1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904
|
"""Representation of an IHM mmCIF file as a set of Python classes.
Generally class names correspond to mmCIF table names and class
attributes to mmCIF attributes (with prefixes like `pdbx_` stripped).
For example, the data item _entity.details is found in the
:class:`Entity` class, as the `details` member.
Ordinals and IDs are generally not used in this representation (instead,
pointers to objects are used).
"""
import itertools
import numbers
import re
import sys
import urllib.request
import json
import collections
from . import util
__version__ = '2.7'
class __UnknownValue:
# Represent the mmCIF 'unknown' special value
def __str__(self):
return '?'
__repr__ = __str__
def __bool__(self):
return False
# Needs to be hashable so that classes like Software (that might
# use unknown values as attributes) are hashable
def __hash__(self):
return 0
# Unknown value is a singleton and should only compare equal to itself
def __eq__(self, other):
return self is other
def __lt__(self, other):
return False
__gt__ = __lt__
__le__ = __ge__ = __eq__
#: A value that isn't known. Note that this is distinct from a value that
#: is deliberately omitted, which is represented by Python None.
unknown = __UnknownValue()
def _remove_identical(gen):
"""Return only unique objects from `gen`.
Objects that are identical are only returned once, although multiple
non-identical objects that compare equal may be returned."""
seen_objs = {}
for obj in gen:
if id(obj) in seen_objs:
continue
seen_objs[id(obj)] = None
yield obj
class System:
"""Top-level class representing a complete modeled system.
:param str title: Title (longer text description) of the system.
:param str id: Unique identifier for this system in the mmCIF file.
:param str model_details: Detailed description of the system, like an
abstract.
:param databases: If this system is part of one or more official
databases (e.g. PDB, SwissModel), details of
the database identifiers.
:type databases: sequence of :class:`Database`
"""
structure_determination_methodology = "integrative"
def __init__(self, title=None, id='model', model_details=None,
databases=[]):
self.id = id
self.title = title
self.model_details = model_details
self.databases = []
self.databases.extend(databases)
#: Information about data processing and entry status.
#: See :class:`DatabaseStatus`.
self.database_status = DatabaseStatus()
#: List of plain text comments. These will be added to the top of
#: the mmCIF file.
self.comments = []
#: List of all software used in the modeling. See :class:`Software`.
self.software = []
#: List of all authors of this system, as a list of strings (last name
#: followed by initials, e.g. "Smith, A.J."). When writing out a file,
#: if this list is empty, the set of all citation authors (see
#: :class:`Citation`) is used instead.
self.authors = []
#: List of all grants that supported this work. See :class:`Grant`.
self.grants = []
#: List of all citations. See :class:`Citation`.
self.citations = []
#: All entities used in the system. See :class:`Entity`.
self.entities = []
#: All asymmetric units used in the system. See :class:`AsymUnit`.
self.asym_units = []
#: Collections (if any) to which this entry belongs.
#: These are used to group depositions of related entries.
#: See :class:`Collection`.
self.collections = []
#: Revision/update history. See :class:`Revision`.
self.revisions = []
#: Information on usage of the data. See :class:`DataUsage`.
self.data_usage = []
#: All orphaned chemical descriptors in the system.
#: See :class:`ChemDescriptor`. This can be used to track descriptors
#: that are not otherwise used - normally one is assigned to a
#: :class:`ihm.restraint.CrossLinkRestraint`.
self.orphan_chem_descriptors = []
#: All orphaned assemblies in the system. See :class:`Assembly`.
#: This can be used to keep track of all assemblies that are not
#: otherwise used - normally one is assigned to a
#: :class:`~ihm.model.Model`,
#: :class:`ihm.protocol.Step`, or
#: :class:`~ihm.restraint.Restraint`.
self.orphan_assemblies = []
#: The assembly of the entire system. By convention this is always
#: the first assembly in the mmCIF file (assembly_id=1). Note that
#: currently this isn't filled in on output until dumper.write()
#: is called. See :class:`Assembly`.
self.complete_assembly = Assembly((), name='Complete assembly',
description='All known components')
#: Locations of all extra resources.
#: See :class:`~ihm.location.Location`.
self.locations = []
#: All orphaned datasets.
#: This can be used to keep track of all datasets that are not
#: otherwise used - normally a dataset is assigned to a
#: :class:`~ihm.dataset.DatasetGroup`,
#: :class:`~ihm.startmodel.StartingModel`,
#: :class:`~ihm.restraint.Restraint`,
#: :class:`~ihm.startmodel.Template`,
#: or as the parent of another :class:`~ihm.dataset.Dataset`.
#: See :class:`~ihm.dataset.Dataset`.
self.orphan_datasets = []
#: All orphaned groups of datasets.
#: This can be used to keep track of all dataset groups that are not
#: otherwise used - normally a group is assigned to a
#: :class:`~ihm.protocol.Protocol`.
#: See :class:`~ihm.dataset.DatasetGroup`.
self.orphan_dataset_groups = []
#: All orphaned representations of the system.
#: This can be used to keep track of all representations that are not
#: otherwise used - normally one is assigned to a
#: :class:`~ihm.model.Model`.
#: See :class:`~ihm.representation.Representation`.
self.orphan_representations = []
#: All orphaned starting models for the system.
#: This can be used to keep track of all starting models that are not
#: otherwise used - normally one is assigned to an
#: :class:`ihm.representation.Segment`.
#: See :class:`~ihm.startmodel.StartingModel`.
self.orphan_starting_models = []
#: All restraints on the system.
#: See :class:`~ihm.restraint.Restraint`.
self.restraints = []
#: All restraint groups.
#: See :class:`~ihm.restraint.RestraintGroup`.
self.restraint_groups = []
#: All orphaned modeling protocols.
#: This can be used to keep track of all protocols that are not
#: otherwise used - normally a protocol is assigned to a
#: :class:`~ihm.model.Model`.
#: See :class:`~ihm.protocol.Protocol`.
self.orphan_protocols = []
#: All ensembles.
#: See :class:`~ihm.model.Ensemble`.
self.ensembles = []
#: All ordered processes.
#: See :class:`~ihm.model.OrderedProcess`.
self.ordered_processes = []
#: All state groups (collections of models).
#: See :class:`~ihm.model.StateGroup`.
self.state_groups = []
#: All orphaned geometric objects.
#: This can be used to keep track of all objects that are not
#: otherwise used - normally an object is assigned to a
#: :class:`~ihm.restraint.GeometricRestraint`.
#: See :class:`~ihm.geometry.GeometricObject`.
self.orphan_geometric_objects = []
#: All orphaned features.
#: This can be used to keep track of all features that are not
#: otherwise used - normally a feature is assigned to a
#: :class:`~ihm.restraint.GeometricRestraint`.
#: See :class:`~ihm.restraint.Feature`.
self.orphan_features = []
#: All orphaned pseudo sites.
#: This can be used to keep track of all pseudo sites that are not
#: otherwise used - normally a site is used in a
#: :class:`~ihm.restraint.PseudoSiteFeature` or a
#: :class:`~ihm.restraint.CrossLinkPseudoSite`.
self.orphan_pseudo_sites = []
#: Contains the fluorescence (FLR) part.
#: See :class:`~ihm.flr.FLRData`.
self.flr_data = []
#: All multi-state schemes
#: See :class:`~ihm.multi_state_scheme.MultiStateScheme`.
self.multi_state_schemes = []
self._orphan_centers = []
self._orphan_dataset_transforms = []
self._orphan_geometric_transforms = []
self._orphan_relaxation_times = []
self._orphan_repos = []
self._orphan_chem_comps = []
_database_status = property(lambda self: self.database_status._map)
def _make_complete_assembly(self):
"""Fill in the complete assembly with all asym units"""
# Clear out any existing components
self.complete_assembly[:] = []
# Include all asym units
for asym in self.asym_units:
self.complete_assembly.append(asym)
def _all_models(self):
"""Iterate over all Models in the system"""
# todo: raise an error if a model is present in multiple groups
for group in self._all_model_groups():
seen_models = {}
for model in group:
if model in seen_models:
continue
seen_models[model] = None
yield group, model
def update_locations_in_repositories(self, repos):
"""Update all :class:`~ihm.location.Location` objects in the system
that lie within a checked-out :class:`~ihm.location.Repository`
to point to that repository.
This is intended for the use case where the current working
directory is a checkout of a repository which is archived somewhere
with a DOI. Locations can then be simply constructed pointing to
local files, and retroactively updated with this method to point
to the DOI if appropriate.
