1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
|
# Authors: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
# Matti Hamalainen <msh@nmr.mgh.harvard.edu>
# Martin Luessi <mluessi@nmr.mgh.harvard.edu>
# Eric Larson <larsoner@uw.edu>
#
# License: BSD (3-clause)
from copy import deepcopy
import contextlib
import os
from os import path as op
import numpy as np
from ._compute_forward import _compute_forwards
from ..io import read_info, _loc_to_coil_trans, _loc_to_eeg_loc, Info
from ..io.pick import _has_kit_refs, pick_types, pick_info
from ..io.constants import FIFF, FWD
from ..transforms import (_ensure_trans, transform_surface_to, apply_trans,
_get_trans, _print_coord_trans, _coord_frame_name,
Transform)
from ..utils import logger, verbose, warn, _pl
from ..parallel import check_n_jobs
from ..source_space import (_ensure_src, _filter_source_spaces,
_make_discrete_source_space, SourceSpaces)
from ..source_estimate import VolSourceEstimate
from ..surface import _normalize_vectors
from ..bem import read_bem_solution, _bem_find_surface, ConductorModel
from ..externals.six import string_types
from .forward import Forward, _merge_meg_eeg_fwds, convert_forward_solution
_accuracy_dict = dict(normal=FWD.COIL_ACCURACY_NORMAL,
accurate=FWD.COIL_ACCURACY_ACCURATE)
_extra_coil_def_fname = None
@verbose
def _read_coil_defs(verbose=None):
"""Read a coil definition file.
Parameters
----------
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Returns
-------
res : list of dict
The coils. It is a dictionary with valid keys:
'cosmag' | 'coil_class' | 'coord_frame' | 'rmag' | 'type' |
'chname' | 'accuracy'.
cosmag contains the direction of the coils and rmag contains the
position vector.
Notes
-----
The global variable "_extra_coil_def_fname" can be used to prepend
additional definitions. These are never added to the registry.
"""
coil_dir = op.join(op.split(__file__)[0], '..', 'data')
coils = list()
if _extra_coil_def_fname is not None:
coils += _read_coil_def_file(_extra_coil_def_fname, use_registry=False)
coils += _read_coil_def_file(op.join(coil_dir, 'coil_def.dat'))
return coils
# Typically we only have 1 or 2 coil def files, but they can end up being
# read a lot. Let's keep a list of them and just reuse them:
_coil_registry = {}
def _read_coil_def_file(fname, use_registry=True):
"""Read a coil def file."""
if not use_registry or fname not in _coil_registry:
big_val = 0.5
coils = list()
with open(fname, 'r') as fid:
lines = fid.readlines()
lines = lines[::-1]
while len(lines) > 0:
line = lines.pop()
if line[0] != '#':
vals = np.fromstring(line, sep=' ')
assert len(vals) in (6, 7) # newer numpy can truncate comment
start = line.find('"')
end = len(line.strip()) - 1
assert line.strip()[end] == '"'
desc = line[start:end]
npts = int(vals[3])
coil = dict(coil_type=vals[1], coil_class=vals[0], desc=desc,
accuracy=vals[2], size=vals[4], base=vals[5])
# get parameters of each component
rmag = list()
cosmag = list()
w = list()
for p in range(npts):
# get next non-comment line
line = lines.pop()
while(line[0] == '#'):
line = lines.pop()
vals = np.fromstring(line, sep=' ')
assert len(vals) == 7
# Read and verify data for each integration point
w.append(vals[0])
rmag.append(vals[[1, 2, 3]])
cosmag.append(vals[[4, 5, 6]])
w = np.array(w)
rmag = np.array(rmag)
cosmag = np.array(cosmag)
size = np.sqrt(np.sum(cosmag ** 2, axis=1))
if np.any(np.sqrt(np.sum(rmag ** 2, axis=1)) > big_val):
raise RuntimeError('Unreasonable integration point')
if np.any(size <= 0):
raise RuntimeError('Unreasonable normal')
cosmag /= size[:, np.newaxis]
coil.update(dict(w=w, cosmag=cosmag, rmag=rmag))
coils.append(coil)
if use_registry:
_coil_registry[fname] = coils
if use_registry:
coils = deepcopy(_coil_registry[fname])
logger.info('%d coil definition%s read', len(coils), _pl(coils))
return coils
def _create_meg_coil(coilset, ch, acc, do_es):
"""Create a coil definition using templates, transform if necessary."""
