1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
|
#! /usr/bin/env python
##############################################################################
## DendroPy Phylogenetic Computing Library.
##
## Copyright 2010-2015 Jeet Sukumaran and Mark T. Holder.
## All rights reserved.
##
## See "LICENSE.rst" for terms and conditions of usage.
##
## If you use this work or any portion thereof in published work,
## please cite it as:
##
## Sukumaran, J. and M. T. Holder. 2010. DendroPy: a Python library
## for phylogenetic computing. Bioinformatics 26: 1569-1571.
##
##############################################################################
import unittest
import dendropy
import csv
from dendropy.utility import container
from dendropy.utility.textprocessing import StringIO
from dendropy.test.support import pathmap
from dendropy.calculate import treemeasure
from dendropy.calculate import probability
from dendropy.calculate import combinatorics
class PhylogeneticDistanceMatrixCloneTest(unittest.TestCase):
def setUp(self):
self.tree = dendropy.Tree.get_from_string("(((a:1, b:1):1, c:2):1, (d:2, (e:1,f:1):1):1):0;", schema="newick")
def test_clone(self):
pdm0 = self.tree.phylogenetic_distance_matrix()
pdm1 = pdm0.clone()
self.assertIsNot(pdm0, pdm1)
self.assertIs(pdm0.taxon_namespace, pdm1.taxon_namespace)
self.assertEqual(len(pdm0.taxon_namespace), len(pdm0._mapped_taxa))
self.assertEqual(len(pdm1.taxon_namespace), len(pdm1._mapped_taxa))
for src, dest in (
(pdm0._taxon_phylogenetic_distances, pdm1._taxon_phylogenetic_distances,),
(pdm0._taxon_phylogenetic_path_steps, pdm1._taxon_phylogenetic_path_steps,),
(pdm0._mrca, pdm1._mrca,),
):
self.assertIsNot(src, dest)
for t1 in src:
self.assertIn(t1, dest)
self.assertIsNot(src[t1], dest[t1])
for t1 in self.tree.taxon_namespace:
for t2 in self.tree.taxon_namespace:
self.assertEqual(pdm0.patristic_distance(t1, t2), pdm1.patristic_distance(t1, t2))
self.assertEqual(pdm0.mrca(t1, t2), pdm1.mrca(t1, t2))
self.assertEqual(pdm0.path_edge_count(t1, t2), pdm1.path_edge_count(t1, t2))
self.assertEqual(set(pdm0.distances()), set(pdm1.distances()))
self.assertEqual(pdm0.sum_of_distances(), pdm1.sum_of_distances())
self.assertEqual(pdm0, pdm1)
class PhylogeneticDistanceMatrixCompileTest(unittest.TestCase):
def setUp(self):
# library(ape)
# tree = read.nexus("data/pythonidae.mle.nex")
# pdm = cophenetic.phylo(tree)
# write.csv(format(pdm,digits=22), "pythonidae.mle.weighted.pdm.csv")
with open(pathmap.other_source_path("pythonidae.mle.weighted.pdm.csv")) as src:
self.reference_pdm_weighted_table = container.DataTable.from_csv(src, default_data_type=float, delimiter=",")
with open(pathmap.other_source_path("pythonidae.mle.unweighted.pdm.csv")) as src:
self.reference_pdm_unweighted_table = container.DataTable.from_csv(src, default_data_type=float, delimiter=",")
self.tree = dendropy.Tree.get(path=pathmap.tree_source_path(
"pythonidae.mle.nex"),
schema="nexus",
preserve_underscores=True)
self.pdm = self.tree.phylogenetic_distance_matrix()
def test_mapped_taxa(self):
n1 = len(self.tree.taxon_namespace)
self.assertEqual(self.pdm.taxon_namespace, self.tree.taxon_namespace)
self.assertEqual(n1, len(self.tree.taxon_namespace))
for taxon1 in self.tree.taxon_namespace:
self.assertIn(taxon1, self.pdm._mapped_taxa)
for taxon in self.pdm.taxon_iter():
self.assertIn(taxon1, self.pdm._mapped_taxa)
self.assertIn(taxon1, self.tree.taxon_namespace)
def test_all_distinct_mapped_taxa_pairs(self):
n1 = len(self.tree.taxon_namespace)
taxon_pair_iter1 = iter(self.pdm._all_distinct_mapped_taxa_pairs)
taxon_pair_iter2 = self.pdm.distinct_taxon_pair_iter()
for tpi in (taxon_pair_iter1, taxon_pair_iter2):
seen_pairs = set()
visited_taxa = set()
for taxon1, taxon2 in tpi:
s = frozenset([taxon1, taxon2])
self.assertIn(taxon1, self.pdm._mapped_taxa)
self.assertIn(taxon1, self.tree.taxon_namespace)
self.assertIn(taxon2, self.pdm._mapped_taxa)
self.assertIn(taxon2, self.tree.taxon_namespace)
self.assertNotIn(s, seen_pairs)
seen_pairs.add(s)
visited_taxa.add(taxon1)
visited_taxa.add(taxon2)
self.assertEqual(len(visited_taxa), n1)
self.assertEqual(len(seen_pairs), combinatorics.choose(n1, 2))
def test_tree_length(self):
self.assertEqual(self.pdm._tree_length, self.tree.length())
def test_tree_num_edges(self):
self.assertEqual(self.pdm._num_edges, combinatorics.num_edges_on_tree(
num_leaves=len(self.tree.taxon_namespace), is_rooted=True))
def test_tree_weighted_unnormalized_pairwise_distance_query(self):
for taxon1 in self.tree.taxon_namespace:
for taxon2 in self.tree.taxon_namespace:
exp = self.reference_pdm_weighted_table[taxon1.label, taxon2.label]
obs1 = self.pdm._taxon_phylogenetic_distances[taxon1][taxon2]
self.assertAlmostEqual(obs1, exp, 6)
obs2 = self.pdm.patristic_distance(taxon1, taxon2)
self.assertAlmostEqual(obs2, exp, 6)
obs3 = self.pdm.distance(
taxon1,
taxon2,
is_weighted_edge_distances=True,
is_normalize_by_tree_size=False)
self.assertAlmostEqual(obs3, exp, 6)
