
            "N4": (3.011356599, 0.375743470, 1.135377150, 1.601905551),
            })

    def testTreeValues(self):
        for cidx in range(self.char_matrix.vector_size):
            ctree = self.pic.contrasts_tree(character_index=cidx,
                    annotate_pic_statistics=True,
                    state_values_as_node_labels=False,
                    corrected_edge_lengths=False)
            for nd in ctree.postorder_internal_node_iter():
                vals = (nd.pic_state_value,
                        nd.pic_corrected_edge_length,
                        nd.pic_contrast_raw,
                        nd.pic_contrast_variance)
                exp_vals = self.expected_vals[cidx][nd.label]
                for vidx, val in enumerate(vals):
                    self.assertAlmostEqual(vals[vidx], exp_vals[vidx])

class MultifurcatingTreePICTest(dendropytest.ExtendedTestCase):

    def setUp(self):
        tree_str = "[&R] ((((Homo:0.21,Bogus1:0.23,Pongo:0.21)N1:0.28,Bogus2:0.49,Macaca:0.49)N2:0.13,Bogus3:0.62,Ateles:0.62)N3:0.38,Galago:1.00)N4:0.0;"
        data_str = """
    #NEXUS
    BEGIN DATA;
        DIMENSIONS  NTAX=8 NCHAR=2;
        FORMAT DATATYPE = CONTINUOUS GAP = - MISSING = ?;
        MATRIX
            Homo      4.09434   4.74493
            Pongo     3.61092   3.33220
            Macaca    2.37024   3.36730
            Ateles    2.02815   2.89037
            Galago   -1.46968   2.30259
            Bogus1    2.15      2.15
            Bogus2    2.15      2.15
            Bogus3    2.15      2.15
        ;
    END;
    """
        taxa = dendropy.TaxonNamespace()
        self.tree = dendropy.Tree.get_from_string(tree_str, 'newick', taxon_namespace=taxa)
        self.char_matrix = dendropy.ContinuousCharacterMatrix.get_from_string(data_str,
                'nexus',
                taxon_namespace=taxa)

    def testErrorOnDefault(self):
        pic = continuous.PhylogeneticIndependentConstrasts(tree=self.tree,
                char_matrix=self.char_matrix)
        self.assertRaises(ValueError, pic.contrasts_tree, 1)

    def testError(self):
        pic = continuous.PhylogeneticIndependentConstrasts(tree=self.tree,
                char_matrix=self.char_matrix,
                polytomy_strategy="error")
        self.assertRaises(ValueError, pic.contrasts_tree, 1)

    def testIgnore(self):
        pic = continuous.PhylogeneticIndependentConstrasts(tree=self.tree,
                char_matrix=self.char_matrix,
                polytomy_strategy="Ignore")
        ctree = pic.contrasts_tree(1)

    def testResolve(self):
        pic = continuous.PhylogeneticIndependentConstrasts(tree=self.tree,
                char_matrix=self.char_matrix,
                polytomy_strategy="Resolve")
        ctree = pic.contrasts_tree(1)

def approx_equal(x, y, tol=1e-5):
    "Returns True if x and y differ by less than tol"
    return (abs(x - y) < tol)

def vec_approx_equal(x, y, tol=1e-5):
    """Returns True if each element in the iterable ``x`` differs by less than
    ``tol`` from the corresponding element in ``y``
    """
    if len(x) != len(y):
        return False
    for i, j in zip(x, y):
        if abs(i - j) >= tol:
            return False
    return True

def mat_approx_equal(x, y, tol=1e-5):
    """Returns True if each cell in 2D iterable matrix ``x`` differs by less than
    ``tol`` from the corresponding element in ``y``
    """
    if len(x) != len(y):
        return False
    for row_x, row_y in zip(x, y):
        if len(row_x) != len(row_y):
            return False
        for i, j in zip(row_x, row_y):
            if abs(i - j) >= tol:
                return False
    return True

def _failure(tester, msg):
    calling_frame = inspect.currentframe().f_back.f_back
    co = calling_frame.f_code
    emsg = "%s\nCalled from file %s, line %d, in %s" % (msg, co.co_filename, calling_frame.f_lineno, co.co_name)
    if isinstance(tester, unittest.TestCase):
        tester.assertTrue(False, emsg)
    else:
        raise AssertionError(emsg)

def assert_approx_equal(x, y, tester=None, tol=1e-5):
    """Asserts that x and y are approximately equal.

    If ``tester`` is a unittest.TestCase then assertTrue is used; otherwise
    AssertionErrors are raised.
    """
    if abs(x - y) >= tol:
        _failure(tester, "%f != %f" % (x, y))

def assert_vec_approx_equal(x, y, tester=None, tol=1e-5):
    """Returns True if each element in the iterable ``x`` differs by less than
    ``tol`` from the corresponding element in ``y``

    If ``tester`` is a unittest.TestCase then assertTrue is used; otherwise
    AssertionErrors are raised.
    """
    if len(x) != len(y):
        _failure(tester, "vectors of numbers differ in length (%d vs %d)" % (len(x), len(y)))
    for n, itup in enumerate(zip(x, y)):
        i, j = itup
        if abs(i - j) >= tol:
            _failure(tester, "%f != %f at element %d" % (i, j, n))

def assert_mat_approx_equal(x, y, tester=None, tol=1e-5):
    """Returns True if each cell in 2D iterable matrix ``x`` differs by less than
    ``tol`` from the corresponding element in ``y``
    If ``tester`` is a unittest.TestCase then assertTrue is used; otherwise
    AssertionErrors are raised.
    """
    if len(x) != len(y):
        _failure(tester, "Matrices differs in length (%d vs %d)" % (len(x), len(y)))
    for n, row_tup in enumerate(zip(x, y)):
        row_x, row_y = row_tup
        if len(row_x) != len(row_y):
            _failure(tester, "row %d of matrix differs in length (%d vs %d)" % (n, len(row_x), len(row_y)))
        for col, cell_tup in enumerate(zip(row_x, row_y)):
            i, j = cell_tup
            if abs(i - j) >= tol:
                _failure(tester, "%f != %f for column %d of row %d" % (i, j, col, n))

if __name__ == "__main__":
    unittest.main()