# Also change the coordinate frame if so desired
if ch['kind'] not in [FIFF.FIFFV_MEG_CH, FIFF.FIFFV_REF_MEG_CH]:
raise RuntimeError('%s is not a MEG channel' % ch['ch_name'])
# Simple linear search from the coil definitions
for coil in coilset:
if coil['coil_type'] == (ch['coil_type'] & 0xFFFF) and \
coil['accuracy'] == acc:
break
else:
raise RuntimeError('Desired coil definition not found '
'(type = %d acc = %d)' % (ch['coil_type'], acc))
# Apply a coordinate transformation if so desired
coil_trans = _loc_to_coil_trans(ch['loc'])
# Create the result
res = dict(chname=ch['ch_name'], coil_class=coil['coil_class'],
accuracy=coil['accuracy'], base=coil['base'], size=coil['size'],
type=ch['coil_type'], w=coil['w'], desc=coil['desc'],
coord_frame=FIFF.FIFFV_COORD_DEVICE, rmag_orig=coil['rmag'],
cosmag_orig=coil['cosmag'], coil_trans_orig=coil_trans,
r0=coil_trans[:3, 3],
rmag=apply_trans(coil_trans, coil['rmag']),
cosmag=apply_trans(coil_trans, coil['cosmag'], False))
if do_es:
r0_exey = (np.dot(coil['rmag'][:, :2], coil_trans[:3, :2].T) +
coil_trans[:3, 3])
res.update(ex=coil_trans[:3, 0], ey=coil_trans[:3, 1],
ez=coil_trans[:3, 2], r0_exey=r0_exey)
return res
def _create_eeg_el(ch, t=None):
"""Create an electrode definition, transform coords if necessary."""
if ch['kind'] != FIFF.FIFFV_EEG_CH:
raise RuntimeError('%s is not an EEG channel. Cannot create an '
'electrode definition.' % ch['ch_name'])
if t is None:
t = Transform('head', 'head') # identity, no change
if t.from_str != 'head':
raise RuntimeError('Inappropriate coordinate transformation')
r0ex = _loc_to_eeg_loc(ch['loc'])
if r0ex.shape[1] == 1: # no reference
w = np.array([1.])
else: # has reference
w = np.array([1., -1.])
# Optional coordinate transformation
r0ex = apply_trans(t['trans'], r0ex.T)
# The electrode location
cosmag = r0ex.copy()
_normalize_vectors(cosmag)
res = dict(chname=ch['ch_name'], coil_class=FWD.COILC_EEG, w=w,
accuracy=_accuracy_dict['normal'], type=ch['coil_type'],
coord_frame=t['to'], rmag=r0ex, cosmag=cosmag)
return res
def _create_meg_coils(chs, acc, t=None, coilset=None, do_es=False):
"""Create a set of MEG coils in the head coordinate frame."""
acc = _accuracy_dict[acc] if isinstance(acc, string_types) else acc
coilset = _read_coil_defs(verbose=False) if coilset is None else coilset
coils = [_create_meg_coil(coilset, ch, acc, do_es) for ch in chs]
_transform_orig_meg_coils(coils, t, do_es=do_es)
return coils
def _transform_orig_meg_coils(coils, t, do_es=True):
"""Transform original (device) MEG coil positions."""
if t is None:
return
for coil in coils:
coil_trans = np.dot(t['trans'], coil['coil_trans_orig'])
coil.update(
coord_frame=t['to'], r0=coil_trans[:3, 3],
rmag=apply_trans(coil_trans, coil['rmag_orig']),
cosmag=apply_trans(coil_trans, coil['cosmag_orig'], False))
if do_es:
r0_exey = (np.dot(coil['rmag_orig'][:, :2],
coil_trans[:3, :2].T) + coil_trans[:3, 3])
coil.update(ex=coil_trans[:3, 0], ey=coil_trans[:3, 1],
ez=coil_trans[:3, 2], r0_exey=r0_exey)
def _create_eeg_els(chs):
"""Create a set of EEG electrodes in the head coordinate frame."""