For each Location, if it points to a local file that is below the
`root` of one of the `repos`, update it to point to that repository.
If is under multiple roots, pick the one that gives the shortest
path. For example, if run in a subdirectory `foo` of a repository
archived as `repo.zip`, the local path `simple.pdb` will
be updated to be `repo-top/foo/simple.pdb` in `repo.zip`::
l = ihm.location.InputFileLocation("simple.pdb")
system.locations.append(l)
r = ihm.location.Repository(doi='1.2.3.4',
url='https://example.com/repo.zip',)
top_directory="repo-top", root="..")
system.update_locations_in_repositories([r])
"""
import ihm.location
for loc in self._all_locations():
if isinstance(loc, ihm.location.FileLocation):
ihm.location.Repository._update_in_repos(loc, repos)
def report(self, fh=sys.stdout):
"""Print a summary report of this system. This can be used to
more easily spot errors or inconsistencies. It will also warn
about missing data that may not be technically required for a
compliant mmCIF file, but is usually expected to be present.
:param file fh: The file handle to print the report to, if not
standard output.
"""
import ihm.report
r = ihm.report.Reporter(self, fh)
r.report()
def _all_restraints(self):
"""Iterate over all Restraints in the system.
Duplicates may be present."""
def _all_restraints_in_groups():
for rg in self.restraint_groups:
for r in rg:
yield r
return itertools.chain(self.restraints, _all_restraints_in_groups())
def _all_chem_descriptors(self):
"""Iterate over all ChemDescriptors in the system.
Duplicates may be present."""
return itertools.chain(
self.orphan_chem_descriptors,
(restraint.linker for restraint in self._all_restraints()
if hasattr(restraint, 'linker') and restraint.linker),
(itertools.chain.from_iterable(
f._all_flr_chemical_descriptors() for f in self.flr_data)))
def _all_model_groups(self, only_in_states=True):
"""Iterate over all ModelGroups in the system.
If only_in_states is True, only return ModelGroups referenced
by a State object; otherwise, also include ModelGroups referenced
by an OrderedProcess or Ensemble."""
# todo: raise an error if a modelgroup is present in multiple states
seen_model_groups = []
for state_group in self.state_groups:
for state in state_group:
for model_group in state:
seen_model_groups.append(model_group)
yield model_group
for mssc in self._all_multi_state_scheme_connectivities():
for model_group in mssc.begin_state:
if model_group not in seen_model_groups:
seen_model_groups.append(model_group)
yield model_group
if mssc.end_state:
for model_group in mssc.end_state:
if model_group not in seen_model_groups:
seen_model_groups.append(model_group)
yield model_group
if not only_in_states:
for ensemble in self.ensembles:
if ensemble.model_group:
yield ensemble.model_group
for ss in ensemble.subsamples:
if ss.model_group:
yield ss.model_group
for proc in self.ordered_processes:
for step in proc.steps:
for edge in step:
yield edge.group_begin
yield edge.group_end
def _all_representations(self):
"""Iterate over all Representations in the system.
This includes all Representations referenced from other objects,
plus any orphaned Representations. Duplicates are filtered out."""
return _remove_identical(itertools.chain(
self.orphan_representations,
(model.representation for group, model in self._all_models()
if model.representation)))
def _all_segments(self):
for representation in self._all_representations():
for segment in representation:
yield segment
def _all_starting_models(self):
"""Iterate over all StartingModels in the system.
This includes all StartingModels referenced from other objects, plus
any orphaned StartingModels. Duplicates are filtered out."""
return _remove_identical(itertools.chain(
self.orphan_starting_models,
(segment.starting_model for segment in self._all_segments()
if segment.starting_model)))
def _all_protocols(self):
"""Iterate over all Protocols in the system.
This includes all Protocols referenced from other objects, plus
any orphaned Protocols. Duplicates are filtered out."""
return _remove_identical(itertools.chain(
self.orphan_protocols,
(model.protocol for group, model in self._all_models()
if model.protocol)))
def _all_protocol_steps(self):
for protocol in self._all_protocols():
for step in protocol.steps:
yield step
def _all_analysis_steps(self):
for protocol in self._all_protocols():
for analysis in protocol.analyses:
for step in analysis.steps:
yield step
def _all_assemblies(self):
"""Iterate over all Assemblies in the system.
This includes all Assemblies referenced from other objects, plus
any orphaned Assemblies. Duplicates may be present."""
return itertools.chain(
# Complete assembly is always first
(self.complete_assembly,),
self.orphan_assemblies,
(model.assembly for group, model in self._all_models()
if model.assembly),
(step.assembly for step in self._all_protocol_steps()
if step.assembly),
(step.assembly for step in self._all_analysis_steps()
if step.assembly),
(restraint.assembly
for restraint in self._all_restraints() if restraint.assembly))
def _all_dataset_groups(self):
"""Iterate over all DatasetGroups in the system.
This includes all DatasetGroups referenced from other objects, plus
any orphaned groups. Duplicates may be present."""
return itertools.chain(
self.orphan_dataset_groups,
(step.dataset_group for step in self._all_protocol_steps()
if step.dataset_group),
(step.dataset_group for step in self._all_analysis_steps()
if step.dataset_group),
(rt.dataset_group for rt in self._all_relaxation_times()
if rt.dataset_group),
(kr.dataset_group for kr in self._all_kinetic_rates()
if kr.dataset_group),
(mssc.dataset_group for mssc in
self._all_multi_state_scheme_connectivities()
if mssc.dataset_group))
def _all_templates(self):
"""Iterate over all Templates in the system."""
for startmodel in self._all_starting_models():
for template in startmodel.templates:
yield template
def _all_datasets_except_parents(self):
"""Iterate over all Datasets except those referenced only
as the parent of another Dataset. Duplicates may be present."""
def _all_datasets_in_groups():
for dg in self._all_dataset_groups():
for d in dg:
yield d
return itertools.chain(
self.orphan_datasets,
_all_datasets_in_groups(),
(sm.dataset for sm in self._all_starting_models()
if sm.dataset),
(restraint.dataset for restraint in self._all_restraints()
if restraint.dataset),
(template.dataset for template in self._all_templates()
if template.dataset))
def _all_datasets(self):
"""Iterate over all Datasets in the system.
This includes all Datasets referenced from other objects, plus
any orphaned datasets. Duplicates may be present."""
def _all_datasets_and_parents(d):
for p in d.parents:
# Handle transformed datasets
if hasattr(p, 'dataset'):
pd = p.dataset
else:
pd = p
for alld in _all_datasets_and_parents(pd):
yield alld
yield d
for d in self._all_datasets_except_parents():
for alld in _all_datasets_and_parents(d):
yield alld
def _all_densities(self):
for ensemble in self.ensembles:
for density in ensemble.densities:
yield density
def _all_locations(self):
"""Iterate over all Locations in the system.
This includes all Locations referenced from other objects, plus
any referenced from the top-level system.
Duplicates may be present."""
def _all_ensemble_locations():
for ensemble in self.ensembles:
if ensemble.file:
yield ensemble.file
for ss in ensemble.subsamples:
if ss.file:
yield ss.file
return itertools.chain(
self.locations,
(dataset.location for dataset in self._all_datasets()
if hasattr(dataset, 'location') and dataset.location),
_all_ensemble_locations(),
(density.file for density in self._all_densities()
if density.file),
(sm.script_file for sm in self._all_starting_models()
if sm.script_file),
(template.alignment_file for template in self._all_templates()
if template.alignment_file),
(step.script_file for step in self._all_protocol_steps()
if step.script_file),
(step.script_file for step in self._all_analysis_steps()
if step.script_file),
(rt.external_file for rt in self._all_relaxation_times()
if rt.external_file),
(kr.external_file for kr in self._all_kinetic_rates()
if kr.external_file))
def _all_geometric_objects(self):
"""Iterate over all GeometricObjects in the system.
This includes all GeometricObjects referenced from other objects,
plus any referenced from the top-level system.
Duplicates may be present."""
return itertools.chain(
self.orphan_geometric_objects,
(restraint.geometric_object
for restraint in self._all_restraints()
if hasattr(restraint, 'geometric_object')
and restraint.geometric_object))
def _all_features(self):
"""Iterate over all Features in the system.
This includes all Features referenced from other objects,
plus any referenced from the top-level system.