def test_tree_weighted_normalized_pairwise_distance_query(self):
tree_length = self.tree.length()
for taxon1 in self.tree.taxon_namespace:
for taxon2 in self.tree.taxon_namespace:
exp = self.reference_pdm_weighted_table[taxon1.label, taxon2.label] / tree_length
obs2 = self.pdm.patristic_distance(taxon1, taxon2, is_normalize_by_tree_size=True)
self.assertAlmostEqual(obs2, exp, 6)
obs3 = self.pdm.distance(
taxon1,
taxon2,
is_weighted_edge_distances=True,
is_normalize_by_tree_size=True)
self.assertAlmostEqual(obs3, exp, 6)
def test_tree_unweighted_unnormalized_pairwise_distance_query(self):
for taxon1 in self.tree.taxon_namespace:
for taxon2 in self.tree.taxon_namespace:
exp = self.reference_pdm_unweighted_table[taxon1.label, taxon2.label]
obs1 = self.pdm._taxon_phylogenetic_path_steps[taxon1][taxon2]
self.assertAlmostEqual(obs1, exp, 6)
obs2 = self.pdm.path_edge_count(taxon1, taxon2)
self.assertAlmostEqual(obs2, exp, 6)
obs3 = self.pdm.distance(
taxon1,
taxon2,
is_weighted_edge_distances=False,
is_normalize_by_tree_size=False)
self.assertAlmostEqual(obs3, exp, 6)
def test_tree_unweighted_normalized_pairwise_distance_query(self):
num_edges_on_tree = combinatorics.num_edges_on_tree(
num_leaves=len(self.tree.taxon_namespace), is_rooted=True)
for taxon1 in self.tree.taxon_namespace:
for taxon2 in self.tree.taxon_namespace:
exp = self.reference_pdm_unweighted_table[taxon1.label, taxon2.label] / num_edges_on_tree
obs2 = self.pdm.path_edge_count(taxon1, taxon2, is_normalize_by_tree_size=True)
self.assertAlmostEqual(obs2, exp, 6)
obs3 = self.pdm.distance(
taxon1,
taxon2,
is_weighted_edge_distances=False,
is_normalize_by_tree_size=True)
self.assertAlmostEqual(obs3, exp, 6)
def test_tree_weighted_unnormalized_pairwise_distance_collection(self):
# this test relies on populating the expected result list
# in the *same order* as the function it is testing
exp_list = []
for taxon1, taxon2 in self.pdm.distinct_taxon_pair_iter():
exp = self.reference_pdm_weighted_table[taxon1.label, taxon2.label]
exp_list.append(exp)
obs = self.pdm.distances(
is_weighted_edge_distances=True,
is_normalize_by_tree_size=False,
)
self.assertEqual(len(obs), len(exp_list))
for obs, exp in zip(obs, exp_list):
self.assertAlmostEqual(obs, exp, 6)
self.assertAlmostEqual(self.pdm.sum_of_distances(
is_weighted_edge_distances=True,
is_normalize_by_tree_size=False,
), sum(exp_list), 6)
def test_tree_weighted_normalized_pairwise_distance_collection(self):
# this test relies on populating the expected result list
# in the *same order* as the function it is testing
tree_length = self.tree.length()
exp_list = []
for taxon1, taxon2 in self.pdm.distinct_taxon_pair_iter():
exp = self.reference_pdm_weighted_table[taxon1.label, taxon2.label] / tree_length
exp_list.append(exp)
obs = self.pdm.distances(
is_weighted_edge_distances=True,
is_normalize_by_tree_size=True,
)
self.assertEqual(len(obs), len(exp_list))
for obs, exp in zip(obs, exp_list):
self.assertAlmostEqual(obs, exp, 6)
self.assertAlmostEqual(self.pdm.sum_of_distances(
is_weighted_edge_distances=True,
is_normalize_by_tree_size=True,
), sum(exp_list), 6)
def test_tree_unweighted_unnormalized_pairwise_distance_collection(self):
# this test relies on populating the expected result list
# in the *same order* as the function it is testing
exp_list = []
for taxon1, taxon2 in self.pdm.distinct_taxon_pair_iter():
exp = self.reference_pdm_unweighted_table[taxon1.label, taxon2.label]
exp_list.append(exp)
obs = self.pdm.distances(
is_weighted_edge_distances=False,
is_normalize_by_tree_size=False,
)
self.assertEqual(len(obs), len(exp_list))
for obs, exp in zip(obs, exp_list):
self.assertAlmostEqual(obs, exp, 6)
self.assertAlmostEqual(self.pdm.sum_of_distances(
is_weighted_edge_distances=False,
is_normalize_by_tree_size=False,
), sum(exp_list), 6)
def test_tree_unweighted_normalized_pairwise_distance_collection(self):
# this test relies on populating the expected result list
# in the *same order* as the function it is testing
num_edges_on_tree = combinatorics.num_edges_on_tree(
num_leaves=len(self.tree.taxon_namespace), is_rooted=True)
exp_list = []
for taxon1, taxon2 in self.pdm.distinct_taxon_pair_iter():
exp = self.reference_pdm_unweighted_table[taxon1.label, taxon2.label] / num_edges_on_tree
exp_list.append(exp)
obs = self.pdm.distances(
is_weighted_edge_distances=False,
is_normalize_by_tree_size=True,
)
self.assertEqual(len(obs), len(exp_list))
for obs, exp in zip(obs, exp_list):
self.assertAlmostEqual(obs, exp, 6)
self.assertAlmostEqual(self.pdm.sum_of_distances(
is_weighted_edge_distances=False,
is_normalize_by_tree_size=True,
), sum(exp_list), 6)
def test_max_pairwise_weighted_distance_taxa(self):
maxd = None
maxt = None
for taxon1 in self.tree.taxon_namespace:
for taxon2 in self.tree.taxon_namespace:
d = self.reference_pdm_weighted_table[taxon1.label, taxon2.label]
if maxd is None or d > maxd:
maxd = d
maxt = set([taxon1, taxon2])
obs_maxt = self.pdm.max_pairwise_distance_taxa(is_weighted_edge_distances=True)
