File: test_datamodel_charmatrix.py

package info (click to toggle)
python-dendropy 4.2.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 68,392 kB
  • ctags: 3,947
  • sloc: python: 41,840; xml: 1,400; makefile: 15
file content (1130 lines) | stat: -rw-r--r-- 48,672 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
#! /usr/bin/env python

##############################################################################
##  DendroPy Phylogenetic Computing Library.
##
##  Copyright 2010-2015 Jeet Sukumaran and Mark T. Holder.
##  All rights reserved.
##
##  See "LICENSE.rst" for terms and conditions of usage.
##
##  If you use this work or any portion thereof in published work,
##  please cite it as:
##
##     Sukumaran, J. and M. T. Holder. 2010. DendroPy: a Python library
##     for phylogenetic computing. Bioinformatics 26: 1569-1571.
##
##############################################################################

"""
Tests character sequence map.
"""

import copy
import collections
import random
import unittest
import dendropy
import itertools
from dendropy.utility import error
from dendropy.datamodel import charmatrixmodel
from dendropy.test.support import dendropytest
from dendropy.test.support import compare_and_validate

def get_taxon_namespace(ntax):
    taxon_namespace = dendropy.TaxonNamespace()
    for i in range(ntax):
        label = "T{}".format(i)
        t = taxon_namespace.require_taxon(label=label)
    return taxon_namespace

class CharacterMatrixBasicCRUDTests(dendropytest.ExtendedTestCase):

    def test_setitem_by_taxon(self):
        tns = get_taxon_namespace(3)
        char_matrix = charmatrixmodel.CharacterMatrix(taxon_namespace=tns)
        self.assertEqual(len(char_matrix), len(char_matrix._taxon_sequence_map))
        self.assertEqual(len(char_matrix), 0)
        seqs = [
                "abcd",
                [1,2,3,4,],
                ["a", "b", "c", "d",]
                ]
        assert len(seqs) == len(tns)
        for idx, taxon in enumerate(tns):
            self.assertFalse(taxon in char_matrix)
            self.assertNotIn(taxon, char_matrix)
            char_matrix[taxon] = seqs[idx]
        self.assertEqual(len(char_matrix._taxon_sequence_map), len(tns))
        self.assertEqual(len(char_matrix), len(char_matrix._taxon_sequence_map))
        for idx, taxon in enumerate(tns):
            self.assertTrue(taxon in char_matrix)
            self.assertIn(taxon, char_matrix)
            self.assertTrue(isinstance(char_matrix[taxon], charmatrixmodel.CharacterDataSequence))
            self.assertEqual(len(char_matrix[taxon]), len(seqs[idx]))
            for c1, c2 in zip(char_matrix[taxon], seqs[idx]):
                self.assertEqual(c1, c2)

    def test_setitem_by_taxon_idx(self):
        tns = get_taxon_namespace(3)
        char_matrix = charmatrixmodel.CharacterMatrix(taxon_namespace=tns)
        self.assertEqual(len(char_matrix), len(char_matrix._taxon_sequence_map))
        self.assertEqual(len(char_matrix), 0)
        seqs = [
                "abcd",
                [1,2,3,4,],
                ["a", "b", "c", "d",]
                ]
        assert len(seqs) == len(tns)
        for idx, taxon in enumerate(tns):
            self.assertFalse(taxon in char_matrix)
            self.assertNotIn(taxon, char_matrix)
            char_matrix[idx] = seqs[idx]
        self.assertEqual(len(char_matrix._taxon_sequence_map), len(tns))
        self.assertEqual(len(char_matrix), len(char_matrix._taxon_sequence_map))
        for idx, taxon in enumerate(tns):
            self.assertTrue(taxon in char_matrix)
            self.assertIn(taxon, char_matrix)
            self.assertTrue(isinstance(char_matrix[taxon], charmatrixmodel.CharacterDataSequence))
            self.assertEqual(len(char_matrix[taxon]), len(seqs[idx]))
            for c1, c2 in zip(char_matrix[taxon], seqs[idx]):
                self.assertEqual(c1, c2)

    def test_setitem_by_taxon_label(self):
        tns = get_taxon_namespace(3)
        char_matrix = charmatrixmodel.CharacterMatrix(taxon_namespace=tns)
        self.assertEqual(len(char_matrix), len(char_matrix._taxon_sequence_map))
        self.assertEqual(len(char_matrix), 0)
        seqs = [
                "abcd",
                [1,2,3,4,],
                ["a", "b", "c", "d",]
                ]
        assert len(seqs) == len(tns)
        for idx, taxon in enumerate(tns):
            self.assertFalse(taxon in char_matrix)
            self.assertNotIn(taxon, char_matrix)
            char_matrix[taxon.label] = seqs[idx]
        self.assertEqual(len(char_matrix._taxon_sequence_map), len(tns))
        self.assertEqual(len(char_matrix), len(char_matrix._taxon_sequence_map))
        for idx, taxon in enumerate(tns):
            self.assertTrue(taxon in char_matrix)
            self.assertIn(taxon, char_matrix)
            self.assertTrue(isinstance(char_matrix[taxon], charmatrixmodel.CharacterDataSequence))
            self.assertEqual(len(char_matrix[taxon]), len(seqs[idx]))
            for c1, c2 in zip(char_matrix[taxon], seqs[idx]):
                self.assertEqual(c1, c2)

    def test_setitem_by_taxon_not_in_namespace(self):
        tns = get_taxon_namespace(3)
        char_matrix = charmatrixmodel.CharacterMatrix()
        t = tns[0]
        seq = ["a", "b"]
        with self.assertRaises(ValueError):
            char_matrix[t] = seq
        char_matrix.taxon_namespace.add_taxon(t)
        char_matrix[t] = seq
        self.assertEqual(len(char_matrix), 1)
        self.assertIn(t, char_matrix)
        self.assertEqual(len(char_matrix[t]), len(seq))
        self.assertTrue(isinstance(char_matrix[t], charmatrixmodel.CharacterDataSequence))
        for c1, c2 in zip(char_matrix[t], seq):
            self.assertEqual(c1, c2)

    def test_setitem_by_idx_not_in_namespace(self):
        tns = get_taxon_namespace(3)
        char_matrix = charmatrixmodel.CharacterMatrix()
        with self.assertRaises(IndexError):
            char_matrix[len(tns)] = []