return [_create_eeg_el(ch) for ch in chs]
@verbose
def _setup_bem(bem, bem_extra, neeg, mri_head_t, allow_none=False,
verbose=None):
"""Set up a BEM for forward computation, making a copy and modifying."""
if allow_none and bem is None:
return None
logger.info('')
if isinstance(bem, string_types):
logger.info('Setting up the BEM model using %s...\n' % bem_extra)
bem = read_bem_solution(bem)
else:
if not isinstance(bem, ConductorModel):
raise TypeError('bem must be a string or ConductorModel')
bem = bem.copy()
if bem['is_sphere']:
logger.info('Using the sphere model.\n')
if len(bem['layers']) == 0 and neeg > 0:
raise RuntimeError('Spherical model has zero shells, cannot use '
'with EEG data')
if bem['coord_frame'] != FIFF.FIFFV_COORD_HEAD:
raise RuntimeError('Spherical model is not in head coordinates')
else:
if bem['surfs'][0]['coord_frame'] != FIFF.FIFFV_COORD_MRI:
raise RuntimeError(
'BEM is in %s coordinates, should be in MRI'
% (_coord_frame_name(bem['surfs'][0]['coord_frame']),))
if neeg > 0 and len(bem['surfs']) == 1:
raise RuntimeError('Cannot use a homogeneous model in EEG '
'calculations')
logger.info('Employing the head->MRI coordinate transform with the '
'BEM model.')
# fwd_bem_set_head_mri_t: Set the coordinate transformation
bem['head_mri_t'] = _ensure_trans(mri_head_t, 'head', 'mri')
logger.info('BEM model %s is now set up' % op.split(bem_extra)[1])
logger.info('')
return bem
@verbose
def _prep_meg_channels(info, accurate=True, exclude=(), ignore_ref=False,
head_frame=True, do_es=False, do_picking=True,
verbose=None):
"""Prepare MEG coil definitions for forward calculation.
Parameters
----------
info : instance of Info
The measurement information dictionary
accurate : bool
If true (default) then use `accurate` coil definitions (more
integration points)
exclude : list of str | str
List of channels to exclude. If 'bads', exclude channels in
info['bads']
ignore_ref : bool
If true, ignore compensation coils
head_frame : bool
If True (default), use head frame coords. Otherwise, use device frame.
do_es : bool
If True, compute and store ex, ey, ez, and r0_exey.
do_picking : bool
If True, pick info and return it.
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Returns
-------
megcoils : list of dict
Information for each prepped MEG coil
compcoils : list of dict
Information for each prepped MEG coil
megnames : list of str
Name of each prepped MEG coil
meginfo : instance of Info
Information subselected for just the set of MEG coils
"""
accuracy = 'accurate' if accurate else 'normal'
info_extra = 'info'
megnames, megcoils, compcoils = [], [], []
# Find MEG channels
picks = pick_types(info, meg=True, eeg=False, ref_meg=False,
exclude=exclude)
# Make sure MEG coils exist
nmeg = len(picks)
if nmeg <= 0:
raise RuntimeError('Could not find any MEG channels')
# Get channel info and names for MEG channels
megchs = [info['chs'][pick] for pick in picks]
megnames = [info['ch_names'][p] for p in picks]
logger.info('Read %3d MEG channels from %s'
% (len(picks), info_extra))
# Get MEG compensation channels
if not ignore_ref:
picks = pick_types(info, meg=False, ref_meg=True, exclude=exclude)
ncomp = len(picks)
if (ncomp > 0):
compchs = pick_info(info, picks)['chs']
logger.info('Read %3d MEG compensation channels from %s'
% (ncomp, info_extra))
# We need to check to make sure these are NOT KIT refs
if _has_kit_refs(info, picks):
raise NotImplementedError(
'Cannot create forward solution with KIT reference '
'channels. Consider using "ignore_ref=True" in '
'calculation')
else:
ncomp = 0
# Make info structure to allow making compensator later
ncomp_data = len(info['comps'])
ref_meg = True if not ignore_ref else False
picks = pick_types(info, meg=True, ref_meg=ref_meg, exclude=exclude)
# Create coil descriptions with transformation to head or device frame
templates = _read_coil_defs()
if head_frame:
_print_coord_trans(info['dev_head_t'])
transform = info['dev_head_t']
else:
transform = None
megcoils = _create_meg_coils(megchs, accuracy, transform, templates,
do_es=do_es)
if ncomp > 0:
logger.info('%d compensation data sets in %s' % (ncomp_data,
info_extra))
compcoils = _create_meg_coils(compchs, 'normal', transform, templates,
do_es=do_es)
# Check that coordinate frame is correct and log it
if head_frame:
assert megcoils[0]['coord_frame'] == FIFF.FIFFV_COORD_HEAD
logger.info('MEG coil definitions created in head coordinates.')