self.assertEqual(set(obs_maxt), maxt)
def test_max_pairwise_weighted_distance_taxa(self):
maxd = None
maxt = None
for taxon1 in self.tree.taxon_namespace:
for taxon2 in self.tree.taxon_namespace:
d = self.reference_pdm_weighted_table[taxon1.label, taxon2.label]
if maxd is None or d > maxd:
maxd = d
maxt = set([taxon1, taxon2])
obs_maxt = self.pdm.max_pairwise_distance_taxa(is_weighted_edge_distances=True)
self.assertEqual(set(obs_maxt), maxt)
def test_max_pairwise_unweighted_distance_taxa(self):
maxd = None
maxts = []
for taxon1 in self.tree.taxon_namespace:
for taxon2 in self.tree.taxon_namespace:
d = self.reference_pdm_unweighted_table[taxon1.label, taxon2.label]
if maxd is None or d > maxd:
maxd = d
maxts.append(set([taxon1, taxon2]))
elif d == maxd:
maxts.append(set([taxon1, taxon2]))
obs_maxt = self.pdm.max_pairwise_distance_taxa(is_weighted_edge_distances=False)
found_match = False
for maxt in maxts:
if set(obs_maxt) == maxt:
found_match = True
break
else:
self.fail()
class PhylogeneticDistanceMatrixShuffleTest(unittest.TestCase):
def test_shuffle(self):
tree = dendropy.Tree.get_from_path(
src=pathmap.tree_source_path("community.tree.newick"),
schema="newick",
rooting="force-rooted")
pdc0 = tree.phylogenetic_distance_matrix()
pdc1 = tree.phylogenetic_distance_matrix()
current_to_shuffled_taxon_map = pdc1.shuffle_taxa()
keys = set(current_to_shuffled_taxon_map.keys())
values = set(current_to_shuffled_taxon_map.values())
self.assertEqual(len(keys), len(values), "\n\n({}): {}\n\n({}): {}".format(len(keys), keys, len(values), values))
self.assertEqual(keys, values)
for taxon in tree.taxon_namespace:
self.assertIn(taxon, current_to_shuffled_taxon_map)
for nd in tree.leaf_node_iter():
self.assertIn(current_to_shuffled_taxon_map[nd.taxon], tree.taxon_namespace)
nd.taxon = current_to_shuffled_taxon_map[nd.taxon]
pdc2 = tree.phylogenetic_distance_matrix()
same_as_before = []
different = []
for t1 in tree.taxon_namespace:
for t2 in tree.taxon_namespace:
d2 = pdc2.patristic_distance(t1, t2)
d1 = pdc1.patristic_distance(t1, t2)
self.assertEqual(d1, d2)
if t1 is not t2:
d0 = pdc0.patristic_distance(t1, t2)
if d0 == d1:
same_as_before.append( (t1, t2) )
else:
different.append( (t1, t2) )
else:
self.assertEqual(d1, 0)
self.assertTrue(len(different) > 0)
self.assertEqual(pdc1, pdc2)
self.assertNotEqual(pdc0, pdc1)
class TreePatristicDistTest(unittest.TestCase):
def setUp(self):
self.tree = dendropy.Tree.get_from_string("(((a:1, b:1):1, c:2):1, (d:2, (e:1,f:1):1):1):0;", schema="newick")
def testPatDistMatrix(self):
pdm = dendropy.PhylogeneticDistanceMatrix.from_tree(self.tree)
def _chk_distance(pdm, t1, t2, exp_distance):
tax1 = self.tree.taxon_namespace.require_taxon(label=t1)
tax2 = self.tree.taxon_namespace.require_taxon(label=t2)
pd = pdm(tax1, tax2)
self.assertEqual(pd, exp_distance, "{}: {} <-> {}: {} instead of {}".format(self.tree, t1, t2, pd, exp_distance))
_chk_distance(pdm, "a", "b", 2)
_chk_distance(pdm, "a", "c", 4)
_chk_distance(pdm, "b", "c", 4)
_chk_distance(pdm, "a", "d", 6)
_chk_distance(pdm, "f", "d", 4)
_chk_distance(pdm, "c", "d", 6)
def testPatDistFunc(self):
self.tree.encode_bipartitions()
def _chk_distance(t1, t2, exp_distance):
tax1 = self.tree.taxon_namespace.get_taxon(label=t1)
tax2 = self.tree.taxon_namespace.get_taxon(label=t2)
pd = treemeasure.patristic_distance(self.tree, tax1, tax2)
self.assertEqual(pd, exp_distance)
_chk_distance("a", "b", 2)
_chk_distance("a", "c", 4)
_chk_distance("b", "c", 4)
_chk_distance("a", "d", 6)
_chk_distance("f", "d", 4)
_chk_distance("c", "d", 6)
class PhylogeneticEcologyStatsTests(unittest.TestCase):
def setUp(self):
self.tree = dendropy.Tree.get_from_path(
src=pathmap.tree_source_path("community.tree.newick"),
schema="newick",
rooting="force-rooted")
self.pdm = dendropy.PhylogeneticDistanceMatrix.from_tree(self.tree)
assemblage_data_filepath = pathmap.other_source_path("community.data.tsv")
with open(assemblage_data_filepath) as src:
self.data_table = container.DataTable.from_csv(src, default_data_type=int, delimiter="\t")
self.assemblage_membership_definitions = self.pdm.assemblage_membership_definitions_from_csv(
assemblage_data_filepath,
delimiter="\t")
self.assemblage_memberships = self.assemblage_membership_definitions.values()
def _low_precision_equality(self, v1, v2, error=1.0):
return abs(v1-v2) <= error
def test_nonabundance_edgeweighted_unnormalized_mpd(self):
# my.sample = read.table("data/PD.example.sample.txt", sep = "\t", row.names = 1, header = T)
# my.phylo = read.tree("data/PD.example.phylo.txt")
# pd.matrix = cophenetic(my.phylo)
# mpd(my.sample, cophenetic(my.phylo), abundance.weighted=F)
# [1] 3.2225706087019050372078 1.9156605943056665974922 1.9156605943290001548007
# [4] 1.9395923093204667786438 0.1934132401466666650869
expected_results = {
"C1": 3.222570608701905037208,
"C2": 1.915660594305666597492,
"C3": 1.915660594329000154801,
"C4": 1.939592309320466778644,
"C5": 0.1934132401466666650869,