    def test_setitem_by_idx_not_in_namespace(self):
        tns = get_taxon_namespace(3)
        char_matrix = charmatrixmodel.CharacterMatrix()
        with self.assertRaises(KeyError):
            char_matrix[tns[0].label] = []

    def test_multi_setitem(self):
        tns = get_taxon_namespace(3)
        char_matrix = charmatrixmodel.CharacterMatrix(taxon_namespace=tns)
        self.assertEqual(len(char_matrix), len(char_matrix._taxon_sequence_map))
        self.assertEqual(len(char_matrix), 0)
        seqs = [
                "abcd",
                [1,2,3,4,],
                ["a", "b", "c", "d",]
                ]
        t = tns[0]
        for seq in seqs:
            char_matrix[t] = seq
        for taxon in tns:
            if taxon is t:
                self.assertIn(taxon, char_matrix)
            else:
                self.assertNotIn(taxon, char_matrix)
        seq = seqs[-1]
        self.assertEqual(len(char_matrix), 1)
        self.assertEqual(len(char_matrix), len(char_matrix._taxon_sequence_map))
        self.assertEqual(len(char_matrix[0]), len(seq))
        self.assertTrue(isinstance(char_matrix[0], charmatrixmodel.CharacterDataSequence))
        for c1, c2 in zip(char_matrix[0], seq):
            self.assertEqual(c1, c2)
        for c1, c2 in zip(char_matrix[0], seqs[1]):
            self.assertNotEqual(c1, c2)

    def test_delitem(self):
        tns = get_taxon_namespace(3)
        char_matrix = charmatrixmodel.CharacterMatrix(taxon_namespace=tns)
        self.assertEqual(len(char_matrix), len(char_matrix._taxon_sequence_map))
        self.assertEqual(len(char_matrix), 0)
        seqs = [
                "abcd",
                [1,2,3,4,],
                ["a", "b", "c", "d",]
                ]
        assert len(seqs) == len(tns)
        for idx, taxon in enumerate(tns):
            self.assertFalse(taxon in char_matrix)
            self.assertNotIn(taxon, char_matrix)
            char_matrix[taxon] = seqs[idx]
        self.assertEqual(len(char_matrix._taxon_sequence_map), len(tns))
        self.assertEqual(len(char_matrix), len(char_matrix._taxon_sequence_map))
        for idx, taxon in enumerate(tns):
            self.assertTrue(taxon in char_matrix)
            self.assertIn(taxon, char_matrix)
            del char_matrix[taxon]
            self.assertFalse(taxon in char_matrix)
            self.assertNotIn(taxon, char_matrix)
        self.assertEqual(len(char_matrix._taxon_sequence_map), 0)
        self.assertEqual(len(char_matrix), 0)

    def test_clear(self):
        tns = get_taxon_namespace(3)
        char_matrix = charmatrixmodel.CharacterMatrix(taxon_namespace=tns)
        self.assertEqual(len(char_matrix), len(char_matrix._taxon_sequence_map))
        self.assertEqual(len(char_matrix), 0)
        seqs = [
                "abcd",
                [1,2,3,4,],
                ["a", "b", "c", "d",]
                ]
        assert len(seqs) == len(tns)
        for idx, taxon in enumerate(tns):
            self.assertFalse(taxon in char_matrix)
            self.assertNotIn(taxon, char_matrix)
            char_matrix[taxon] = seqs[idx]
        self.assertEqual(len(char_matrix._taxon_sequence_map), len(tns))
        self.assertEqual(len(char_matrix), len(char_matrix._taxon_sequence_map))
        char_matrix.clear()
        self.assertEqual(len(char_matrix._taxon_sequence_map), 0)
        self.assertEqual(len(char_matrix), 0)
        for idx, taxon in enumerate(tns):
            self.assertFalse(taxon in char_matrix)
            self.assertNotIn(taxon, char_matrix)

class CharacterMatrixMetricsTest(dendropytest.ExtendedTestCase):

    def test_sequence_sizes(self):
        seq_sizes = [2, 10, 20, 0, 1]
        tns = get_taxon_namespace(len(seq_sizes))
        char_matrix = charmatrixmodel.CharacterMatrix(taxon_namespace=tns)
        self.assertEqual(len(char_matrix), 0)
        self.assertEqual(char_matrix.sequence_size, 0)
        self.assertEqual(char_matrix.max_sequence_size, 0)
        for taxon, seq_size in zip(tns, seq_sizes):
            char_matrix[taxon] = ["x"] * seq_size
        self.assertEqual(len(char_matrix), len(seq_sizes))
        self.assertEqual(char_matrix.sequence_size, seq_sizes[0])
        self.assertEqual(char_matrix.max_sequence_size, max(seq_sizes))

class CharacterMatrixFillAndPackTestCase(dendropytest.ExtendedTestCase):

    def test_fill(self):
        seq_sizes = [2, 10, 20, 0, 1]
        tns = get_taxon_namespace(len(seq_sizes))
        original_sequences = []
        for seq_size in seq_sizes:
            original_sequences.append( ["1"] * seq_size )
        for size in (None, 50, 1, 0, 8):
            for append in (False, True, None):
                kwargs = {}
                if size is None:
                    expected_sizes = [max(seq_sizes)] * len(seq_sizes)
                else:
                    kwargs["size"] = size
                    expected_sizes = [max(size, s) for s in seq_sizes]
                assert len(expected_sizes) == len(original_sequences)
                if append is None:
                    append = True
                else:
                    kwargs["append"] = append
                expected_sequences = []
                for idx, seq in enumerate(original_sequences):
                    if expected_sizes[idx] <= len(seq):
                        expected_sequences.append(list(seq))
                    else:
                        s1 = list(seq)
                        diff = expected_sizes[idx] - len(s1)
                        s2 = ["0"] * diff
                        if append:
                            s = s1 + s2
                        else:
                            s = s2 + s1
                        expected_sequences.append(s)
                    assert len(expected_sequences[idx]) == expected_sizes[idx], \
                            "{}: {}/{}: {}: {} ({})".format(idx, size, append, expected_sequences[idx], len(expected_sequences[idx]), expected_sizes[idx])
                char_matrix = charmatrixmodel.CharacterMatrix(taxon_namespace=tns)
                for taxon, seq in zip(tns, original_sequences):
                    char_matrix[taxon] = seq
                assert len(char_matrix) == len(seq_sizes)
                char_matrix.fill("0", **kwargs)
                for taxon, expected_size, expected_seq in zip(char_matrix, expected_sizes, expected_sequences):
                    obs_seq = char_matrix[taxon]
                    self.assertEqual(len(obs_seq), expected_size)
                    for c1, c2 in zip(obs_seq, expected_seq):
                        self.assertEqual(c1, c2)