Duplicates may be present."""
def _all_restraint_features():
for r in self._all_restraints():
if hasattr(r, '_all_features'):
for feature in r._all_features:
if feature:
yield feature
return itertools.chain(self.orphan_features, _all_restraint_features())
def _all_pseudo_sites(self):
"""Iterate over all PseudoSites in the system.
This includes all PseudoSites referenced from other objects,
plus any referenced from the top-level system.
Duplicates may be present."""
def _all_restraint_sites():
for r in self._all_restraints():
if hasattr(r, 'cross_links'):
for xl in r.cross_links:
if xl.pseudo1:
for x in xl.pseudo1:
yield x.site
if xl.pseudo2:
for x in xl.pseudo2:
yield x.site
return itertools.chain(self.orphan_pseudo_sites,
_all_restraint_sites(),
(f.site for f in self._all_features()
if hasattr(f, 'site') and f.site))
def _all_software(self):
"""Iterate over all Software in the system.
This includes all Software referenced from other objects, plus
any referenced from the top-level system.
Duplicates may be present."""
return (itertools.chain(
self.software,
(sm.software for sm in self._all_starting_models()
if sm.software),
(step.software for step in self._all_protocol_steps()
if step.software),
(step.software for step in self._all_analysis_steps()
if step.software),
(r.software for r in self._all_restraints()
if hasattr(r, 'software') and r.software)))
def _all_citations(self):
"""Iterate over all Citations in the system.
This includes all Citations referenced from other objects, plus
any referenced from the top-level system.
Duplicates are filtered out."""
return _remove_identical(itertools.chain(
self.citations,
(software.citation for software in self._all_software()
if software.citation),
(restraint.fitting_method_citation_id
for restraint in self._all_restraints()
if hasattr(restraint, 'fitting_method_citation_id')
and restraint.fitting_method_citation_id)))
def _all_entity_ranges(self):
"""Iterate over all Entity ranges in the system (these may be
:class:`Entity`, :class:`AsymUnit`, :class:`EntityRange` or
:class:`AsymUnitRange` objects).
Note that we don't include self.entities or self.asym_units here,
as we only want ranges that were actually used.
Duplicates may be present."""
return (itertools.chain(
(sm.asym_unit for sm in self._all_starting_models()),
(seg.asym_unit for seg in self._all_segments()),
(comp for a in self._all_assemblies() for comp in a),
(comp for f in self._all_features()
for comp in f._all_entities_or_asyms()),
(d.asym_unit for d in self._all_densities())))
def _all_multi_state_schemes(self):
for mss in self.multi_state_schemes:
yield mss
def _all_multi_state_scheme_connectivities(self):
"""Iterate over all multi-state scheme connectivities"""
for mss in self.multi_state_schemes:
for mssc in mss.get_connectivities():
yield mssc
def _all_kinetic_rates(self):
"""Iterate over all kinetic rates within multi-state schemes"""
return _remove_identical(itertools.chain(
(mssc.kinetic_rate for mssc in
self._all_multi_state_scheme_connectivities()
if mssc.kinetic_rate),
(c.kinetic_rate for f in
self.flr_data for c in f.kinetic_rate_fret_analysis_connections
if self.flr_data)))
def _all_relaxation_times(self):
"""Iterate over all relaxation times.
This includes relaxation times from
:class:`ihm.multi_state_scheme.MultiStateScheme`
and those assigned to connectivities in
:class:`ihm.multi_state_scheme.Connectivity`"""
seen_relaxation_times = []
for mss in self._all_multi_state_schemes():
for rt in mss.get_relaxation_times():
if rt in seen_relaxation_times:
continue
seen_relaxation_times.append(rt)
yield rt
for mssc in self._all_multi_state_scheme_connectivities():
if mssc.relaxation_time:
rt = mssc.relaxation_time
if rt in seen_relaxation_times:
continue
seen_relaxation_times.append(rt)
yield rt
# Get the relaxation times from the
# flr.RelaxationTimeFRETAnalysisConnection objects
if self.flr_data:
for f in self.flr_data:
for c in f.relaxation_time_fret_analysis_connections:
rt = c.relaxation_time
if rt in seen_relaxation_times:
continue
seen_relaxation_times.append(rt)
yield rt
for rt in self._orphan_relaxation_times:
if rt in seen_relaxation_times:
continue
seen_relaxation_times.append(rt)
yield rt
def _before_write(self):
"""Do any setup necessary before writing out to a file"""
# Here, we initialize all RestraintGroups by removing any assigned ID
for g in self.restraint_groups:
util._remove_id(g)
# Fill in complete assembly
self._make_complete_assembly()
def _check_after_write(self):
"""Make sure everything was successfully written"""
# Here, we check that all RestraintGroups were successfully dumped"""
for g in self.restraint_groups:
if len(g) > 0 and not hasattr(g, '_id'):
raise TypeError(
"RestraintGroup(%s) contains an unsupported combination "
"of Restraints. Due to limitations of the underlying "
"dictionary, all objects in a RestraintGroup must be of "
"the same type, and only certain types (currently only "
"DerivedDistanceRestraint or PredictedContactRestraint) "
"can be grouped." % g)
class DatabaseStatus:
"""Information about data processing and entry status.
This information is usually accessed via :attr:`System.database_status`.
"""
def __init__(self):
self._map = {}
status_code = property(lambda self: self._map['status_code'],
doc="The status of the entry, e.g. released.")
deposit_site = property(lambda self: self._map['deposit_site'],
doc="The site where the file was deposited.")
process_site = property(lambda self: self._map['process_site'],
doc="The site where the file was processed.")
recvd_initial_deposition_date = property(
lambda self:
util._get_iso_date(self._map['recvd_initial_deposition_date']),
doc="The date of initial deposition.")
class Database:
"""Information about a System that is part of an official database.
If a :class:`System` is part of one or more official databases
(e.g. PDB, SwissModel), this class contains details of the
database identifiers. It should be passed to the :class:`System`
constructor.
:param str id: Abbreviated name of the database (e.g. PDB).
:param str code: Identifier from the database (e.g. 1abc).
:param str doi: Digital Object Identifier of the database entry.
:param str accession: Extended accession code of the database entry.
"""
def __init__(self, id, code, doi=None, accession=None):
self.id, self.code = id, code
self.doi, self.accession = doi, accession
class Software:
"""Software used as part of the modeling protocol.
:param str name: The name of the software.
:param str classification: The major function of the software, for
example 'model building', 'sample preparation',
'data collection'.
:param str description: A longer text description of the software.
:param str location: Place where the software can be found (e.g. URL).
:param str type: Type of software (program/package/library/other).
:param str version: The version used.
:param citation: Publication describing the software.
:type citation: :class:`Citation`
Generally these objects are added to :attr:`System.software` or
passed to :class:`ihm.startmodel.StartingModel`,
:class:`ihm.protocol.Step`,
:class:`ihm.analysis.Step`, or
:class:`ihm.restraint.PredictedContactRestraint` objects.
"""
def __init__(self, name, classification, description, location,
type='program', version=None, citation=None):
self.name = name
self.classification = classification
self.description = description
self.location = location
self.type = type
self.version = version
self.citation = citation
def __str__(self):
return "<ihm.Software(%s)>" % repr(self.name)
# Software compares equal if the names and versions are the same
def _eq_vals(self):
return (self.name, self.version)
def __eq__(self, other):
return self._eq_vals() == other._eq_vals()
def __hash__(self):
return hash(self._eq_vals())
class Grant:
"""Information on funding support for the modeling.
See :attr:`System.grants`.
:param str funding_organization: The name of the organization providing
the funding, e.g. "National Institutes of Health".
:param str country: The country that hosts the funding organization,
e.g. "United States".
:param str grant_number: Identifying information for the grant, e.g.
"1R01GM072999-01".
"""
def __init__(self, funding_organization, country, grant_number):
self.funding_organization = funding_organization
self.country = country
self.grant_number = grant_number
class Citation:
"""A publication that describes the modeling.
Generally citations are added to :attr:`System.citations` or
passed to :class:`ihm.Software` or
:class:`ihm.restraint.EM3DRestraint` objects.
:param str pmid: The PubMed ID.
:param str title: Full title of the publication.
:param str journal: Abbreviated journal name.
:param volume: Journal volume as int for a plain number or str for
journals adding a label to the number (e.g. "46(W1)" for
a web server issue).
:param page_range: The page (int) or page range (as a 2-element
int tuple). Using str also works for labelled page numbers.
:param int year: Year of publication.
:param authors: All authors in order, as a list of strings (last name
followed by initials, e.g. "Smith, A.J.").