}
for row_name in self.data_table.row_name_iter():
filter_fn = lambda taxon: self.data_table[row_name, taxon.label] > 0
d = self.pdm.mean_pairwise_distance(filter_fn=filter_fn)
self.assertAlmostEqual(d, expected_results[row_name])
def test_nonabundance_edgeweighted_unnormalized_mntd(self):
# my.sample = read.table("data/PD.example.sample.txt", sep = "\t", row.names = 1, header = T)
# my.phylo = read.tree("data/PD.example.phylo.txt")
# pd.matrix = cophenetic(my.phylo)
# mntd(my.sample, cophenetic(my.phylo), abundance.weighted=F)
# [1] 1.6347319809428570991372 1.0891173926393333815099 1.0891173926543333827510
# [4] 0.1180230301583333335502 0.1426761318733333339104
expected_results = {
"C1": 1.6347319809428570991372,
"C2": 1.0891173926393333815099,
"C3": 1.0891173926543333827510,
"C4": 0.1180230301583333335502,
"C5": 0.1426761318733333339104,
}
for row_name in self.data_table.row_name_iter():
filter_fn = lambda taxon: self.data_table[row_name, taxon.label] > 0
d = self.pdm.mean_nearest_taxon_distance(filter_fn=filter_fn)
self.assertAlmostEqual(d, expected_results[row_name])
def test_nonabundance_edgeweighted_unnormalized_ses_mpd(self):
# suppressMessages(library(picante))
# dists = as.matrix(read.csv("data/dist.csv",header=T,row.names=1))
# comm = as.matrix(read.csv("data/community.data.tsv",sep="\t",header=T,row.names=1))
# results.mpd = ses.mpd(comm, dists, null.model="taxa.labels",abundance.weighted=F,runs=100000)
# write.csv(format(results.mpd, digits=22), quote=F, "community.data.weighted.unnormalized.ses.mpd.csv")
# results.mntd = ses.mntd(comm, dists, null.model="taxa.labels",abundance.weighted=F,runs=100000)
# write.csv(format(results.mntd,digits=22), quote=F, "community.data.weighted.unnormalized.ses.mntd.csv")
with open(pathmap.other_source_path("community.data.weighted.unnormalized.ses.mpd.csv")) as src:
expected_results_data_table = container.DataTable.from_csv(src, default_data_type=float)
# for row_name in expected_results_data_table.row_name_iter():
# for column_name in expected_results_data_table.column_name_iter():
# v = expected_results_data_table[row_name, column_name]
# print("{}, {}: {} ({})".format(row_name, column_name, v, type(v)))
obs_results = self.pdm.standardized_effect_size_mean_pairwise_distance(
assemblage_memberships=self.assemblage_memberships,
num_randomization_replicates=100,
is_weighted_edge_distances=True,
is_normalize_by_tree_size=False,
)
self.assertEqual(len(obs_results), expected_results_data_table.num_rows())
for obs_result, expected_result_row_name in zip(obs_results, expected_results_data_table.row_name_iter()):
self.assertTrue(self._low_precision_equality(
obs_result.obs,
expected_results_data_table[expected_result_row_name, "mpd.obs"],
))
self.assertTrue(self._low_precision_equality(
obs_result.null_model_mean,
expected_results_data_table[expected_result_row_name, "mpd.rand.mean"],
))
self.assertTrue(self._low_precision_equality(
obs_result.null_model_sd,
expected_results_data_table[expected_result_row_name, "mpd.rand.sd"],
))
self.assertTrue(self._low_precision_equality(
obs_result.z,
expected_results_data_table[expected_result_row_name, "mpd.obs.z"],
))
self.assertTrue(self._low_precision_equality(
obs_result.p,
expected_results_data_table[expected_result_row_name, "mpd.obs.p"],
))
def test_nonabundance_edgeweighted_unnormalized_ses_mntd(self):
# suppressMessages(library(picante))
# dists = as.matrix(read.csv("data/dist.csv",header=T,row.names=1))
# comm = as.matrix(read.csv("data/community.data.tsv",sep="\t",header=T,row.names=1))
# results.mntd = ses.mntd(comm, dists, null.model="taxa.labels",abundance.weighted=F,runs=100000)
# write.csv(format(results.mntd, digits=22), quote=F, "community.data.weighted.unnormalized.ses.mntd.csv")
# results.mntd = ses.mntd(comm, dists, null.model="taxa.labels",abundance.weighted=F,runs=100000)
# write.csv(format(results.mntd,digits=22), quote=F, "community.data.weighted.unnormalized.ses.mntd.csv")
with open(pathmap.other_source_path("community.data.weighted.unnormalized.ses.mntd.csv")) as src:
expected_results_data_table = container.DataTable.from_csv(src, default_data_type=float, delimiter=",")
# for row_name in expected_results_data_table.row_name_iter():
# for column_name in expected_results_data_table.column_name_iter():
# v = expected_results_data_table[row_name, column_name]
# print("{}, {}: {} ({})".format(row_name, column_name, v, type(v)))
obs_results = self.pdm.standardized_effect_size_mean_nearest_taxon_distance(
assemblage_memberships=self.assemblage_memberships,
num_randomization_replicates=100,
is_weighted_edge_distances=True,
is_normalize_by_tree_size=False,
)
self.assertEqual(len(obs_results), expected_results_data_table.num_rows())
for obs_result, expected_result_row_name in zip(obs_results, expected_results_data_table.row_name_iter()):
self.assertTrue(self._low_precision_equality(
obs_result.obs,
expected_results_data_table[expected_result_row_name, "mntd.obs"],
))