else:
assert megcoils[0]['coord_frame'] == FIFF.FIFFV_COORD_DEVICE
logger.info('MEG coil definitions created in device coordinate.')
out = (megcoils, compcoils, megnames)
if do_picking:
out = out + (pick_info(info, picks) if nmeg > 0 else None,)
return out
@verbose
def _prep_eeg_channels(info, exclude=(), verbose=None):
"""Prepare EEG electrode definitions for forward calculation.
Parameters
----------
info : instance of Info
The measurement information dictionary
exclude : list of str | str
List of channels to exclude. If 'bads', exclude channels in
info['bads']
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Returns
-------
eegels : list of dict
Information for each prepped EEG electrode
eegnames : list of str
Name of each prepped EEG electrode
"""
eegnames, eegels = [], []
info_extra = 'info'
# Find EEG electrodes
picks = pick_types(info, meg=False, eeg=True, ref_meg=False,
exclude=exclude)
# Make sure EEG electrodes exist
neeg = len(picks)
if neeg <= 0:
raise RuntimeError('Could not find any EEG channels')
# Get channel info and names for EEG channels
eegchs = pick_info(info, picks)['chs']
eegnames = [info['ch_names'][p] for p in picks]
logger.info('Read %3d EEG channels from %s' % (len(picks), info_extra))
# Create EEG electrode descriptions
eegels = _create_eeg_els(eegchs)
logger.info('Head coordinate coil definitions created.')
return eegels, eegnames
@verbose
def _prepare_for_forward(src, mri_head_t, info, bem, mindist, n_jobs,
bem_extra='', trans='', info_extra='',
meg=True, eeg=True, ignore_ref=False,
allow_bem_none=False, verbose=None):
"""Prepare for forward computation."""
# Read the source locations
logger.info('')
# let's make a copy in case we modify something
src = _ensure_src(src).copy()
nsource = sum(s['nuse'] for s in src)
if nsource == 0:
raise RuntimeError('No sources are active in these source spaces. '
'"do_all" option should be used.')
logger.info('Read %d source spaces a total of %d active source locations'
% (len(src), nsource))
# Delete some keys to clean up the source space:
for key in ['working_dir', 'command_line']:
if key in src.info:
del src.info[key]
# Read the MRI -> head coordinate transformation
logger.info('')
_print_coord_trans(mri_head_t)
# make a new dict with the relevant information
arg_list = [info_extra, trans, src, bem_extra, meg, eeg, mindist,
n_jobs, verbose]
cmd = 'make_forward_solution(%s)' % (', '.join([str(a) for a in arg_list]))
mri_id = dict(machid=np.zeros(2, np.int32), version=0, secs=0, usecs=0)
info = Info(chs=info['chs'], comps=info['comps'],
dev_head_t=info['dev_head_t'], mri_file=trans, mri_id=mri_id,
meas_file=info_extra, meas_id=None, working_dir=os.getcwd(),
command_line=cmd, bads=info['bads'], mri_head_t=mri_head_t)
info._update_redundant()
info._check_consistency()
logger.info('')
megcoils, compcoils, megnames, meg_info = [], [], [], []
eegels, eegnames = [], []
if meg and len(pick_types(info, ref_meg=False, exclude=[])) > 0:
megcoils, compcoils, megnames, meg_info = \
_prep_meg_channels(info, ignore_ref=ignore_ref)
if eeg and len(pick_types(info, meg=False, eeg=True, ref_meg=False,
exclude=[])) > 0:
eegels, eegnames = _prep_eeg_channels(info)
# Check that some channels were found
if len(megcoils + eegels) == 0:
raise RuntimeError('No MEG or EEG channels found.')