    def test_fill_taxa(self):
        tns = get_taxon_namespace(5)
        char_matrix = charmatrixmodel.CharacterMatrix(taxon_namespace=tns)
        for taxon in tns[:3]:
            char_matrix[taxon] = "z"
        for taxon in tns[:3]:
            self.assertIn(taxon, char_matrix)
        for taxon in tns[3:]:
            self.assertNotIn(taxon, char_matrix)
        char_matrix.fill_taxa()
        for taxon in tns:
            self.assertIn(taxon, char_matrix)

    def test_fill_taxa(self):
        tns = get_taxon_namespace(5)
        char_matrix = charmatrixmodel.CharacterMatrix(taxon_namespace=tns)
        s = ["z"] * 10
        char_matrix[tns[0]] = s
        for taxon in tns[1:3]:
            char_matrix[taxon] = ["x"]
        char_matrix.pack()
        self.assertEqual(len(char_matrix), len(tns))
        for taxon in tns:
            self.assertIn(taxon, char_matrix)
            self.assertEqual(len(char_matrix[taxon]), 10)

class CharacterMatrixBinaryOps(dendropytest.ExtendedTestCase):

    def get_char_matrices(self):
        tns = get_taxon_namespace(3)
        c1 = charmatrixmodel.CharacterMatrix(taxon_namespace=tns)
        c2 = charmatrixmodel.CharacterMatrix(taxon_namespace=tns)
        c1[tns[0]] = [1, 1, 1]
        c1[tns[1]] = [2, 2, 2]
        c2[tns[1]] = [3, 3, 3]
        c2[tns[2]] = [4, 4, 4]

        assert len(c1) == 2
        assert tns[0] in c1
        assert tns[1] in c1
        assert tns[2] not in c1

        assert len(c2) == 2
        assert tns[0] not in c2
        assert tns[1] in c2
        assert tns[2] in c2

        return c1, c2, tns

    def verify_sequence_equal(self, s1, s2, expected_length=None):
        if expected_length is not None:
            self.assertEqual(len(s1), expected_length)
            self.assertEqual(len(s2), expected_length)
        self.assertEqual(len(s1), len(s2))
        self.assertIsNot(s1, s2)
        for c1, c2 in zip(s1, s2):
            self.assertEqual(c1, c2)

    def verify_independent_matrices(self, c1, c2):
        assert c1.taxon_namespace is c2.taxon_namespace
        for taxon in c1.taxon_namespace:
            if taxon in c1 and taxon in c2:
                self.assertIsNot(c1[taxon], c2[taxon])

    def test_add_sequences_fail(self):
        c1 = charmatrixmodel.CharacterMatrix()
        c2 = charmatrixmodel.CharacterMatrix()
        with self.assertRaises(error.TaxonNamespaceIdentityError):
            c1.add_sequences(c2)

    def test_add_sequences(self):
        c1, c2, tns = self.get_char_matrices()
        c1.add_sequences(c2)
        self.verify_independent_matrices(c1, c2)
        self.assertEqual(len(c1), 3)
        self.assertIn(tns[0], c1)
        self.assertIn(tns[1], c1)
        self.assertIn(tns[2], c1)
        self.verify_sequence_equal(c1[tns[0]], [1, 1, 1])
        self.verify_sequence_equal(c1[tns[1]], [2, 2, 2])
        self.verify_sequence_equal(c1[tns[2]], [4, 4, 4])

    def test_replace_sequences_fail(self):
        c1 = charmatrixmodel.CharacterMatrix()
        c2 = charmatrixmodel.CharacterMatrix()
        with self.assertRaises(error.TaxonNamespaceIdentityError):
            c1.replace_sequences(c2)

    def test_replace_sequences(self):
        c1, c2, tns = self.get_char_matrices()
        c1.replace_sequences(c2)
        self.verify_independent_matrices(c1, c2)
        self.assertEqual(len(c1), 2)
        self.assertIn(tns[0], c1)
        self.assertIn(tns[1], c1)
        self.assertNotIn(tns[2], c1)
        self.verify_sequence_equal(c1[tns[0]], [1, 1, 1])
        self.verify_sequence_equal(c1[tns[1]], [3, 3, 3])

    def test_update_sequences_fail(self):
        c1 = charmatrixmodel.CharacterMatrix()
        c2 = charmatrixmodel.CharacterMatrix()
        with self.assertRaises(error.TaxonNamespaceIdentityError):
            c1.update_sequences(c2)

    def test_update_sequences(self):
        c1, c2, tns = self.get_char_matrices()
        c1.update_sequences(c2)
        self.verify_independent_matrices(c1, c2)
        self.assertEqual(len(c1), 3)
        self.assertIn(tns[0], c1)
        self.assertIn(tns[1], c1)
        self.assertIn(tns[2], c1)
        self.verify_sequence_equal(c1[tns[0]], [1, 1, 1])
        self.verify_sequence_equal(c1[tns[1]], [3, 3, 3])
        self.verify_sequence_equal(c1[tns[2]], [4, 4, 4])

    def test_extend_sequences_fail(self):
        c1 = charmatrixmodel.CharacterMatrix()
        c2 = charmatrixmodel.CharacterMatrix()
        with self.assertRaises(error.TaxonNamespaceIdentityError):
            c1.extend_sequences(c2)

    def test_extend_sequences(self):
        c1, c2, tns = self.get_char_matrices()
        c1.extend_sequences(c2)
        self.verify_independent_matrices(c1, c2)
        self.assertEqual(len(c1), 2)
        self.assertIn(tns[0], c1)
        self.assertIn(tns[1], c1)
        self.assertNotIn(tns[2], c1)
        self.verify_sequence_equal(c1[tns[0]], [1, 1, 1])
        self.verify_sequence_equal(c1[tns[1]], [2, 2, 2, 3, 3, 3])

    def test_extend_matrix_fail(self):
        c1 = charmatrixmodel.CharacterMatrix()
        c2 = charmatrixmodel.CharacterMatrix()
        with self.assertRaises(error.TaxonNamespaceIdentityError):
            c1.extend_matrix(c2)