self.assertTrue(self._low_precision_equality(
obs_result.null_model_mean,
expected_results_data_table[expected_result_row_name, "mntd.rand.mean"],
))
self.assertTrue(self._low_precision_equality(
obs_result.null_model_sd,
expected_results_data_table[expected_result_row_name, "mntd.rand.sd"],
))
self.assertTrue(self._low_precision_equality(
obs_result.z,
expected_results_data_table[expected_result_row_name, "mntd.obs.z"],
))
self.assertTrue(self._low_precision_equality(
obs_result.p,
expected_results_data_table[expected_result_row_name, "mntd.obs.p"],
))
class PhylogeneticDistanceMatrixReader(unittest.TestCase):
def setUp(self):
self.s00 = """\
0 , 1 , 2 , 3 , 4 , 5
6 , 0 , 7 , 8 , 9 , 10
11 , 12 , 0 , 13 , 14 , 15
16 , 17 , 18 , 0 , 19 , 20
21 , 22 , 23 , 24 , 0 , 25
26 , 27 , 28 , 29 , 30 , 0
"""
self.s11 = """\
. , a , b , c , d , e , f
a , 0 , 1 , 2 , 3 , 4 , 5
b , 6 , 0 , 7 , 8 , 9 , 10
c , 11 , 12 , 0 , 13 , 14 , 15
d , 16 , 17 , 18 , 0 , 19 , 20
e , 21 , 22 , 23 , 24 , 0 , 25
f , 26 , 27 , 28 , 29 , 30 , 0
"""
self.s10 = """\
a , 0 , 1 , 2 , 3 , 4 , 5
b , 6 , 0 , 7 , 8 , 9 , 10
c , 11 , 12 , 0 , 13 , 14 , 15
d , 16 , 17 , 18 , 0 , 19 , 20
e , 21 , 22 , 23 , 24 , 0 , 25
f , 26 , 27 , 28 , 29 , 30 , 0
"""
self.s01 = """\
a , b , c , d , e , f
0 , 1 , 2 , 3 , 4 , 5
6 , 0 , 7 , 8 , 9 , 10
11 , 12 , 0 , 13 , 14 , 15
16 , 17 , 18 , 0 , 19 , 20
21 , 22 , 23 , 24 , 0 , 25
26 , 27 , 28 , 29 , 30 , 0
"""
self.expected_labels = {
0 : "a",
1 : "b",
2 : "c",
3 : "d",
4 : "e",
5 : "f",
}
self.expected_distances = {
frozenset([0,1]): 1,
frozenset([0,2]): 2,
frozenset([0,3]): 3,
frozenset([0,4]): 4,
frozenset([0,5]): 5,
frozenset([1,2]): 7,
frozenset([1,3]): 8,
frozenset([1,4]): 9,
frozenset([1,5]): 10,
frozenset([2,2]): 0,
frozenset([2,3]): 13,
frozenset([2,4]): 14,
frozenset([2,5]): 15,
frozenset([3,4]): 19,
frozenset([3,5]): 20,
frozenset([4,5]): 25,
}
def check_pdm(self, pdm, is_check_labels=True):
self.assertEqual(len(pdm.taxon_namespace), 6)
for i1 in range(6):
t1 = pdm.taxon_namespace[i1]
if is_check_labels:
self.assertEqual(t1.label, self.expected_labels[i1])
for i2 in range(6):
t2 = pdm.taxon_namespace[i2]
if is_check_labels:
self.assertEqual(t2.label, self.expected_labels[i2])
if i1 == i2:
self.assertIs(t1, t2)
self.assertEqual(pdm.patristic_distance(t1, t2), 0)
else:
self.assertEqual(pdm.patristic_distance(t1, t2), self.expected_distances[frozenset([i1, i2])])
def test_read_new_taxon_namespace_with_no_row_and_no_column_names(self):
pdm = dendropy.PhylogeneticDistanceMatrix.from_csv(
StringIO(self.s00),
is_first_row_column_names=False,
is_first_column_row_names=False,
is_allow_new_taxa=True)
self.check_pdm(pdm, is_check_labels=False)
def test_read_new_taxon_namespace_with_row_and_no_column_names(self):
pdm = dendropy.PhylogeneticDistanceMatrix.from_csv(
StringIO(self.s10),
is_first_row_column_names=False,
is_first_column_row_names=True,
is_allow_new_taxa=True)
self.check_pdm(pdm, is_check_labels=True)
def test_read_new_taxon_namespace_with_no_row_and_column_names(self):
pdm = dendropy.PhylogeneticDistanceMatrix.from_csv(
StringIO(self.s01),
is_first_row_column_names=True,
is_first_column_row_names=False,
is_allow_new_taxa=True)
self.check_pdm(pdm, is_check_labels=True)
def test_read_new_taxon_namespace_with_row_and_column_names(self):
pdm = dendropy.PhylogeneticDistanceMatrix.from_csv(
StringIO(self.s11),
is_first_row_column_names=True,
is_first_column_row_names=True,
is_allow_new_taxa=True)
self.check_pdm(pdm, is_check_labels=False)
def test_read_existing_taxon_namespace_with_no_row_and_no_column_names(self):
taxon_namespace = dendropy.TaxonNamespace()
for label in self.expected_labels.values():
t1 = taxon_namespace.require_taxon(label=label)
pdm = dendropy.PhylogeneticDistanceMatrix.from_csv(
StringIO(self.s00),
taxon_namespace=taxon_namespace,
is_first_row_column_names=False,
is_first_column_row_names=False,
is_allow_new_taxa=True)
self.assertIs(taxon_namespace, pdm.taxon_namespace)
self.check_pdm(pdm, is_check_labels=False)
def test_read_existing_taxon_namespace_with_no_row_and_column_names(self):
taxon_namespace = dendropy.TaxonNamespace()
for label in self.expected_labels.values():
t1 = taxon_namespace.require_taxon(label=label)
pdm = dendropy.PhylogeneticDistanceMatrix.from_csv(
StringIO(self.s01),
taxon_namespace=taxon_namespace,
is_first_row_column_names=True,
is_first_column_row_names=False,
is_allow_new_taxa=True)
self.assertIs(taxon_namespace, pdm.taxon_namespace)
self.check_pdm(pdm, is_check_labels=True)
def test_read_existing_taxon_namespace_with_row_and_no_column_names(self):
taxon_namespace = dendropy.TaxonNamespace()
for label in self.expected_labels.values():
t1 = taxon_namespace.require_taxon(label=label)
pdm = dendropy.PhylogeneticDistanceMatrix.from_csv(
StringIO(self.s10),
taxon_namespace=taxon_namespace,
is_first_row_column_names=False,
is_first_column_row_names=True,
is_allow_new_taxa=True)
self.assertIs(taxon_namespace, pdm.taxon_namespace)