:param str doi: Digital Object Identifier of the publication.
:param bool is_primary: Denotes the most pertinent publication for the
modeling itself (as opposed to a method or piece of software used
in the protocol). Only one such publication is allowed, and it
is assigned the ID "primary" in the mmCIF file.
"""
def __init__(self, pmid, title, journal, volume, page_range, year, authors,
doi, is_primary=False):
self.title, self.journal, self.volume = title, journal, volume
self.page_range, self.year = page_range, year
self.pmid, self.doi = pmid, doi
self.authors = authors if authors is not None else []
self.is_primary = is_primary
@classmethod
def from_pubmed_id(cls, pubmed_id, is_primary=False):
"""Create a Citation from just a PubMed ID.
This is done by querying NCBI's web API, so requires network access.
:param int pubmed_id: The PubMed identifier.
:param bool is_primary: Denotes the most pertinent publication for
the modeling itself; see :class:`Citation` for more info.
:return: A new Citation for the given identifier.
:rtype: :class:`Citation`
"""
def get_doi(ref):
for art_id in ref['articleids']:
if art_id['idtype'] == 'doi':
return art_id['value']
def get_page_range(ref):
rng = ref['pages'].split('-')
if len(rng) == 2 and len(rng[1]) < len(rng[0]):
# map ranges like "2730-43" to 2730,2743 not 2730, 43
rng[1] = rng[0][:len(rng[0]) - len(rng[1])] + rng[1]
# Handle one page or empty page range
if len(rng) == 1:
rng = rng[0]
if rng == '':
rng = None
return rng
url = ('https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esummary.fcgi'
'?db=pubmed&retmode=json&rettype=abstract&id=%s' % pubmed_id)
fh = urllib.request.urlopen(url)
j = json.load(fh)
fh.close()
ref = j['result'][str(pubmed_id)]
authors = [x['name'] for x in ref['authors']
if x['authtype'] == 'Author']
# PubMed authors are usually of the form "Lastname AB" but PDB uses
# "Lastname, A.B." so map one to the other if possible
r = re.compile(r'(^\w+.*?)\s+(\w+)$')
def auth_sub(m):
return m.group(1) + ", " + "".join(initial + "."
for initial in m.group(2))
authors = [r.sub(auth_sub, auth) for auth in authors]
return cls(pmid=pubmed_id, title=ref['title'],
journal=ref['source'],
volume=ref['volume'] or None,
page_range=get_page_range(ref),
year=ref['pubdate'].split()[0],
authors=authors, doi=get_doi(ref),
is_primary=is_primary)
class ChemComp:
"""A chemical component from which :class:`Entity` objects are constructed.
Usually these are amino acids (see :class:`LPeptideChemComp`) or
nucleic acids (see :class:`DNAChemComp` and :class:`RNAChemComp`),
but non-polymers such as ligands or water (see
:class:`NonPolymerChemComp` and :class:`WaterChemComp`) and saccharides
(see :class:`SaccharideChemComp`) are also supported.
For standard amino and nucleic acids, it is generally easier to use
a :class:`Alphabet` and refer to the components with their one-letter
(amino acids, RNA) or two-letter (DNA) codes.
:param str id: A globally unique identifier for this component (usually
three letters).
:param str code: A shorter identifier (usually one letter) that only
needs to be unique in the entity.
:param str code_canonical: Canonical version of `code` (which need not
be unique).
:param str name: A longer human-readable name for the component.
:param str formula: The chemical formula. This is a space-separated
list of the element symbols in the component, each followed
by an optional count (if omitted, 1 is assumed). The formula
is terminated with the formal charge (if not zero). The element
list should be sorted alphabetically, unless carbon is present,
in which case C and H precede the rest of the elements. For
example, water would be "H2 O" and arginine (with +1 formal
charge) "C6 H15 N4 O2 1".
:param str ccd: The chemical component dictionary (CCD) where
this component is defined. Can be "core" for the wwPDB CCD
(https://www.wwpdb.org/data/ccd), "ma" for the ModelArchive CCD,
or "local" for a novel component that is defined in the mmCIF
file itself. If unspecified, defaults to "core" unless
``descriptors`` is given in which case it defaults to "local".
This information is essentially ignored by python-ihm (since
the IHM dictionary has no support for custom CCDs) but is used
by python-modelcif.
:param list descriptors: When ``ccd`` is "local", this can be one or
more descriptor objects that describe the chemistry. python-ihm
does not define any, but python-modelcif does.
For example, glycine would have
``id='GLY', code='G', code_canonical='G'`` while selenomethionine would
use ``id='MSE', code='MSE', code_canonical='M'``, guanosine (RNA)
``id='G', code='G', code_canonical='G'``, and deoxyguanosine (DNA)
``id='DG', code='DG', code_canonical='G'``.
"""
type = 'other'
_element_mass = {'H': 1.008, 'C': 12.011, 'N': 14.007, 'O': 15.999,
'P': 30.974, 'S': 32.060, 'Se': 78.971, 'Fe': 55.845,
'Ac': 227.028, 'Ag': 107.868, 'Al': 26.982, 'Ar': 39.948,
'As': 74.922, 'Au': 196.966, 'B': 10.81, 'Ba': 137.327,
'Be': 9.012, 'Bi': 208.98, 'Br': 79.904, 'Ca': 40.078,
'Cd': 112.414, 'Ce': 140.116, 'Cl': 35.453, 'Co': 58.933,
'Cr': 51.996, 'Cs': 132.905, 'Cu': 63.546, 'Dy': 162.5,
'Er': 167.259, 'Eu': 151.964, 'F': 18.998, 'Ga': 69.723,
'Gd': 157.25, 'Ge': 72.53, 'He': 4.003, 'Hf': 178.486,
'Hg': 200.592, 'Ho': 164.93, 'I': 126.904, 'In': 114.818,
'Ir': 192.217, 'K': 39.098, 'Kr': 83.798, 'La': 138.905,
'Li': 6.938, 'Lu': 174.967, 'Mg': 24.305, 'Mn': 54.938,
'Mo': 95.95, 'Na': 22.99, 'Nb': 92.906, 'Nd': 144.242,
'Ne': 20.180, 'Ni': 58.693, 'Np': 237.0, 'Os': 190.23,
'Pa': 231.036, 'Pb': 207.2, 'Pd': 106.42, 'Pr': 140.908,
'Pt': 195.084, 'Ra': 226.025, 'Rb': 85.468, 'Re': 186.207,
'Rh': 102.906, 'Ru': 101.07, 'Sb': 121.760, 'Sc': 44.956,
'Si': 28.086, 'Sm': 150.36, 'Sn': 118.710, 'Sr': 87.62,
'Ta': 180.948, 'Tb': 158.925, 'Te': 127.6, 'Th': 232.038,
'Ti': 47.867, 'Tl': 204.383, 'Tm': 168.934, 'U': 238.029,
'V': 50.942, 'W': 183.84, 'Xe': 131.293, 'Y': 88.906,
'Yb': 173.045, 'Zn': 65.38, 'Zr': 91.224}
def __init__(self, id, code, code_canonical, name=None, formula=None,
ccd=None, descriptors=None):
self.id = id
self.code, self.code_canonical, self.name = code, code_canonical, name
self.formula = formula
self.ccd, self.descriptors = ccd, descriptors
def __str__(self):
return ('<%s.%s(%s)>'
% (self.__class__.__module__, self.__class__.__name__,
self.id))
def __get_weight(self):
# Calculate weight from formula
if self.formula in (None, unknown):
return
spl = self.formula.split()
# Remove formal charge if present
if len(spl) > 0 and spl[-1].isdigit():
del spl[-1]
r = re.compile(r'(\D+)(\d*)$')
weight = 0.
for s in spl:
m = r.match(s)
if m is None:
raise ValueError("Bad formula fragment: %s" % s)
emass = self._element_mass.get(m.group(1), None)
if emass:
weight += emass * (int(m.group(2)) if m.group(2) else 1)
elif m.group(1) != 'X':
# If element is unknown, weight is unknown too
# Element 'X' is used for GLX/ASX and has zero weight
return None
return weight
formula_weight = property(
__get_weight,
doc="Formula weight (dalton). This is calculated automatically from "
"the chemical formula and known atomic masses.")
# Equal if all identifiers are the same
def __eq__(self, other):
return ((self.code, self.code_canonical, self.id, self.type) ==
(other.code, other.code_canonical, other.id, other.type))
def __hash__(self):
return hash((self.code, self.code_canonical, self.id, self.type))
class PeptideChemComp(ChemComp):
"""A single peptide component. Usually :class:`LPeptideChemComp` is used
instead (except for glycine) to specify chirality.