    def test_extend_matrix(self):
        c1, c2, tns = self.get_char_matrices()
        c1.extend_matrix(c2)
        self.verify_independent_matrices(c1, c2)
        self.assertEqual(len(c1), 3)
        self.assertIn(tns[0], c1)
        self.assertIn(tns[1], c1)
        self.assertIn(tns[2], c1)
        self.verify_sequence_equal(c1[tns[0]], [1, 1, 1])
        self.verify_sequence_equal(c1[tns[1]], [2, 2, 2, 3, 3, 3])
        self.verify_sequence_equal(c1[tns[2]], [4, 4, 4])

class CharacterMatrixTaxonManagement(dendropytest.ExtendedTestCase):

    def test_assign_taxon_namespace(self):
        tns = get_taxon_namespace(5)
        char_matrix = charmatrixmodel.CharacterMatrix(taxon_namespace=tns)
        self.assertIs(char_matrix.taxon_namespace, tns)

class CharacterMatrixIteratorTests(dendropytest.ExtendedTestCase):

    def setUp(self):
        self.rng = random.Random()

    def test_standard_iterator(self):
        tns = get_taxon_namespace(100)
        char_matrix = charmatrixmodel.CharacterMatrix(taxon_namespace=tns)
        taxa = list(tns)
        self.rng.shuffle(taxa)
        included = set()
        excluded = set()
        for idx, taxon in enumerate(taxa):
            if self.rng.uniform(0, 1) < 0.5:
                included.add(taxon)
                char_matrix[taxon] = [0]
            else:
                excluded.add(taxon)
        expected = [taxon for taxon in tns if taxon in included]
        self.assertEqual(len(char_matrix), len(expected))
        observed = [taxon for taxon in char_matrix]
        self.assertEqual(observed, expected)

class CharacterMatrixIdentity(unittest.TestCase):

    def setUp(self):
        self.tns = dendropy.TaxonNamespace()
        self.t1 = charmatrixmodel.CharacterMatrix(label="a", taxon_namespace=self.tns)
        self.t2 = charmatrixmodel.CharacterMatrix(label="a", taxon_namespace=self.tns)
        self.t3 = charmatrixmodel.CharacterMatrix(label="a")

    def test_equal(self):
        self.assertNotEqual(self.t1, self.t2)

    def test_hash_dict_membership(self):
        k = {}
        k[self.t1] = 1
        k[self.t2] = 2
        self.assertEqual(len(k), 2)
        self.assertEqual(k[self.t1], 1)
        self.assertEqual(k[self.t2], 2)
        self.assertIn(self.t1, k)
        self.assertIn(self.t2, k)
        del k[self.t1]
        self.assertNotIn(self.t1, k)
        self.assertIn(self.t2, k)
        self.assertEqual(len(k), 1)
        k1 = {self.t1: 1}
        k2 = {self.t2: 1}
        self.assertIn(self.t1, k1)
        self.assertIn(self.t2, k2)
        self.assertNotIn(self.t2, k1)
        self.assertNotIn(self.t1, k2)

    def test_hash_set_membership(self):
        k = set()
        k.add(self.t1)
        k.add(self.t2)
        self.assertEqual(len(k), 2)
        self.assertIn(self.t1, k)
        self.assertIn(self.t2, k)
        k.discard(self.t1)
        self.assertNotIn(self.t1, k)
        self.assertIn(self.t2, k)
        self.assertEqual(len(k), 1)
        k1 = {self.t1: 1}
        k2 = {self.t2: 1}
        self.assertIn(self.t1, k1)
        self.assertIn(self.t2, k2)
        self.assertNotIn(self.t2, k1)
        self.assertNotIn(self.t1, k2)

class TestCharacterMatrixUpdateTaxonNamespace(
        dendropytest.ExtendedTestCase):

    def get_char_matrix(self):
        labels = [
            "z01" , "<NONE>" , "z03" , "z04" , "z05" ,
            "z06" , None     , None  , "z09" , "z10" ,
            "z11" , "<NONE>" , None  , "z14" , "z15" ,
                ]
        char_matrix = charmatrixmodel.CharacterMatrix()
        char_matrix.expected_labels = []
        char_matrix.expected_taxa = set()
        random.shuffle(labels)
        for label in labels:
            t = dendropy.Taxon(label=None)
            char_matrix.taxon_namespace.add_taxon(t)
            char_matrix[t] = [1,1,1]
            char_matrix.expected_taxa.add(t)
            char_matrix.expected_labels.append(t.label)
        char_matrix.taxon_namespace = dendropy.TaxonNamespace()
        assert len(char_matrix) == len(labels)
        assert len(char_matrix) == len(char_matrix._taxon_sequence_map)
        char_matrix.nseqs = len(char_matrix)
        return char_matrix

    def test_update(self):
        char_matrix = self.get_char_matrix()
        char_matrix.taxon_namespace = dendropy.TaxonNamespace()
        original_tns = char_matrix.taxon_namespace
        self.assertEqual(len(original_tns), 0)
        char_matrix.update_taxon_namespace()
        char_matrix.update_taxon_namespace()
        char_matrix.update_taxon_namespace()
        self.assertIs(char_matrix.taxon_namespace, original_tns)
        self.assertEqual(len(char_matrix.taxon_namespace), len(char_matrix.expected_taxa))
        for taxon in char_matrix:
            self.assertIn(taxon, char_matrix.taxon_namespace)
        new_taxa = [t for t in original_tns]
        new_labels = [t.label for t in original_tns]
        self.assertCountEqual(new_taxa, char_matrix.expected_taxa)
        self.assertCountEqual(new_labels, char_matrix.expected_labels)
        self.assertEqual(len(char_matrix), char_matrix.nseqs)
        assert len(char_matrix) == len(char_matrix._taxon_sequence_map)

class TestCharacterMatrixReconstructAndMigrateTaxonNamespace(
        dendropytest.ExtendedTestCase):

    def get_char_matrix(self, labels=None):
        char_matrix = charmatrixmodel.CharacterMatrix()
        if labels is None:
            labels = [str(i) for i in range(1000)]
        char_matrix.expected_labels = []
        char_matrix.original_taxa = []
        char_matrix.original_seqs = []
        self.rng.shuffle(labels)
        for label in labels:
            t = dendropy.Taxon(label=label)
            char_matrix.taxon_namespace.add_taxon(t)
            char_matrix.original_taxa.append(t)
            char_matrix[t].original_taxon = t
            char_matrix.expected_labels.append(label)
            seq = [self.rng.randint(0, 100) for _ in range(4)]
            char_matrix[t] = seq
            char_matrix[t].original_seq = char_matrix[t]
            char_matrix.original_seqs.append(char_matrix[t])
            char_matrix[t].original_taxon = t
            char_matrix[t].label = label
        assert len(char_matrix.taxon_namespace) == len(char_matrix.original_taxa)
        assert len(char_matrix) == len(char_matrix.original_taxa)
        assert len(char_matrix) == len(labels)
        char_matrix.nseqs = len(char_matrix)
        return char_matrix