# pick out final info
info = pick_info(info, pick_types(info, meg=meg, eeg=eeg, ref_meg=False,
exclude=[]))
# Transform the source spaces into the appropriate coordinates
# (will either be HEAD or MRI)
for s in src:
transform_surface_to(s, 'head', mri_head_t)
logger.info('Source spaces are now in %s coordinates.'
% _coord_frame_name(s['coord_frame']))
# Prepare the BEM model
bem = _setup_bem(bem, bem_extra, len(eegnames), mri_head_t,
allow_none=allow_bem_none)
# Circumvent numerical problems by excluding points too close to the skull
if bem is not None and not bem['is_sphere']:
inner_skull = _bem_find_surface(bem, 'inner_skull')
_filter_source_spaces(inner_skull, mindist, mri_head_t, src, n_jobs)
logger.info('')
rr = np.concatenate([s['rr'][s['vertno']] for s in src])
if len(rr) < 1:
raise RuntimeError('No points left in source space after excluding '
'points close to inner skull.')
# deal with free orientations:
source_nn = np.tile(np.eye(3), (len(rr), 1))
update_kwargs = dict(nchan=len(info['ch_names']), nsource=len(rr),
info=info, src=src, source_nn=source_nn,
source_rr=rr, surf_ori=False, mri_head_t=mri_head_t)
return megcoils, meg_info, compcoils, megnames, eegels, eegnames, rr, \
info, update_kwargs, bem
@verbose
def make_forward_solution(info, trans, src, bem, meg=True, eeg=True,
mindist=0.0, ignore_ref=False, n_jobs=1,
verbose=None):
"""Calculate a forward solution for a subject.
Parameters
----------
info : instance of mne.Info | str
If str, then it should be a filename to a Raw, Epochs, or Evoked
file with measurement information. If dict, should be an info
dict (such as one from Raw, Epochs, or Evoked).
trans : dict | str | None
Either a transformation filename (usually made using mne_analyze)
or an info dict (usually opened using read_trans()).
If string, an ending of `.fif` or `.fif.gz` will be assumed to
be in FIF format, any other ending will be assumed to be a text
file with a 4x4 transformation matrix (like the `--trans` MNE-C
option). Can be None to use the identity transform.
src : str | instance of SourceSpaces
If string, should be a source space filename. Can also be an
instance of loaded or generated SourceSpaces.
bem : dict | str
Filename of the BEM (e.g., "sample-5120-5120-5120-bem-sol.fif") to
use, or a loaded sphere model (dict).
meg : bool
If True (Default), include MEG computations.
eeg : bool
If True (Default), include EEG computations.
mindist : float
Minimum distance of sources from inner skull surface (in mm).
ignore_ref : bool
If True, do not include reference channels in compensation. This
option should be True for KIT files, since forward computation
with reference channels is not currently supported.
n_jobs : int
Number of jobs to run in parallel.
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Returns
-------
fwd : instance of Forward
The forward solution.
See Also
--------
convert_forward_solution
Notes
-----
The ``--grad`` option from MNE-C (to compute gradients) is not implemented
here.
To create a fixed-orientation forward solution, use this function
followed by :func:`mne.convert_forward_solution`.