See :class:`ChemComp` for a description of the parameters."""
type = 'peptide linking'
class LPeptideChemComp(PeptideChemComp):
"""A single peptide component with (normal) L- chirality.
See :class:`ChemComp` for a description of the parameters."""
type = 'L-peptide linking'
class DPeptideChemComp(PeptideChemComp):
"""A single peptide component with (unusual) D- chirality.
See :class:`ChemComp` for a description of the parameters."""
type = 'D-peptide linking'
class DNAChemComp(ChemComp):
"""A single DNA component.
See :class:`ChemComp` for a description of the parameters."""
type = 'DNA linking'
class RNAChemComp(ChemComp):
"""A single RNA component.
See :class:`ChemComp` for a description of the parameters."""
type = 'RNA linking'
class SaccharideChemComp(ChemComp):
"""A saccharide chemical component. Usually a subclass that specifies
the chirality and linkage (e.g. :class:`LSaccharideBetaChemComp`)
is used.
:param str id: A globally unique identifier for this component.
:param str name: A longer human-readable name for the component.
:param str formula: The chemical formula. See :class:`ChemComp` for
more details.
:param str ccd: The chemical component dictionary (CCD) where
this component is defined. See :class:`ChemComp` for
more details.
:param list descriptors: Information on the component's chemistry.
See :class:`ChemComp` for more details.
"""
type = "saccharide"
def __init__(self, id, name=None, formula=None, ccd=None,
descriptors=None):
super().__init__(
id, id, id, name=name, formula=formula,
ccd=ccd, descriptors=descriptors)
class LSaccharideChemComp(SaccharideChemComp):
"""A single saccharide component with L-chirality and unspecified linkage.
See :class:`SaccharideChemComp` for a description of the parameters."""
type = "L-saccharide"
class LSaccharideAlphaChemComp(LSaccharideChemComp):
"""A single saccharide component with L-chirality and alpha linkage.
See :class:`SaccharideChemComp` for a description of the parameters."""
type = "L-saccharide, alpha linking"
class LSaccharideBetaChemComp(LSaccharideChemComp):
"""A single saccharide component with L-chirality and beta linkage.
See :class:`SaccharideChemComp` for a description of the parameters."""
type = "L-saccharide, beta linking"
class DSaccharideChemComp(SaccharideChemComp):
"""A single saccharide component with D-chirality and unspecified linkage.
See :class:`SaccharideChemComp` for a description of the parameters."""
type = "D-saccharide"
class DSaccharideAlphaChemComp(DSaccharideChemComp):
"""A single saccharide component with D-chirality and alpha linkage.
See :class:`SaccharideChemComp` for a description of the parameters."""
type = "D-saccharide, alpha linking"
class DSaccharideBetaChemComp(DSaccharideChemComp):
"""A single saccharide component with D-chirality and beta linkage.
See :class:`SaccharideChemComp` for a description of the parameters."""
type = "D-saccharide, beta linking"
class NonPolymerChemComp(ChemComp):
"""A non-polymer chemical component, such as a ligand or a non-standard
residue (for crystal waters, use :class:`WaterChemComp`).
:param str id: A globally unique identifier for this component.
:param str code_canonical: Canonical one-letter identifier. This is
used for non-standard residues and should be the one-letter code
of the closest standard residue (or by default, 'X').
:param str name: A longer human-readable name for the component.
:param str formula: The chemical formula. See :class:`ChemComp` for
more details.
:param str ccd: The chemical component dictionary (CCD) where
this component is defined. See :class:`ChemComp` for
more details.
:param list descriptors: Information on the component's chemistry.
See :class:`ChemComp` for more details.
"""
type = "non-polymer"
def __init__(self, id, code_canonical='X', name=None, formula=None,
ccd=None, descriptors=None):
super().__init__(
id, id, code_canonical, name=name, formula=formula,
ccd=ccd, descriptors=descriptors)
class WaterChemComp(NonPolymerChemComp):
"""The chemical component for crystal water.
"""
def __init__(self):
super().__init__('HOH', name='WATER', formula="H2 O")
class Alphabet:
"""A mapping from codes (usually one-letter, or two-letter for DNA) to
chemical components.
These classes can be used to construct sequences of components
when creating an :class:`Entity`. They can also be used like a Python
dict to get standard components, e.g.::
a = ihm.LPeptideAlphabet()
met = a['M']
gly = a['G']
See :class:`LPeptideAlphabet`, :class:`RNAAlphabet`,
:class:`DNAAlphabet`.
"""
def __getitem__(self, key):
return self._comps[key]
def __contains__(self, key):
return key in self._comps
keys = property(lambda self: self._comps.keys())
values = property(lambda self: self._comps.values())
items = property(lambda self: self._comps.items())
class LPeptideAlphabet(Alphabet):
"""A mapping from one-letter amino acid codes (e.g. H, M) to
L-amino acids (as :class:`LPeptideChemComp` objects, except for achiral
glycine which maps to :class:`PeptideChemComp`). Some other common
modified residues are also included (e.g. MSE). For these their full
name rather than a one-letter code is used.
"""
_comps = dict([code, LPeptideChemComp(id, code, code, name,
formula)]
for code, id, name, formula in [
('A', 'ALA', 'ALANINE', 'C3 H7 N O2'),
('C', 'CYS', 'CYSTEINE', 'C3 H7 N O2 S'),
('D', 'ASP', 'ASPARTIC ACID', 'C4 H7 N O4'),
('E', 'GLU', 'GLUTAMIC ACID', 'C5 H9 N O4'),
('F', 'PHE', 'PHENYLALANINE', 'C9 H11 N O2'),
('H', 'HIS', 'HISTIDINE', 'C6 H10 N3 O2 1'),
('I', 'ILE', 'ISOLEUCINE', 'C6 H13 N O2'),
('K', 'LYS', 'LYSINE', 'C6 H15 N2 O2 1'),
('L', 'LEU', 'LEUCINE', 'C6 H13 N O2'),
('M', 'MET', 'METHIONINE', 'C5 H11 N O2 S'),
('N', 'ASN', 'ASPARAGINE', 'C4 H8 N2 O3'),
('P', 'PRO', 'PROLINE', 'C5 H9 N O2'),
('Q', 'GLN', 'GLUTAMINE', 'C5 H10 N2 O3'),
('R', 'ARG', 'ARGININE', 'C6 H15 N4 O2 1'),
('S', 'SER', 'SERINE', 'C3 H7 N O3'),
('T', 'THR', 'THREONINE', 'C4 H9 N O3'),
('V', 'VAL', 'VALINE', 'C5 H11 N O2'),
('W', 'TRP', 'TRYPTOPHAN', 'C11 H12 N2 O2'),
('Y', 'TYR', 'TYROSINE', 'C9 H11 N O3'),
('B', 'ASX', 'ASP/ASN AMBIGUOUS', 'C4 H6 N O2 X2'),
('Z', 'GLX', 'GLU/GLN AMBIGUOUS', 'C5 H8 N O2 X2'),
('U', 'SEC', 'SELENOCYSTEINE', 'C3 H7 N O2 Se')])
_comps['G'] = PeptideChemComp('GLY', 'G', 'G', name='GLYCINE',
formula="C2 H5 N O2")
# common non-standard L-amino acids
_comps.update([id, LPeptideChemComp(id, id, canon, name, formula)]
for id, canon, name, formula in [
('MSE', 'M', 'SELENOMETHIONINE', 'C5 H11 N O2 Se'),
('UNK', 'X', 'UNKNOWN', 'C4 H9 N O2')])
class DPeptideAlphabet(Alphabet):
"""A mapping from D-amino acid codes (e.g. DHI, MED) to
D-amino acids (as :class:`DPeptideChemComp` objects, except for achiral
glycine which maps to :class:`PeptideChemComp`). See
:class:`LPeptideAlphabet` for more details.