    def get_char_matrix_with_case_insensitive_label_collisions(self):
        labels = [
                "a", "A", "b", "B", "c", "C",
                ]
        char_matrix = self.get_char_matrix(labels=labels)
        return char_matrix

    def get_char_matrix_with_case_insensitive_and_case_sensitive_label_collisions(self):
        labels = [
                "a", "a", "2", "2", "b", "B",
                "B", "h", "H", "h", None, None,
                "H", "J", "j",
                ]
        char_matrix = self.get_char_matrix(labels=labels)
        return char_matrix

    def setUp(self):
        self.rng = random.Random()

    def verify_taxon_namespace_reconstruction(self,
            char_matrix,
            unify_taxa_by_label=False,
            case_sensitive_label_mapping=True,
            original_tns=None):
        self.assertEqual(len(char_matrix), char_matrix.nseqs)
        self.assertEqual(len(char_matrix), len(char_matrix.original_seqs))
        assert len(char_matrix) == len(char_matrix._taxon_sequence_map)
        if unify_taxa_by_label:
            if not case_sensitive_label_mapping:
                expected_labels = list(set((label.upper() if label is not None else None) for label in char_matrix.expected_labels))
            else:
                expected_labels = list(set(label for label in char_matrix.expected_labels))
        else:
            expected_labels = [label for label in char_matrix.expected_labels]
        seen_taxa = []
        for taxon in char_matrix:
            seq = char_matrix[taxon]
            self.assertIs(char_matrix[taxon], char_matrix[taxon].original_seq)
            self.assertIn(char_matrix[taxon], char_matrix.original_seqs)
            char_matrix.original_seqs.remove(char_matrix[taxon])
            self.assertIsNot(taxon, seq.original_taxon)
            if not case_sensitive_label_mapping and taxon.label is not None:
                self.assertEqual(taxon.label.upper(), seq.original_taxon.label.upper())
                self.assertEqual(seq.label.upper(), taxon.label.upper())
            else:
                self.assertEqual(taxon.label, seq.original_taxon.label)
                self.assertEqual(seq.label, taxon.label)
            self.assertNotIn(seq.original_taxon, char_matrix.taxon_namespace)
            self.assertIn(seq.original_taxon, char_matrix.original_taxa)
            self.assertIn(taxon, char_matrix.taxon_namespace)
            self.assertNotIn(taxon, char_matrix.original_taxa)
            if original_tns is not None:
                self.assertNotIn(taxon, original_tns)
            if taxon not in seen_taxa:
                seen_taxa.append(taxon)
            else:
                self.assertTrue(unify_taxa_by_label)
                if not case_sensitive_label_mapping:
                    self.assertIn(taxon.label, [t.label for t in seen_taxa])
                else:
                    if taxon.label is None:
                        self.assertIs(seq.original_taxon.label, None)
                        self.assertEqual([t.label for t in seen_taxa].count(None), 1)
                    else:
                        x1 = [t.label.upper() for t in seen_taxa if t.label is not None]
                        self.assertIn(taxon.label.upper(), x1)
        self.assertEqual(len(seen_taxa), len(char_matrix.taxon_namespace))
        if not case_sensitive_label_mapping:
            seen_labels = [(t.label.upper() if t.label is not None else None) for t in seen_taxa]
        else:
            seen_labels = [t.label for t in seen_taxa]
        c1 = collections.Counter(expected_labels)
        c2 = collections.Counter(seen_labels)
        self.assertEqual(c2-c1, collections.Counter())
        self.assertEqual(c1-c2, collections.Counter())
        self.assertEqual(c1, c2)
        self.assertEqual(len(char_matrix.taxon_namespace), len(expected_labels))
        if not unify_taxa_by_label:
            self.assertEqual(len(char_matrix.taxon_namespace), len(char_matrix.original_taxa))
        self.assertEqual(char_matrix.original_seqs, [])

    def test_basic_reconstruction(self):
        char_matrix = self.get_char_matrix()
        tns = char_matrix.taxon_namespace
        new_tns = dendropy.TaxonNamespace()
        new_tns.is_case_sensitive = True
        char_matrix.taxon_namespace = new_tns
        char_matrix.reconstruct_taxon_namespace(unify_taxa_by_label=False)
        # print("\n--\n")
        # for t in self.char_matrix:
            # print("{}: {}".format(repr(t), self.char_matrix[t]))
            # assert t in self.char_matrix.taxon_namespace
        self.assertIsNot(char_matrix.taxon_namespace, tns)
        self.assertIs(char_matrix.taxon_namespace, new_tns)
        self.assertEqual(len(char_matrix), char_matrix.nseqs)
        self.assertEqual(len(char_matrix), len(char_matrix.original_seqs))
        assert len(char_matrix) == len(char_matrix._taxon_sequence_map)
        if len(char_matrix.taxon_namespace) != len(tns):
            x1 = [t.label for t in char_matrix.taxon_namespace]
            x2 = [t.label for t in tns]
            c1 = collections.Counter(x1)
            c2 = collections.Counter(x2)
            c3 = c2 - c1
            print(c3)
        self.assertEqual(len(char_matrix.taxon_namespace), len(tns))
        original_labels = [t.label for t in tns]
        new_labels = [t.label for t in new_tns]
        self.assertCountEqual(new_labels, original_labels)
        for taxon in char_matrix:
            self.assertIn(taxon, char_matrix.taxon_namespace)
            self.assertNotIn(taxon, tns)
            self.assertIs(char_matrix[taxon], char_matrix[taxon].original_seq)
            self.assertIn(char_matrix[taxon], char_matrix.original_seqs)
            char_matrix.original_seqs.remove(char_matrix[taxon])
        self.assertEqual(char_matrix.original_seqs, [])