self.check_pdm(pdm, is_check_labels=True)
def test_read_existing_taxon_namespace_with_row_and_column_names(self):
taxon_namespace = dendropy.TaxonNamespace()
for label in self.expected_labels.values():
t1 = taxon_namespace.require_taxon(label=label)
pdm = dendropy.PhylogeneticDistanceMatrix.from_csv(
StringIO(self.s11),
taxon_namespace=taxon_namespace,
is_first_row_column_names=True,
is_first_column_row_names=True,
is_allow_new_taxa=True)
self.assertIs(taxon_namespace, pdm.taxon_namespace)
self.check_pdm(pdm, is_check_labels=True)
class PdmTreeChecker(object):
def check_tree(self, obs_tree, expected_tree):
bipartitions1 = obs_tree.encode_bipartitions()
bipartitions2 = expected_tree.encode_bipartitions()
self.assertEqual(len(bipartitions1), len(bipartitions2))
b1 = [b.split_as_bitstring() for b in bipartitions1]
b2 = [b.split_as_bitstring() for b in bipartitions2]
self.assertEqual(set(b1), set(b2))
self.assertEqual(set(bipartitions1), set(bipartitions2))
# try:
# self.assertEqual(set(bipartitions1), set(bipartitions2))
# except AssertionError as e:
# print(e)
# print(e.__dict__)
# raise
for b1 in expected_tree.bipartition_edge_map:
self.assertIn(b1, obs_tree.bipartition_edge_map)
self.assertAlmostEqual(
expected_tree.bipartition_edge_map[b1].length,
obs_tree.bipartition_edge_map[b1].length,
7,
"{}: {} != {}".format(b1.leafset_as_newick_string(obs_tree.taxon_namespace), expected_tree.bipartition_edge_map[b1].length, obs_tree.bipartition_edge_map[b1].length,)
)
class PdmNeighborJoiningTree(PdmTreeChecker, unittest.TestCase):
def test_njtree_from_distance_matrices(self):
# library(ape)
# ---
# z = matrix( c(0,5,9,9,8, 5,0,10,10,9, 9,10,0,8,7, 9,10,8,0,3, 8,9,7,3,0), byrow=T, nrow=5)
# rownames(z) <- c("a", "b", "c", "d", "e")
# colnames(z) <- c("a", "b", "c", "d", "e")
# t = nj(z)
# write.tree(t)
# ---
# p1 = read.csv("pythonidae.mle.unweighted.pdm.csv", header=T, row.names=1)
# m1 = as.matrix(p1)
# nj(m1)
# t = nj(m1)
# write.tree(t)
test_runs = [
("wpnjex.csv", "(e:1,d:2,((a:2,b:3):3,c:4):2);"),
("saitou_and_nei_1987_table1.csv", "(h:6,g:2,((((a:5,b:2):2,c:1):1,d:3):2,(e:1,f:4):2):1);"),
("pythonidae.mle.unweighted.pdm.csv", "(Morelia_spilota:1,Morelia_bredli:1,((((((Morelia_kinghorni:1,Morelia_nauta:1):1,Morelia_clastolepis:1):1,Morelia_amethistina:1):1,Morelia_tracyae:1):1,Morelia_oenpelliensis:1):1,(((((Liasis_albertisii:1,Bothrochilus_boa:1):1,((Antaresia_melanocephalus:1,Antaresia_ramsayi:1):1,((Liasis_fuscus:1,Liasis_mackloti:1):1,(Apodora_papuana:1,Liasis_olivaceus:1):1):1):1):1,Morelia_boeleni:1):1,((Python_timoriensis:1,Python_reticulatus:1):1,((((Python_sebae:1,Python_molurus:1):1,Python_curtus:1):1,Python_regius:1):1,((Xenopeltis_unicolor:1,Candoia_aspera:1):1,Loxocemus_bicolor:1):1):1):1):1,((((Antaresia_stimsoni:1,Antaresia_childreni:1):1,Antaresia_perthensis:1):1,Antaresia_maculosa:1):1,((Morelia_viridisN:1,Morelia_viridisS:1):1,Morelia_carinata:1):1):1):1):1);"),
("pythonidae.mle.weighted.pdm.csv", "((Liasis_albertisii:0.0542142498,Bothrochilus_boa:0.0638595214):0.038444,(((Apodora_papuana:0.0670782319,Liasis_olivaceus:0.0430801028):0.010168,(Liasis_fuscus:0.0194903208,Liasis_mackloti:0.0141916418):0.048505):0.013422,(Antaresia_melanocephalus:0.0380695554,Antaresia_ramsayi:0.0325474267):0.043626):0.007734,(((((((Antaresia_stimsoni:0.0152390165,Antaresia_childreni:0.023141749):0.032397,Antaresia_perthensis:0.0760812159):0.012848,Antaresia_maculosa:0.0679212061):0.011617,((Morelia_viridisN:0.0377499268,Morelia_viridisS:0.0473589755):0.027329,Morelia_carinata:0.0660356718):0.013482):0.015469,((((((Morelia_kinghorni:0.0075825724,Morelia_nauta:0.0086155842):0.004182,Morelia_clastolepis:0.0045446653):0.018597,Morelia_amethistina:0.0227641045):0.007181,Morelia_tracyae:0.0377936102):0.024796,Morelia_oenpelliensis:0.0579745143):0.004283,(Morelia_bredli:0.0274921037,Morelia_spilota:0.0241663426):0.026356):0.031732):0.006602,(((((Python_sebae:0.0629755585,Python_molurus:0.0335903967):0.02165,Python_curtus:0.1067094932):0.016163,Python_regius:0.1058922755):0.032743,((Xenopeltis_unicolor:0.1983677797,Candoia_aspera:0.4092923305):0.048508,Loxocemus_bicolor:0.2627888765):0.060789):0.030952,(Python_timoriensis:0.074479767,Python_reticulatus:0.0562613055):0.06004):0.027099):0.002859,Morelia_boeleni:0.0843874314):0.002713);"),
]
for data_filename, expected_tree_str in test_runs:
with open(pathmap.other_source_path(data_filename)) as src:
pdm = dendropy.PhylogeneticDistanceMatrix.from_csv(
src,
is_first_row_column_names=True,
is_first_column_row_names=True,
is_allow_new_taxa=True,
delimiter=",")
obs_tree = pdm.nj_tree()
# print(obs_tree.as_string("newick"))
# print(obs_tree.as_ascii_plot(plot_metric="length"))
expected_tree = dendropy.Tree.get(
data=expected_tree_str,
schema="newick",
rooting="force-unrooted",
taxon_namespace=pdm.taxon_namespace,
preserve_underscores=True)
self.check_tree(obs_tree=obs_tree,
expected_tree=expected_tree)
def test_njtree_from_weighted_and_unweighted_distances(self):