"""
_comps = dict([code, DPeptideChemComp(code, code, canon, name, formula)]
for canon, code, name, formula in [
('A', 'DAL', 'D-ALANINE', 'C3 H7 N O2'),
('C', 'DCY', 'D-CYSTEINE', 'C3 H7 N O2 S'),
('D', 'DAS', 'D-ASPARTIC ACID', 'C4 H7 N O4'),
('E', 'DGL', 'D-GLUTAMIC ACID', 'C5 H9 N O4'),
('F', 'DPN', 'D-PHENYLALANINE', 'C9 H11 N O2'),
('H', 'DHI', 'D-HISTIDINE', 'C6 H10 N3 O2 1'),
('I', 'DIL', 'D-ISOLEUCINE', 'C6 H13 N O2'),
('K', 'DLY', 'D-LYSINE', 'C6 H14 N2 O2'),
('L', 'DLE', 'D-LEUCINE', 'C6 H13 N O2'),
('M', 'MED', 'D-METHIONINE', 'C5 H11 N O2 S'),
('N', 'DSG', 'D-ASPARAGINE', 'C4 H8 N2 O3'),
('P', 'DPR', 'D-PROLINE', 'C5 H9 N O2'),
('Q', 'DGN', 'D-GLUTAMINE', 'C5 H10 N2 O3'),
('R', 'DAR', 'D-ARGININE', 'C6 H15 N4 O2 1'),
('S', 'DSN', 'D-SERINE', 'C3 H7 N O3'),
('T', 'DTH', 'D-THREONINE', 'C4 H9 N O3'),
('V', 'DVA', 'D-VALINE', 'C5 H11 N O2'),
('W', 'DTR', 'D-TRYPTOPHAN', 'C11 H12 N2 O2'),
('Y', 'DTY', 'D-TYROSINE', 'C9 H11 N O3')])
_comps['G'] = PeptideChemComp('GLY', 'G', 'G', name='GLYCINE',
formula="C2 H5 N O2")
class RNAAlphabet(Alphabet):
"""A mapping from one-letter nucleic acid codes (e.g. A) to
RNA (as :class:`RNAChemComp` objects)."""
_comps = dict([id, RNAChemComp(id, id, id, name, formula)]
for id, name, formula in [
('A', "ADENOSINE-5'-MONOPHOSPHATE", 'C10 H14 N5 O7 P'),
('C', "CYTIDINE-5'-MONOPHOSPHATE", 'C9 H14 N3 O8 P'),
('G', "GUANOSINE-5'-MONOPHOSPHATE", 'C10 H14 N5 O8 P'),
('U', "URIDINE-5'-MONOPHOSPHATE", 'C9 H13 N2 O9 P')])
class DNAAlphabet(Alphabet):
"""A mapping from two-letter nucleic acid codes (e.g. DA) to
DNA (as :class:`DNAChemComp` objects)."""
_comps = dict([code, DNAChemComp(code, code, canon, name, formula)]
for code, canon, name, formula in [
('DA', 'A', "2'-DEOXYADENOSINE-5'-MONOPHOSPHATE",
'C10 H14 N5 O6 P'),
('DC', 'C', "2'-DEOXYCYTIDINE-5'-MONOPHOSPHATE",
'C9 H14 N3 O7 P'),
('DG', 'G', "2'-DEOXYGUANOSINE-5'-MONOPHOSPHATE",
'C10 H14 N5 O7 P'),
('DT', 'T', "THYMIDINE-5'-MONOPHOSPHATE",
'C10 H15 N2 O8 P')])
class EntityRange:
"""Part of an entity. Usually these objects are created from
an :class:`Entity`, e.g. to get a range covering residues 4 through
7 in `entity` use::
entity = ihm.Entity(sequence=...)
rng = entity(4,7)
"""
def __init__(self, entity, seq_id_begin, seq_id_end):
if not entity.is_polymeric():
raise TypeError("Can only create ranges for polymeric entities")
self.entity = entity
self.seq_id_range = (seq_id_begin, seq_id_end)
util._check_residue_range(self.seq_id_range, self.entity)
def __eq__(self, other):
try:
return (self.entity is other.entity
and self.seq_id_range == other.seq_id_range)
except AttributeError:
return False
def __hash__(self):
return hash((id(self.entity), self.seq_id_range))
# Use same ID as the original entity
_id = property(lambda self: self.entity._id)
class Atom:
"""A single atom in an entity or asymmetric unit. Usually these objects
are created by calling :meth:`Residue.atom`.
Note that this class does not store atomic coordinates of a given
atom in a given model; for that, see :class:`ihm.model.Atom`.
"""
__slots__ = ['residue', 'id']
def __init__(self, residue, id):
self.residue, self.id = residue, id
entity = property(lambda self: self.residue.entity)
asym = property(lambda self: self.residue.asym)
seq_id = property(lambda self: self.residue.seq_id)
class Residue:
"""A single residue in an entity or asymmetric unit. Usually these objects
are created by calling :meth:`Entity.residue` or
:meth:`AsymUnit.residue`.
"""
__slots__ = ['entity', 'asym', 'seq_id', '_range_id']
def __init__(self, seq_id, entity=None, asym=None):
self.entity = entity
self.asym = asym
if entity is None and asym:
self.entity = asym.entity
self.seq_id = seq_id
if self.entity is not None and self.entity.is_polymeric():
util._check_residue(self)
def atom(self, atom_id):
"""Get a :class:`~ihm.Atom` in this residue with the given name."""
return Atom(residue=self, id=atom_id)
def _get_auth_seq_id(self):
return self.asym._get_auth_seq_id_ins_code(self.seq_id)[0]
auth_seq_id = property(_get_auth_seq_id,
doc="Author-provided seq_id; only makes sense "
"for asymmetric units")
def _get_ins_code(self):
return self.asym._get_auth_seq_id_ins_code(self.seq_id)[1]
ins_code = property(_get_ins_code,
doc="Insertion code; only makes sense "
"for asymmetric units")
def _get_comp(self):
return self.entity.sequence[self.seq_id - 1]
comp = property(_get_comp,
doc="Chemical component (residue type)")
# Allow passing residues where a range is requested
# (e.g. to ResidueFeature)
seq_id_range = property(lambda self: (self.seq_id, self.seq_id))
class Entity:
"""Represent a CIF entity (with a unique sequence)
:param sequence sequence: The primary sequence, as a sequence of
:class:`ChemComp` objects, and/or codes looked up in `alphabet`.
:param alphabet: The mapping from code to chemical components to use
(it is not necessary to instantiate this class).
:type alphabet: :class:`Alphabet`
:param str description: A short text name for the sequence.
:param str details: Longer text describing the sequence.
:param source: The method by which the sample for this entity was
produced.
:type source: :class:`ihm.source.Source`
:param references: Information about this entity stored in external
databases (for example the sequence in UniProt)
:type references: sequence of :class:`ihm.reference.Reference` objects
The sequence for an entity can be specified explicitly as a list of
chemical components, or (more usually) as a list or string of codes,
or a mixture of both.
For example::
# Construct with a string of one-letter amino acid codes
protein = ihm.Entity('AHMD')
# Some less common amino acids (e.g. MSE) have three-letter codes
protein_with_mse = ihm.Entity(['A', 'H', 'MSE', 'D'])
# Can use a non-default alphabet to make DNA or RNA sequences
dna = ihm.Entity(('DA', 'DC'), alphabet=ihm.DNAAlphabet)
rna = ihm.Entity('AC', alphabet=ihm.RNAAlphabet)
# Can pass explicit ChemComp objects by looking them up in Alphabets
dna_al = ihm.DNAAlphabet()
rna_al = ihm.RNAAlphabet()
dna_rna_hybrid = ihm.Entity((dna_al['DG'], rna_al['C']))
# For unusual components (e.g. modified residues or ligands),
# new ChemComp objects can be constructed
psu = ihm.RNAChemComp(id='PSU', code='PSU', code_canonical='U',
name="PSEUDOURIDINE-5'-MONOPHOSPHATE",
formula='C9 H13 N2 O9 P')
rna_with_psu = ihm.Entity(('A', 'C', psu), alphabet=ihm.RNAAlphabet)
For more examples, see the
`ligands and water example <https://github.com/ihmwg/python-ihm/blob/main/examples/ligands_water.py>`_.
All entities should be stored in the top-level System object;
see :attr:`System.entities`.