    def test_reconstruct_taxon_namespace_non_unifying(self):
        char_matrix = self.get_char_matrix_with_case_insensitive_and_case_sensitive_label_collisions()
        original_tns = char_matrix.taxon_namespace
        new_tns = dendropy.TaxonNamespace()
        new_tns.is_case_sensitive = True
        char_matrix._taxon_namespace = new_tns
        self.assertEqual(len(char_matrix.taxon_namespace), 0)
        char_matrix.reconstruct_taxon_namespace(unify_taxa_by_label=False)
        self.assertIsNot(char_matrix.taxon_namespace, original_tns)
        self.assertIs(char_matrix.taxon_namespace, new_tns)
        self.verify_taxon_namespace_reconstruction(
                char_matrix=char_matrix,
                unify_taxa_by_label=False,
                case_sensitive_label_mapping=True)

    def test_reconstruct_taxon_namespace_unifying_case_sensitive(self):
        char_matrix = self.get_char_matrix_with_case_insensitive_label_collisions()
        original_tns = char_matrix.taxon_namespace
        new_tns = dendropy.TaxonNamespace()
        new_tns.is_case_sensitive = True
        char_matrix._taxon_namespace = new_tns
        self.assertEqual(len(char_matrix.taxon_namespace), 0)
        char_matrix.reconstruct_taxon_namespace(unify_taxa_by_label=True)
        self.assertIsNot(char_matrix.taxon_namespace, original_tns)
        self.assertIs(char_matrix.taxon_namespace, new_tns)
        self.verify_taxon_namespace_reconstruction(
                char_matrix=char_matrix,
                unify_taxa_by_label=True,
                case_sensitive_label_mapping=True,
                original_tns=original_tns)

    def test_reconstruct_taxon_namespace_unifying_case_sensitive_fail(self):
        char_matrix = self.get_char_matrix_with_case_insensitive_and_case_sensitive_label_collisions()
        new_tns = dendropy.TaxonNamespace()
        new_tns.is_case_sensitive = True
        char_matrix._taxon_namespace = new_tns
        with self.assertRaises(error.TaxonNamespaceReconstructionError):
            char_matrix.reconstruct_taxon_namespace(unify_taxa_by_label=True)

    def test_reconstruct_taxon_namespace_unifying_case_insensitive(self):
        char_matrix = self.get_char_matrix()
        original_tns = char_matrix.taxon_namespace
        new_tns = dendropy.TaxonNamespace()
        new_tns.is_case_sensitive = False
        char_matrix._taxon_namespace = new_tns
        self.assertEqual(len(char_matrix.taxon_namespace), 0)
        char_matrix.reconstruct_taxon_namespace(unify_taxa_by_label=True)
        self.assertIsNot(char_matrix.taxon_namespace, original_tns)
        self.assertIs(char_matrix.taxon_namespace, new_tns)
        self.verify_taxon_namespace_reconstruction(
                char_matrix=char_matrix,
                unify_taxa_by_label=True,
                case_sensitive_label_mapping=False,
                original_tns=original_tns)

    def test_reconstruct_taxon_namespace_unifying_case_insensitive_fail(self):
        for char_matrix in (
                self.get_char_matrix_with_case_insensitive_label_collisions(),
                self.get_char_matrix_with_case_insensitive_and_case_sensitive_label_collisions(),
                ):
            new_tns = dendropy.TaxonNamespace()
            new_tns.is_case_sensitive = False
            char_matrix._taxon_namespace = new_tns
            with self.assertRaises(error.TaxonNamespaceReconstructionError):
                char_matrix.reconstruct_taxon_namespace(unify_taxa_by_label=True)

    def test_basic_migration(self):
        char_matrix = self.get_char_matrix()
        tns = char_matrix.taxon_namespace
        new_tns = dendropy.TaxonNamespace()
        new_tns.is_case_sensitive = True
        char_matrix.migrate_taxon_namespace(
                new_tns,
                unify_taxa_by_label=False)
        self.assertIsNot(char_matrix.taxon_namespace, tns)
        self.assertIs(char_matrix.taxon_namespace, new_tns)
        self.assertEqual(len(char_matrix), char_matrix.nseqs)
        self.assertEqual(len(char_matrix), len(char_matrix.original_seqs))
        assert len(char_matrix) == len(char_matrix._taxon_sequence_map)
        if len(char_matrix.taxon_namespace) != len(tns):
            x1 = [t.label for t in char_matrix.taxon_namespace]
            x2 = [t.label for t in tns]
            c1 = collections.Counter(x1)
            c2 = collections.Counter(x2)
            c3 = c2 - c1
            print(c3)
        self.assertEqual(len(char_matrix.taxon_namespace), len(tns))
        original_labels = [t.label for t in tns]
        new_labels = [t.label for t in new_tns]
        self.assertCountEqual(new_labels, original_labels)
        for taxon in char_matrix:
            self.assertIn(taxon, char_matrix.taxon_namespace)
            self.assertNotIn(taxon, tns)
            self.assertIs(char_matrix[taxon], char_matrix[taxon].original_seq)
            self.assertIn(char_matrix[taxon], char_matrix.original_seqs)
            char_matrix.original_seqs.remove(char_matrix[taxon])
        self.assertEqual(char_matrix.original_seqs, [])

    def test_migrate_taxon_namespace_non_unifying(self):
        char_matrix = self.get_char_matrix_with_case_insensitive_and_case_sensitive_label_collisions()
        original_tns = char_matrix.taxon_namespace
        new_tns = dendropy.TaxonNamespace()
        new_tns.is_case_sensitive = True
        char_matrix.migrate_taxon_namespace(
                new_tns,
                unify_taxa_by_label=False)
        self.assertIsNot(char_matrix.taxon_namespace, original_tns)
        self.assertIs(char_matrix.taxon_namespace, new_tns)
        self.verify_taxon_namespace_reconstruction(
                char_matrix=char_matrix,
                unify_taxa_by_label=False,
                case_sensitive_label_mapping=True)

    def test_migrate_taxon_namespace_unifying_case_sensitive(self):
        char_matrix = self.get_char_matrix_with_case_insensitive_label_collisions()
        original_tns = char_matrix.taxon_namespace
        new_tns = dendropy.TaxonNamespace()
        new_tns.is_case_sensitive = True
        char_matrix.migrate_taxon_namespace(
                new_tns,
                unify_taxa_by_label=True)
        self.assertIsNot(char_matrix.taxon_namespace, original_tns)
        self.assertIs(char_matrix.taxon_namespace, new_tns)
        self.verify_taxon_namespace_reconstruction(
                char_matrix=char_matrix,
                unify_taxa_by_label=True,
                case_sensitive_label_mapping=True,
                original_tns=original_tns)