tree = dendropy.Tree.get(path=pathmap.tree_source_path(
"pythonidae.mle.nex"),
schema="nexus",
preserve_underscores=True)
pdm = tree.phylogenetic_distance_matrix()
test_runs = [
(False, "(Morelia_spilota:1,Morelia_bredli:1,((((((Morelia_kinghorni:1,Morelia_nauta:1):1,Morelia_clastolepis:1):1,Morelia_amethistina:1):1,Morelia_tracyae:1):1,Morelia_oenpelliensis:1):1,(((((Liasis_albertisii:1,Bothrochilus_boa:1):1,((Antaresia_melanocephalus:1,Antaresia_ramsayi:1):1,((Liasis_fuscus:1,Liasis_mackloti:1):1,(Apodora_papuana:1,Liasis_olivaceus:1):1):1):1):1,Morelia_boeleni:1):1,((Python_timoriensis:1,Python_reticulatus:1):1,((((Python_sebae:1,Python_molurus:1):1,Python_curtus:1):1,Python_regius:1):1,((Xenopeltis_unicolor:1,Candoia_aspera:1):1,Loxocemus_bicolor:1):1):1):1):1,((((Antaresia_stimsoni:1,Antaresia_childreni:1):1,Antaresia_perthensis:1):1,Antaresia_maculosa:1):1,((Morelia_viridisN:1,Morelia_viridisS:1):1,Morelia_carinata:1):1):1):1):1);"),
(True, "((Liasis_albertisii:0.0542142498,Bothrochilus_boa:0.0638595214):0.038444,(((Apodora_papuana:0.0670782319,Liasis_olivaceus:0.0430801028):0.010168,(Liasis_fuscus:0.0194903208,Liasis_mackloti:0.0141916418):0.048505):0.013422,(Antaresia_melanocephalus:0.0380695554,Antaresia_ramsayi:0.0325474267):0.043626):0.007734,(((((((Antaresia_stimsoni:0.0152390165,Antaresia_childreni:0.023141749):0.032397,Antaresia_perthensis:0.0760812159):0.012848,Antaresia_maculosa:0.0679212061):0.011617,((Morelia_viridisN:0.0377499268,Morelia_viridisS:0.0473589755):0.027329,Morelia_carinata:0.0660356718):0.013482):0.015469,((((((Morelia_kinghorni:0.0075825724,Morelia_nauta:0.0086155842):0.004182,Morelia_clastolepis:0.0045446653):0.018597,Morelia_amethistina:0.0227641045):0.007181,Morelia_tracyae:0.0377936102):0.024796,Morelia_oenpelliensis:0.0579745143):0.004283,(Morelia_bredli:0.0274921037,Morelia_spilota:0.0241663426):0.026356):0.031732):0.006602,(((((Python_sebae:0.0629755585,Python_molurus:0.0335903967):0.02165,Python_curtus:0.1067094932):0.016163,Python_regius:0.1058922755):0.032743,((Xenopeltis_unicolor:0.1983677797,Candoia_aspera:0.4092923305):0.048508,Loxocemus_bicolor:0.2627888765):0.060789):0.030952,(Python_timoriensis:0.074479767,Python_reticulatus:0.0562613055):0.06004):0.027099):0.002859,Morelia_boeleni:0.0843874314):0.002713);"),
]
for is_weighted_edge_distances, expected_tree_str in test_runs:
obs_tree = pdm.nj_tree(is_weighted_edge_distances=is_weighted_edge_distances)
expected_tree = dendropy.Tree.get(
data=expected_tree_str,
schema="newick",
rooting="force-unrooted",
taxon_namespace=pdm.taxon_namespace,
preserve_underscores=True)
self.check_tree(obs_tree=obs_tree,
expected_tree=expected_tree)
class PdmUpgmaTree(PdmTreeChecker, unittest.TestCase):
def test_upgma_average_from_distance_matrices(self):
# library(phangorn)
# d = read.csv("wpupgmaex.csv", header=T, row.names=1)
# upgma(d)
test_runs = [
("wpupgmaex.csv", "((e:11,(a:8.5,b:8.5):2.5):5.5,(c:14,d:14):2.5);"),
("pythonidae.mle.weighted.pdm.csv", "(Candoia_aspera:0.3358679339,(Loxocemus_bicolor:0.239139024,(Xenopeltis_unicolor:0.2306593655,((Python_regius:0.1021235458,(Python_curtus:0.0883212354,(Python_sebae:0.0482829776,Python_molurus:0.0482829776):0.0400382578):0.01380231042):0.04278465647,((Python_timoriensis:0.06537053625,Python_reticulatus:0.06537053625):0.06029549731,(((Liasis_albertisii:0.0590368856,Bothrochilus_boa:0.0590368856):0.03300696511,(Morelia_boeleni:0.08681248898,((Antaresia_melanocephalus:0.03530849105,Antaresia_ramsayi:0.03530849105):0.04351804164,((Liasis_fuscus:0.0168409813,Liasis_mackloti:0.0168409813):0.04845559302,(Apodora_papuana:0.05507916735,Liasis_olivaceus:0.05507916735):0.01021740697):0.01352995836):0.007985956296):0.005231361731):0.005812651357,(((Morelia_tracyae:0.0359450459,(Morelia_amethistina:0.02553168923,(Morelia_clastolepis:0.0084128718,(Morelia_kinghorni:0.0080990783,Morelia_nauta:0.0080990783):0.0003137935):0.01711881743):0.01041335667):0.02235606786,(Morelia_oenpelliensis:0.05722136872,(Morelia_bredli:0.02582922315,Morelia_spilota:0.02582922315):0.03139214558):0.001079745035):0.03700402529,((Morelia_carinata:0.06795956147,(Morelia_viridisN:0.04255445115,Morelia_viridisS:0.04255445115):0.02540511032):0.01460551598,(Antaresia_maculosa:0.07026059995,(Antaresia_perthensis:0.06383429933,(Antaresia_stimsoni:0.01919038275,Antaresia_childreni:0.01919038275):0.04464391658):0.006426300625):0.0123044775):0.01274006159):0.002551363025):0.02780953149):0.01924216872):0.08575116319):0.008479658536):0.09672890989);"),