""" # noqa: E501
_force_polymer = None
_hint_branched = None
# Set to False to allow invalid seq_ids for residue or residue_range;
# this is done, for example, when reading a file.
_range_check = True
def __get_type(self):
if self.is_polymeric():
return 'polymer'
elif self.is_branched():
return 'branched'
else:
return 'water' if self.sequence[0].code == 'HOH' else 'non-polymer'
type = property(__get_type)
def __get_src_method(self):
if self.source:
return self.source.src_method
elif self.type == 'water':
return 'nat'
else:
return 'man'
def __set_src_method(self, val):
raise TypeError("src_method is read-only; assign an appropriate "
"subclass of ihm.source.Source to source instead")
src_method = property(__get_src_method, __set_src_method)
def __get_weight(self):
weight = 0.
for s in self.sequence:
w = s.formula_weight
# If any component's weight is unknown, the total is too
if w:
weight += w
else:
return None
return weight
formula_weight = property(
__get_weight,
doc="Formula weight (dalton). This is calculated automatically "
"from that of the chemical components.")
def __init__(self, sequence, alphabet=LPeptideAlphabet,
description=None, details=None, source=None, references=[]):
def get_chem_comp(s):
if isinstance(s, ChemComp):
return s
else:
return alphabet._comps[s]
self.sequence = tuple(get_chem_comp(s) for s in sequence)
self.description, self.details = description, details
self.source = source
self.references = []
self.references.extend(references)
#: String descriptors of branched chemical structure.
#: These generally only make sense for oligosaccharide entities,
#: and should be a list of :class:`~ihm.BranchDescriptor` objects.
self.branch_descriptors = []
#: Any links between components in a branched entity.
#: This is a list of :class:`~ihm.BranchLink` objects.
self.branch_links = []
def __str__(self):
return "<ihm.Entity(%s)>" % self.description
def is_polymeric(self):
"""Return True iff this entity represents a polymer, such as an
amino acid sequence or DNA/RNA chain (and not a ligand or water)"""
return (self._force_polymer or
(len(self.sequence) == 0 and not self._hint_branched) or
len(self.sequence) > 1
and any(isinstance(x, (PeptideChemComp, DNAChemComp,
RNAChemComp)) for x in self.sequence))
def is_branched(self):
"""Return True iff this entity is branched (generally
an oligosaccharide)"""
return ((len(self.sequence) > 1
and isinstance(self.sequence[0], SaccharideChemComp)) or
(len(self.sequence) == 0 and self._hint_branched))
def residue(self, seq_id):
"""Get a :class:`Residue` at the given sequence position"""
return Residue(entity=self, seq_id=seq_id)
# Entities are considered identical if they have the same sequence,
# unless they are branched
def __eq__(self, other):
if not isinstance(other, Entity):
return False
if self.is_branched() or other.is_branched():
return self is other
else:
return self.sequence == other.sequence
def __hash__(self):
if self.is_branched():
return hash(id(self))
else:
return hash(self.sequence)
def __call__(self, seq_id_begin, seq_id_end):
return EntityRange(self, seq_id_begin, seq_id_end)
def __get_seq_id_range(self):
if self.is_polymeric() or self.is_branched():
return (1, len(self.sequence))
else:
# Nonpolymers don't have the concept of seq_id
return (None, None)
seq_id_range = property(__get_seq_id_range, doc="Sequence range")
class AsymUnitRange:
"""Part of an asymmetric unit. Usually these objects are created from
an :class:`AsymUnit`, e.g. to get a range covering residues 4 through
7 in `asym` use::
asym = ihm.AsymUnit(entity)
rng = asym(4,7)
"""
def __init__(self, asym, seq_id_begin, seq_id_end):
if asym.entity is not None and not asym.entity.is_polymeric():
raise TypeError("Can only create ranges for polymeric entities")
self.asym = asym
self.seq_id_range = (seq_id_begin, seq_id_end)
util._check_residue_range(self.seq_id_range, self.entity)
def __eq__(self, other):
try:
return (self.asym is other.asym
and self.seq_id_range == other.seq_id_range)
except AttributeError:
return False
def __hash__(self):
return hash((id(self.asym), self.seq_id_range))
# Use same ID and entity as the original asym unit
_id = property(lambda self: self.asym._id)
_ordinal = property(lambda self: self.asym._ordinal)
entity = property(lambda self: self.asym.entity)
details = property(lambda self: self.asym.details)
class AsymUnitSegment:
"""An aligned part of an asymmetric unit.
Usually these objects are created from
an :class:`AsymUnit`, e.g. to get a segment covering residues 1 through
3 in `asym` use::
asym = ihm.AsymUnit(entity)
seg = asym.segment('--ACG', 1, 3)
"""
def __init__(self, asym, gapped_sequence, seq_id_begin, seq_id_end):
self.asym = asym
self.gapped_sequence = gapped_sequence
self.seq_id_range = (seq_id_begin, seq_id_end)
class AsymUnit:
"""An asymmetric unit, i.e. a unique instance of an Entity that
was modeled.
Note that this class should not be used to describe crystal waters;
for that, see :class:`ihm.WaterAsymUnit`.
:param entity: The unique sequence of this asymmetric unit.
:type entity: :class:`Entity`
:param str details: Longer text description of this unit.
:param auth_seq_id_map: Mapping from internal 1-based consecutive
residue numbering (`seq_id`) to PDB "author-provided" numbering
(`auth_seq_id` plus an optional `ins_code`). This can be either
be an int offset, in which case
``auth_seq_id = seq_id + auth_seq_id_map`` with no insertion
codes, or a mapping type (dict, list, tuple) in which case
``auth_seq_id = auth_seq_id_map[seq_id]`` with no insertion
codes, or
``auth_seq_id, ins_code = auth_seq_id_map[seq_id]`` - i.e. the
output of the mapping is either the author-provided number, or a
2-element tuple containing that number and an insertion code.
(Note that if a `list` or `tuple` is used for the mapping, the
first element in the list or tuple does
**not** correspond to the first residue and will never be used -
since `seq_id` can never be zero.) The default if
not specified, or not in the mapping, is for
``auth_seq_id == seq_id`` and for no insertion codes to be used.
:param str id: User-specified ID (usually a string of one or more
upper-case letters, e.g. A, B, C, AA). If not specified,
IDs are automatically assigned alphabetically.
:param str strand_id: PDB or "author-provided" strand/chain ID.
If not specified, it will be the same as the regular ID.
:param orig_auth_seq_id_map: Mapping from internal 1-based consecutive
residue numbering (`seq_id`) to original "author-provided"
numbering. This differs from `auth_seq_id_map` as the original
numbering need not follow any defined scheme, while
`auth_seq_id_map` must follow certain PDB-defined rules. This
can be any mapping type (dict, list, tuple) in which case
``orig_auth_seq_id = orig_auth_seq_id_map[seq_id]``. If the
mapping is None (the default), or a given `seq_id` cannot be
found in the mapping, ``orig_auth_seq_id = auth_seq_id``.
This mapping is only used in the various `scheme` tables, such
as ``pdbx_poly_seq_scheme``.
See :attr:`System.asym_units`.
"""
number_of_molecules = 1
def __init__(self, entity, details=None, auth_seq_id_map=0, id=None,
strand_id=None, orig_auth_seq_id_map=None):
if (entity is not None and entity.type == 'water'
and not isinstance(self, WaterAsymUnit)):
raise TypeError("Use WaterAsymUnit instead for creating waters")
self.entity, self.details = entity, details
self.auth_seq_id_map = auth_seq_id_map
self.orig_auth_seq_id_map = orig_auth_seq_id_map
self.id = id
self._strand_id = strand_id
#: For branched entities read from files, mapping from provisional
#: to final internal numbering (`seq_id`), or None if no mapping is
#: necessary. See :meth:`ihm.model.Model.add_atom`.
self.num_map = None
def _get_auth_seq_id_ins_code(self, seq_id):
if isinstance(self.auth_seq_id_map, numbers.Integral):
return seq_id + self.auth_seq_id_map, None
else:
try:
ret = self.auth_seq_id_map[seq_id]
if isinstance(ret, (numbers.Integral, str)):
return ret, None
else:
return ret
except (KeyError, IndexError):
return seq_id, None
def _get_pdb_auth_seq_id_ins_code(self, seq_id):
pdb_seq_num, ins_code = self._get_auth_seq_id_ins_code(seq_id)
if self.orig_auth_seq_id_map is None:
auth_seq_num = pdb_seq_num
else:
auth_seq_num = self.orig_auth_seq_id_map.get(seq_id, pdb_seq_num)
return pdb_seq_num, auth_seq_num, ins_code
def __call__(self, seq_id_begin, seq_id_end):
return AsymUnitRange(self, seq_id_begin, seq_id_end)
def residue(self, seq_id):
"""Get a :class:`Residue` at the given sequence position"""
return Residue(asym=self, seq_id=seq_id)
def segment(self, gapped_sequence, seq_id_begin, seq_id_end):
"""Get an object representing the alignment of part of this sequence.