    def test_migrate_taxon_namespace_unifying_case_sensitive_fail(self):
        char_matrix = self.get_char_matrix_with_case_insensitive_and_case_sensitive_label_collisions()
        new_tns = dendropy.TaxonNamespace()
        new_tns.is_case_sensitive = True
        with self.assertRaises(error.TaxonNamespaceReconstructionError):
            char_matrix.migrate_taxon_namespace(
                    new_tns,
                    unify_taxa_by_label=True)

    def test_migrate_taxon_namespace_unifying_case_insensitive(self):
        char_matrix = self.get_char_matrix()
        original_tns = char_matrix.taxon_namespace
        new_tns = dendropy.TaxonNamespace()
        new_tns.is_case_sensitive = False
        char_matrix.migrate_taxon_namespace(
                new_tns,
                unify_taxa_by_label=True)
        self.assertIsNot(char_matrix.taxon_namespace, original_tns)
        self.assertIs(char_matrix.taxon_namespace, new_tns)
        self.verify_taxon_namespace_reconstruction(
                char_matrix=char_matrix,
                unify_taxa_by_label=True,
                case_sensitive_label_mapping=False,
                original_tns=original_tns)

    def test_migrate_taxon_namespace_unifying_case_insensitive_fail(self):
        for char_matrix in (
                self.get_char_matrix_with_case_insensitive_label_collisions(),
                self.get_char_matrix_with_case_insensitive_and_case_sensitive_label_collisions(),
                ):
            new_tns = dendropy.TaxonNamespace()
            new_tns.is_case_sensitive = False
            char_matrix._taxon_namespace = new_tns
            with self.assertRaises(error.TaxonNamespaceReconstructionError):
                char_matrix.migrate_taxon_namespace(
                        new_tns,
                        unify_taxa_by_label=True)

class MatrixCreatingAndCloningTester(
        compare_and_validate.Comparator):

    @classmethod
    def build(cls):
        cls.rng = random.Random()
        if not hasattr(cls, "nseqs"):
            cls.nseqs = 1000

    def add_annotations(self, char_matrix):
        tns = char_matrix.taxon_namespace
        for idx, taxon in enumerate(tns):
            a = taxon.annotations.add_new("!color", str(idx))
            a.annotations.add_new("setbytest", "a")
        char_matrix.annotations.add_new("a", 0)
        char_matrix.label = "hello"
        b = char_matrix.annotations.add_bound_attribute("label")
        b.annotations.add_new("c", 3)
        for idx, taxon in enumerate(char_matrix):
            seq = char_matrix[taxon]
            an1 = seq.annotations.add_new("a{}".format(idx),
                    "{}{}{}".format(seq.label, seq.taxon, idx))
            an2 = seq.annotations.add_bouseq_attribute("label")
            an3 = an1.annotations.add_bouseq_attribute("name")
            ae3 = ae1.annotations.add_bouseq_attribute("name")

    def get_char_matrix(self, taxon_namespace=None):
        char_matrix = self.__class__.matrix_type(taxon_namespace=taxon_namespace)
        labels = [str(i) for i in range(self.__class__.nseqs)]
        self.__class__.rng.shuffle(labels)
        seq_iter = itertools.cycle(self.__class__.sequence_source)
        nchar = len(self.__class__.sequence_source) * 2
        for label in labels:
            t = dendropy.Taxon(label=label)
            char_matrix.taxon_namespace.add_taxon(t)
            seq = [next(seq_iter) for s in range(nchar)]
            char_matrix[t] = seq
            self.assertTrue(isinstance(char_matrix[t], self.__class__.sequence_type))
            self.assertIs(type(char_matrix[t]), self.__class__.sequence_type)
        return char_matrix

    def test_shallow_copy_with_initializer_list(self):
        tns1 = dendropy.TaxonNamespace()
        char_matrix1 = self.get_char_matrix(taxon_namespace=tns1)
        original_tns_length = len(tns1)
        self.assertIs(char_matrix1.taxon_namespace, tns1)
        d = collections.OrderedDict()
        for taxon in char_matrix1:
            d[taxon] = char_matrix1[taxon]
        tns2 = dendropy.TaxonNamespace()
        char_matrix2 = self.__class__.matrix_type(d, taxon_namespace=tns2)
        self.assertIs(char_matrix2.taxon_namespace, tns2)
        self.assertEqual(len(tns1), original_tns_length)
        self.assertEqual(len(tns2), original_tns_length)
        self.assertEqual(len(char_matrix2), len(char_matrix1))
        for tcopy, toriginal in zip(char_matrix2, char_matrix1):
            self.assertIs(tcopy, toriginal)
            seq_copy = char_matrix2[tcopy]
            seq_original = char_matrix1[toriginal]
            ### changed, 2016-01-09: lists not longer the same object
            # self.assertIs(seq_copy, seq_original)
            self.assertEqual(len(seq_copy), len(seq_original))
            for c1, c2 in zip(seq_copy, seq_original):
                self.assertIs(c1, c2)

    def test_clone0(self):
        char_matrix1 = self.get_char_matrix()
        for char_matrix2 in (
                char_matrix1.clone(0),
                ):
            self.assertIs(char_matrix2.taxon_namespace, char_matrix1.taxon_namespace)
            self.assertEqual(len(char_matrix2), len(char_matrix1))
            for tcopy, toriginal in zip(char_matrix2, char_matrix1):
                self.assertIs(tcopy, toriginal)
                seq_copy = char_matrix2[tcopy]
                seq_original = char_matrix1[toriginal]
                self.assertIs(seq_copy, seq_original)

    def test_taxon_namespace_scoped_copy(self):
        char_matrix1 = self.get_char_matrix()
        for char_matrix2 in (
                char_matrix1.clone(1),
                self.__class__.matrix_type(char_matrix1),
                char_matrix1.taxon_namespace_scoped_copy(),):
            self.compare_distinct_char_matrix(char_matrix2, char_matrix1,
                    taxon_namespace_scoped=True,
                    compare_matrix_annotations=True,
                    compare_sequence_annotations=True,
                    compare_taxon_annotations=True)

    def test_deepcopy_including_namespace(self):
        char_matrix1 = self.get_char_matrix()
        for idx, char_matrix2 in enumerate((
                char_matrix1.clone(2),
                copy.deepcopy(char_matrix1),
                )):
            self.compare_distinct_char_matrix(char_matrix2, char_matrix1,
                    taxon_namespace_scoped=False,
                    compare_matrix_annotations=True,
                    compare_sequence_annotations=True,
                    compare_taxon_annotations=True)

    def test_deepcopy_excluding_namespace(self):
        char_matrix1 = self.get_char_matrix()
        char_matrix2 = self.__class__.matrix_type(char_matrix1,
                taxon_namespace=dendropy.TaxonNamespace())
        self.compare_distinct_char_matrix(char_matrix2, char_matrix1,
                taxon_namespace_scoped=False,
                compare_matrix_annotations=True,
                compare_sequence_annotations=True,
                compare_taxon_annotations=False)

class CharacterMatrixCreatingAndCloningTestCase(
        MatrixCreatingAndCloningTester,
        dendropytest.ExtendedTestCase):