("laurasiatherian.distances.ml.csv", "(Platypus:0.115554082,((Opposum:0.04554785647,(Bandicoot:0.03760589713,(Wallaroo:0.02994721074,Possum:0.02994721074):0.00765868639):0.007941959338):0.05561264108,(Elephant:0.09767314505,(Tenrec:0.09197201988,(Hedghog:0.08893681608,((Cebus:0.07429923126,(Baboon:0.06398456889,Human:0.06398456889):0.01031466238):0.01347573751,((Mouse:0.04952979734,Vole:0.04952979734):0.03752885067,(Gymnure:0.08423117145,((GuineaPig:0.0740040685,CaneRat:0.0740040685):0.009033085883,(Armadillo:0.0815558576,((Squirrel:0.0719024199,Dormouse:0.0719024199):0.006011912967,(Loris:0.07535539083,((Rabbit:0.06082665549,Pika:0.06082665549):0.01312116941,(LongTBat:0.07253285264,(Aardvark:0.07207716472,(FruitBat:0.06375844723,((((FurSeal:0.03311262951,(HarbSeal:0.004907721762,GraySeal:0.004907721762):0.02820490774):0.01108478546,(Cat:0.04153849221,Dog:0.04153849221):0.002658922751):0.01112227127,((Mole:0.04702531576,Shrew:0.04702531576):0.006612877503,((Rbat:0.0483680062,(FlyingFox:0.01426606479,RyFlyFox:0.01426606479):0.03410194142):0.002903547772,(Pig:0.04899261297,((Horse:0.009073986173,Donkey:0.009073986173):0.02905609806,(WhiteRhino:0.02269245743,IndianRhin:0.02269245743):0.0154376268):0.01086252874):0.002278941003):0.002366639287):0.001681492971):0.004794138467,(Alpaca:0.05736084145,(Hippo:0.05532140845,((Cow:0.02807794212,Sheep:0.02807794212):0.02602799145,(SpermWhale:0.03397215079,(FinWhale:0.01328705847,BlueWhale:0.01328705847):0.02068509233):0.02013378278):0.001215474875):0.002039433007):0.002752983249):0.003644622527):0.008318717494):0.0004556879157):0.001414972262):0.001407565924):0.00255894204):0.003641524737):0.001481296783):0.001194017065):0.002827476566):0.0007163207591):0.001161847302):0.003035203803):0.005701125173):0.0034873525):0.01439358448);"),
## note:following fails, probably due to different arbitrary resolutions of equal distances
# ("pythonidae.mle.unweighted.pdm.csv", "((((Morelia_carinata:1.5,(Morelia_viridisN:1,Morelia_viridisS:1):0.5):1.458333333,((Antaresia_stimsoni:1,Antaresia_childreni:1):0.75,(Antaresia_maculosa:1.5,Antaresia_perthensis:1.5):0.25):1.208333333):1.416666667,((Morelia_bredli:1,Morelia_spilota:1):2.166666667,((Morelia_clastolepis:1.5,(Morelia_kinghorni:1,Morelia_nauta:1):0.5):0.8333333333,(Morelia_oenpelliensis:1.75,(Morelia_tracyae:1.5,Morelia_amethistina:1.5):0.25):0.5833333333):0.8333333333):1.208333333):0.6861111111,(((Morelia_boeleni:2,(Liasis_albertisii:1,Bothrochilus_boa:1):1):0.8333333333,((Antaresia_melanocephalus:1,Antaresia_ramsayi:1):1.5,((Apodora_papuana:1,Liasis_olivaceus:1):1,(Liasis_fuscus:1,Liasis_mackloti:1):1):0.5):0.3333333333):1.888888889,(((Python_sebae:1,Python_molurus:1):0.75,(Python_regius:1.5,Python_curtus:1.5):0.25):1.275,((Python_timoriensis:1,Python_reticulatus:1):1.833333333,(Loxocemus_bicolor:1.5,(Xenopeltis_unicolor:1,Candoia_aspera:1):0.5):1.333333333):0.1916666667):1.697222222):0.3388888889);"),
]
for data_filename, expected_tree_str in test_runs:
with open(pathmap.other_source_path(data_filename)) as src:
pdm = dendropy.PhylogeneticDistanceMatrix.from_csv(
src,
is_first_row_column_names=True,
is_first_column_row_names=True,
is_allow_new_taxa=True,
delimiter=",")
obs_tree = pdm.upgma_tree()
expected_tree = dendropy.Tree.get(
data=expected_tree_str,
schema="newick",
rooting="force-rooted",
taxon_namespace=pdm.taxon_namespace,
preserve_underscores=True)
self.check_tree(obs_tree=obs_tree,
expected_tree=expected_tree)
class NodeToNodeDistancesTest(unittest.TestCase):
def test_distances(self):
## get distances from ape
# library(ape)
# tr = read.nexus("pythonidae.mle.nex")
# tr$node.label <- (Ntip(tr)+1):(nrow(tr$edge)+1)
# tr$tip.label <- (1:Ntip(tr))
# write.tree(tr)
# d = dist.nodes(tr)
# write.csv(d, "file.csv")
test_runs = [
("hiv1.newick", True, "hiv1.node-to-node-dists.csv"),
("pythonidae.mle.numbered-nodes.newick", True, "pythonidae.mle.node-to-node-dists.csv"),
("hiv1.newick", False, "hiv1.unweighted.node-to-node-dists.csv"),
("pythonidae.mle.numbered-nodes.newick", False, "pythonidae.mle.unweighted.node-to-node-dists.csv"),
]
for tree_filename, is_weighted, distances_filename in test_runs:
tree = dendropy.Tree.get_from_path(
src=pathmap.tree_source_path(tree_filename),
schema='newick',
suppress_leaf_node_taxa=True)
ndm = tree.node_distance_matrix()
reference_table = container.DataTable.from_csv(
src=open(pathmap.other_source_path(distances_filename)),
default_data_type=float,
delimiter=",")
for nd1 in tree.postorder_node_iter():
for nd2 in tree.postorder_node_iter():
d = ndm.distance(nd1, nd2, is_weighted_edge_distances=is_weighted)
e = reference_table[nd1.label, nd2.label]
self.assertAlmostEqual(d, e)
def test_mrca(self):
test_runs = [
"hiv1.newick",
"pythonidae.mle.numbered-nodes.newick",
]
for tree_filename in test_runs:
tree = dendropy.Tree.get_from_path(
src=pathmap.tree_source_path(tree_filename),
schema='newick',
rooting="force-rooted")
tree.encode_bipartitions()
ndm = tree.node_distance_matrix()
for nd1 in tree.postorder_node_iter():
for nd2 in tree.postorder_node_iter():
leafset_bitmask = nd1.leafset_bitmask | nd2.leafset_bitmask
exp_mrca = tree.mrca(leafset_bitmask=leafset_bitmask)
obs_mrca = ndm.mrca(nd1, nd2)
# print("{} | {} = {} ({})".format(
# nd1.leafset_bitmask,
# nd2.leafset_bitmask,
# leafset_bitmask,
# obs_mrca.edge.bipartition.leafset_bitmask))
self.assertIs(exp_mrca, obs_mrca)
if __name__ == "__main__":
unittest.main()
|