"""
# Currently not (sup)ported:
# 1. --grad option (gradients of the field, not used much)
# 2. --fixed option (can be computed post-hoc)
# 3. --mricoord option (probably not necessary)
# read the transformation from MRI to HEAD coordinates
# (could also be HEAD to MRI)
mri_head_t, trans = _get_trans(trans)
if isinstance(bem, ConductorModel):
bem_extra = 'instance of ConductorModel'
else:
bem_extra = bem
if not isinstance(info, (Info, string_types)):
raise TypeError('info should be an instance of Info or string')
if isinstance(info, string_types):
info_extra = op.split(info)[1]
info = read_info(info, verbose=False)
else:
info_extra = 'instance of Info'
n_jobs = check_n_jobs(n_jobs)
# Report the setup
logger.info('Source space : %s' % src)
logger.info('MRI -> head transform : %s' % trans)
logger.info('Measurement data : %s' % info_extra)
if isinstance(bem, ConductorModel) and bem['is_sphere']:
logger.info('Sphere model : origin at %s mm'
% (bem['r0'],))
logger.info('Standard field computations')
else:
logger.info('Conductor model : %s' % bem_extra)
logger.info('Accurate field computations')
logger.info('Do computations in %s coordinates',
_coord_frame_name(FIFF.FIFFV_COORD_HEAD))
logger.info('Free source orientations')
megcoils, meg_info, compcoils, megnames, eegels, eegnames, rr, info, \
update_kwargs, bem = _prepare_for_forward(
src, mri_head_t, info, bem, mindist, n_jobs, bem_extra, trans,
info_extra, meg, eeg, ignore_ref)
del (src, mri_head_t, trans, info_extra, bem_extra, mindist,
meg, eeg, ignore_ref)
# Time to do the heavy lifting: MEG first, then EEG
coil_types = ['meg', 'eeg']
coils = [megcoils, eegels]
ccoils = [compcoils, None]
infos = [meg_info, None]
megfwd, eegfwd = _compute_forwards(rr, bem, coils, ccoils,
infos, coil_types, n_jobs)
# merge forwards
fwd = _merge_meg_eeg_fwds(_to_forward_dict(megfwd, megnames),
_to_forward_dict(eegfwd, eegnames),
verbose=False)
logger.info('')
# Don't transform the source spaces back into MRI coordinates (which is
# done in the C code) because mne-python assumes forward solution source
# spaces are in head coords.
fwd.update(**update_kwargs)
logger.info('Finished.')
return fwd
def make_forward_dipole(dipole, bem, info, trans=None, n_jobs=1, verbose=None):
"""Convert dipole object to source estimate and calculate forward operator.
The instance of Dipole is converted to a discrete source space,
which is then combined with a BEM or a sphere model and
the sensor information in info to form a forward operator.
The source estimate object (with the forward operator) can be projected to
sensor-space using :func:`mne.simulation.simulate_evoked`.
.. note:: If the (unique) time points of the dipole object are unevenly
spaced, the first output will be a list of single-timepoint
source estimates.
Parameters
----------
dipole : instance of Dipole
Dipole object containing position, orientation and amplitude of
one or more dipoles. Multiple simultaneous dipoles may be defined by
assigning them identical times.
bem : str | dict
The BEM filename (str) or a loaded sphere model (dict).
info : instance of Info
The measurement information dictionary. It is sensor-information etc.,
e.g., from a real data file.
trans : str | None
The head<->MRI transform filename. Must be provided unless BEM
is a sphere model.
n_jobs : int
Number of jobs to run in parallel (used in making forward solution).
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Returns
-------
fwd : instance of Forward
The forward solution corresponding to the source estimate(s).
stc : instance of VolSourceEstimate | list of VolSourceEstimate
The dipoles converted to a discrete set of points and associated
time courses. If the time points of the dipole are unevenly spaced,
a list of single-timepoint source estimates are returned.