    @classmethod
    def setUpClass(cls):
        cls.matrix_type = dendropy.CharacterMatrix
        cls.sequence_type = dendropy.CharacterDataSequence
        cls.sequence_source = [1,2,3,4]
        cls.nseqs = 1000
        cls.build()

class ContinuousCharacterMatrixCreatingAndCloningTestCase(
        MatrixCreatingAndCloningTester,
        dendropytest.ExtendedTestCase):

    @classmethod
    def setUpClass(cls):
        cls.matrix_type = dendropy.ContinuousCharacterMatrix
        cls.sequence_type = dendropy.ContinuousCharacterDataSequence
        cls.sequence_source = [-1.0e-1, 42, 2.5e-6, 3.14e5, -1]
        cls.nseqs = 1000
        cls.build()

class DnaCharacterMatrixCreatingAndCloningTestCase(
        MatrixCreatingAndCloningTester,
        dendropytest.ExtendedTestCase):

    @classmethod
    def setUpClass(cls):
        cls.matrix_type = dendropy.DnaCharacterMatrix
        cls.sequence_type = dendropy.DnaCharacterDataSequence
        cls.sequence_source = list(cls.matrix_type.datatype_alphabet)
        cls.nseqs = 100
        cls.build()

class RnaCharacterMatrixCreatingAndCloningTestCase(
        MatrixCreatingAndCloningTester,
        dendropytest.ExtendedTestCase):

    @classmethod
    def setUpClass(cls):
        cls.matrix_type = dendropy.RnaCharacterMatrix
        cls.sequence_type = dendropy.RnaCharacterDataSequence
        cls.sequence_source = list(cls.matrix_type.datatype_alphabet)
        cls.nseqs = 100
        cls.build()

class NucleotideCharacterMatrixCreatingAndCloningTestCase(
        MatrixCreatingAndCloningTester,
        dendropytest.ExtendedTestCase):

    @classmethod
    def setUpClass(cls):
        cls.matrix_type = dendropy.NucleotideCharacterMatrix
        cls.sequence_type = dendropy.NucleotideCharacterDataSequence
        cls.sequence_source = list(cls.matrix_type.datatype_alphabet)
        cls.nseqs = 100
        cls.build()

class ProteinCharacterMatrixCreatingAndCloningTestCase(
        MatrixCreatingAndCloningTester,
        dendropytest.ExtendedTestCase):

    @classmethod
    def setUpClass(cls):
        cls.matrix_type = dendropy.ProteinCharacterMatrix
        cls.sequence_type = dendropy.ProteinCharacterDataSequence
        cls.sequence_source = list(cls.matrix_type.datatype_alphabet)
        cls.nseqs = 100
        cls.build()

class RestrictionSitesCharacterMatrixCreatingAndCloningTestCase(
        MatrixCreatingAndCloningTester,
        dendropytest.ExtendedTestCase):

    @classmethod
    def setUpClass(cls):
        cls.matrix_type = dendropy.RestrictionSitesCharacterMatrix
        cls.sequence_type = dendropy.RestrictionSitesCharacterDataSequence
        cls.sequence_source = list(cls.matrix_type.datatype_alphabet)
        cls.nseqs = 100
        cls.build()

class InfiniteSitesCharacterMatrixCreatingAndCloningTestCase(
        MatrixCreatingAndCloningTester,
        dendropytest.ExtendedTestCase):

    @classmethod
    def setUpClass(cls):
        cls.matrix_type = dendropy.InfiniteSitesCharacterMatrix
        cls.sequence_type = dendropy.InfiniteSitesCharacterDataSequence
        cls.sequence_source = list(cls.matrix_type.datatype_alphabet)
        cls.nseqs = 100
        cls.build()

class TestCharacterMatrixTaxa(dendropytest.ExtendedTestCase):

    def setUp(self):
        self.char_matrix = charmatrixmodel.CharacterMatrix()
        labels = [
                "a", "b", "c", "d", "e", "f",
                ]
        self.expected_taxa = set()
        for label in labels:
            t = dendropy.Taxon(label=label)
            self.char_matrix.taxon_namespace.add_taxon(t)
            self.expected_taxa.add(t)
            seq = [_ for _ in range(4)]
            self.char_matrix[t] = seq

    def test_basic_taxa(self):
        self.assertEqual(self.char_matrix.poll_taxa(), self.expected_taxa)

class TestCharacterMatrixTaxa(dendropytest.ExtendedTestCase):

    def setUp(self):
        self.char_matrix = charmatrixmodel.CharacterMatrix()
        labels = [
                "a", "b", "c", "d", "e", "f",
                ]
        self.expected_taxa = set()
        for label in labels:
            t = dendropy.Taxon(label=label)
            self.char_matrix.taxon_namespace.add_taxon(t)
            self.expected_taxa.add(t)
            seq = [_ for _ in range(4)]
            self.char_matrix[t] = seq

    def test_noop_purge(self):
        self.assertEqual(set(self.char_matrix.taxon_namespace), self.expected_taxa)
        self.char_matrix.purge_taxon_namespace()
        self.assertEqual(set(self.char_matrix.taxon_namespace), self.expected_taxa)

    def test_basic_purge(self):
        self.assertEqual(set(self.char_matrix.taxon_namespace), self.expected_taxa)
        added_taxa = set(self.expected_taxa)
        for label in ("z1", "z2", "z3", "z4"):
            t = self.char_matrix.taxon_namespace.new_taxon(label=label)
            added_taxa.add(t)
        self.assertEqual(set(self.char_matrix.taxon_namespace), added_taxa)
        self.char_matrix.purge_taxon_namespace()
        self.assertEqual(set(self.char_matrix.taxon_namespace), self.expected_taxa)

if __name__ == "__main__":
    unittest.main()