:param str gapped_sequence: Sequence of the segment, including gaps.
:param int seq_id_begin: Start of the segment.
:param int seq_id_end: End of the segment.
"""
# todo: cache so we return the same object for same parameters
return AsymUnitSegment(self, gapped_sequence, seq_id_begin, seq_id_end)
seq_id_range = property(lambda self: self.entity.seq_id_range,
doc="Sequence range")
sequence = property(lambda self: self.entity.sequence,
doc="Primary sequence")
strand_id = property(lambda self: self._strand_id or self._id,
doc="PDB or author-provided strand/chain ID")
class WaterAsymUnit(AsymUnit):
"""A collection of crystal waters, all with the same "chain" ID.
:param int number: The number of water molecules in this unit.
For more information on this class and the rest of the parameters,
see :class:`AsymUnit`.
"""
def __init__(self, entity, number, details=None, auth_seq_id_map=0,
id=None, strand_id=None, orig_auth_seq_id_map=None):
if entity.type != 'water':
raise TypeError(
"WaterAsymUnit can only be used for water entities")
super().__init__(
entity, details=details, auth_seq_id_map=auth_seq_id_map,
id=id, strand_id=strand_id,
orig_auth_seq_id_map=orig_auth_seq_id_map)
self.number = number
self._water_sequence = [entity.sequence[0]] * number
seq_id_range = property(lambda self: (1, self.number),
doc="Sequence range")
sequence = property(lambda self: self._water_sequence,
doc="Primary sequence")
number_of_molecules = property(lambda self: self.number,
doc="Number of molecules")
class Assembly(list):
"""A collection of parts of the system that were modeled or probed
together.
:param sequence elements: Initial set of parts of the system.
:param str name: Short text name of this assembly.
:param str description: Longer text that describes this assembly.
This is implemented as a simple list of asymmetric units (or parts of
them), i.e. a list of :class:`AsymUnit` and/or :class:`AsymUnitRange`
objects. An Assembly is typically assigned to one or more of
- :class:`~ihm.model.Model`
- :class:`ihm.protocol.Step`
- :class:`ihm.analysis.Step`
- :class:`~ihm.restraint.Restraint`
See also :attr:`System.complete_assembly`
and :attr:`System.orphan_assemblies`.
Note that any duplicate assemblies will be pruned on output."""
#: :class:`Assembly` that is the immediate parent in a hierarchy, or `None`
parent = None
def __init__(self, elements=(), name=None, description=None):
super().__init__(elements)
self.name, self.description = name, description
def _signature(self):
"""Get a Python object that represents this Assembly. Notably, two
Assemblies that cover the part of the system (even if the
components are in a different order) will have the same signature.
Signatures are also hashable, unlike the Assembly itself."""
d = collections.defaultdict(list)
for a in self:
# a might be an AsymUnit or an AsymUnitRange
asym = a.asym if hasattr(a, 'asym') else a
d[asym].append(a.seq_id_range)
ret = []
# asyms might not have IDs yet, so just put them in a consistent order
for asym in sorted(d.keys(), key=lambda x: id(x)):
ranges = d[asym]
# Non-polymers have no ranges
if all(r == (None, None) for r in ranges):
ret.append((asym, None))
else:
ret.append((asym, tuple(util._combine_ranges(d[asym]))))
return tuple(ret)
class ChemDescriptor:
"""Description of a non-polymeric chemical component used in the
experiment. For example, this might be a fluorescent probe or
cross-linking agent. This class describes the chemical structure of
the component, for example with a SMILES or INCHI descriptor, so that
it is uniquely defined. A descriptor is typically assigned to a
:class:`ihm.restraint.CrossLinkRestraint`.
See :mod:`ihm.cross_linkers` for chemical descriptors of some
commonly-used cross-linking agents.
:param str auth_name: Author-provided name
:param str chem_comp_id: If this chemical is listed in the Chemical
Component Dictionary, its three-letter identifier
:param str chemical_name: The systematic (IUPAC) chemical name
:param str common_name: Common name for the component
:param str smiles: SMILES string
:param str smiles_canonical: Canonical SMILES string
:param str inchi: IUPAC INCHI descriptor
:param str inchi_key: Hashed INCHI key
See also :attr:`System.orphan_chem_descriptors`.
"""
def __init__(self, auth_name, chem_comp_id=None, chemical_name=None,
common_name=None, smiles=None, smiles_canonical=None,
inchi=None, inchi_key=None):
self.auth_name, self.chem_comp_id = auth_name, chem_comp_id
self.chemical_name, self.common_name = chemical_name, common_name
self.smiles, self.smiles_canonical = smiles, smiles_canonical
self.inchi, self.inchi_key = inchi, inchi_key
class Collection:
"""A collection of entries belonging to single deposition or group.
These are used by the archive to group multiple related entries,
e.g. all entries deposited as part of a given study, or all
models for a genome. An entry (:class:`System`) can belong to
multiple collections.
:param str id: Unique identifier (assigned by the archive).
:param str name: Short name for the collection.
:param str details: Longer description of the collection.
See also :attr:`System.collections`.
"""
def __init__(self, id, name=None, details=None):
self.id, self.name, self.details = id, name, details
class BranchDescriptor:
"""String descriptor of branched chemical structure.
These generally only make sense for oligosaccharide entities.
See :attr:`Entity.branch_descriptors`.
:param str text: The value of this descriptor.
:param str type: The type of the descriptor; one of
"Glycam Condensed Core Sequence", "Glycam Condensed Sequence",
"LINUCS", or "WURCS".
:param str program: The name of the program or library used to compute
the descriptor.
:param str program_version: The version of the program or library
used to compute the descriptor.
"""
def __init__(self, text, type, program=None, program_version=None):
self.text, self.type = text, type
self.program, self.program_version = program, program_version
class BranchLink:
"""A link between components in a branched entity.
These generally only make sense for oligosaccharide entities.
See :attr:`Entity.branch_links`.
:param int num1: 1-based index of the first component.
:param str atom_id1: Name of the first atom in the linkage.
:param str leaving_atom_id1: Name of the first leaving atom.
:param int num2: 1-based index of the second component.
:param str atom_id2: Name of the second atom in the linkage.
:param str leaving_atom_id2: Name of the second leaving atom.
:param str order: Bond order (e.g. sing, doub, trip).
:param str details: More information about this link.
"""
def __init__(self, num1, atom_id1, leaving_atom_id1, num2, atom_id2,
leaving_atom_id2, order=None, details=None):
self.num1, self.atom_id1 = num1, atom_id1
self.num2, self.atom_id2 = num2, atom_id2
self.leaving_atom_id1 = leaving_atom_id1
self.leaving_atom_id2 = leaving_atom_id2
self.order, self.details = order, details
class DataUsage:
"""Information on how the data in the file can be used.
Do not use this class itself, but one of its subclasses, either
:class:`License` or :class:`Disclaimer`. DataUsage objects are
stored in :data:`ihm.System.data_usage`.
:param str details: Information about the data usage.
:param str name: An optional well-known name for the usage.
:param str url: An optional URL providing more information.
"""
type = 'other'
def __init__(self, details, name=None, url=None):
self.details, self.name, self.url = details, name, url
class License(DataUsage):
"""A license describing how the data in the file can be used.
See :class:`DataUsage` for more information."""
type = 'license'
class Disclaimer(DataUsage):
"""A disclaimer relating to usage of the data in the file.
See :class:`DataUsage` for more information."""
type = 'disclaimer'
class Revision:
"""Represent part of the history of a :class:`System`.
:param str data_content_type: The type of file that was changed.
:param int major: Major version number.
:param int minor: Minor version number.
:param date: Release date.
:type date: :class:`datetime.date`
Generally these objects are added to :attr:`System.revisions`.
"""
def __init__(self, data_content_type, minor, major, date):
self.data_content_type = data_content_type
self.minor, self.major = minor, major
self.date = date
#: More details of the changes, as :class:`RevisionDetails` objects
self.details = []
#: Collection of categories (as strings) updated with this revision
self.groups = []
#: Categories (as strings) updated with this revision
self.categories = []
#: Items (as strings) updated with this revision
self.items = []
class RevisionDetails:
"""More information on the changes in a given :class:`Revision`.
:param str provider: The provider (author, repository) of the revision.
:param str type: Classification of the revision.
:param str description: Additional details describing the revision.
These objects are typically stored in :attr:`Revision.details`.
"""
def __init__(self, provider, type, description):
self.provider = provider
self.type = type
self.description = description
|