See Also
--------
mne.simulation.simulate_evoked
Notes
-----
.. versionadded:: 0.12.0
"""
# Make copies to avoid mangling original dipole
times = dipole.times.copy()
pos = dipole.pos.copy()
amplitude = dipole.amplitude.copy()
ori = dipole.ori.copy()
# Convert positions to discrete source space (allows duplicate rr & nn)
# NB information about dipole orientation enters here, then no more
sources = dict(rr=pos, nn=ori)
# Dipole objects must be in the head frame
sp = _make_discrete_source_space(sources, coord_frame='head')
src = SourceSpaces([sp]) # dict with working_dir, command_line not nec
# Forward operator created for channels in info (use pick_info to restrict)
# Use defaults for most params, including min_dist
fwd = make_forward_solution(info, trans, src, bem, n_jobs=n_jobs,
verbose=verbose)
# Convert from free orientations to fixed (in-place)
convert_forward_solution(fwd, surf_ori=False, force_fixed=True,
copy=False, use_cps=False, verbose=None)
# Check for omissions due to proximity to inner skull in
# make_forward_solution, which will result in an exception
if fwd['src'][0]['nuse'] != len(pos):
inuse = fwd['src'][0]['inuse'].astype(np.bool)
head = ('The following dipoles are outside the inner skull boundary')
msg = len(head) * '#' + '\n' + head + '\n'
for (t, pos) in zip(times[np.logical_not(inuse)],
pos[np.logical_not(inuse)]):
msg += ' t={:.0f} ms, pos=({:.0f}, {:.0f}, {:.0f}) mm\n'.\
format(t * 1000., pos[0] * 1000.,
pos[1] * 1000., pos[2] * 1000.)
msg += len(head) * '#'
logger.error(msg)
raise ValueError('One or more dipoles outside the inner skull.')
# multiple dipoles (rr and nn) per time instant allowed
# uneven sampling in time returns list
timepoints = np.unique(times)
if len(timepoints) > 1:
tdiff = np.diff(timepoints)
if not np.allclose(tdiff, tdiff[0]):
warn('Unique time points of dipoles unevenly spaced: returned '
'stc will be a list, one for each time point.')
tstep = -1.0
else:
tstep = tdiff[0]
elif len(timepoints) == 1:
tstep = 0.001
# Build the data matrix, essentially a block-diagonal with
# n_rows: number of dipoles in total (dipole.amplitudes)
# n_cols: number of unique time points in dipole.times
# amplitude with identical value of times go together in one col (others=0)
data = np.zeros((len(amplitude), len(timepoints))) # (n_d, n_t)
row = 0
for tpind, tp in enumerate(timepoints):
amp = amplitude[np.in1d(times, tp)]
data[row:row + len(amp), tpind] = amp
row += len(amp)
if tstep > 0:
stc = VolSourceEstimate(data, vertices=fwd['src'][0]['vertno'],
tmin=timepoints[0],
tstep=tstep, subject=None)
else: # Must return a list of stc, one for each time point
stc = []
for col, tp in enumerate(timepoints):
stc += [VolSourceEstimate(data[:, col][:, np.newaxis],
vertices=fwd['src'][0]['vertno'],
tmin=tp, tstep=0.001, subject=None)]
return fwd, stc
def _to_forward_dict(fwd, names, fwd_grad=None,
coord_frame=FIFF.FIFFV_COORD_HEAD,
source_ori=FIFF.FIFFV_MNE_FREE_ORI):
"""Convert forward solution matrices to dicts."""
assert names is not None
if len(fwd) == 0:
return None
sol = dict(data=fwd.T, nrow=fwd.shape[1], ncol=fwd.shape[0],
row_names=names, col_names=[])
fwd = Forward(sol=sol, source_ori=source_ori, nsource=sol['ncol'],
coord_frame=coord_frame, sol_grad=None,
nchan=sol['nrow'], _orig_source_ori=source_ori,
_orig_sol=sol['data'].copy(), _orig_sol_grad=None)
if fwd_grad is not None:
sol_grad = dict(data=fwd_grad.T, nrow=fwd_grad.shape[1],
ncol=fwd_grad.shape[0], row_names=names,
col_names=[])
fwd.update(dict(sol_grad=sol_grad),
_orig_sol_grad=sol_grad['data'].copy())
return fwd
@contextlib.contextmanager
def use_coil_def(fname):
"""Use a custom coil definition file.
Parameters
----------
fname : str
The filename of the coil definition file.
Returns
-------
context : context manager
The context for using the coil definition.
Notes
-----
This is meant to be used a context manager such as:
>>> with use_coil_def(my_fname): # doctest:+SKIP
... make_forward_solution(...)
This allows using custom coil definitions with functions that require
forward modeling.
"""
global _extra_coil_def_fname
_extra_coil_def_fname = fname
yield
_extra_coil_def_fname = None
|