File: numerics.py

package info (click to toggle)
python-mne 0.19.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 100,440 kB
  • sloc: python: 120,243; pascal: 1,861; makefile: 225; sh: 15
file content (910 lines) | stat: -rw-r--r-- 31,821 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
# -*- coding: utf-8 -*-
"""Some utility functions."""
# Authors: Alexandre Gramfort <alexandre.gramfort@inria.fr>
#
# License: BSD (3-clause)

from contextlib import contextmanager
import hashlib
from io import BytesIO, StringIO
from math import sqrt
import numbers
import operator
import os
import os.path as op
from math import ceil
import shutil
import sys

import numpy as np
from scipy import sparse

from ._logging import logger, warn, verbose
from .check import check_random_state, _ensure_int, _validate_type
from .linalg import _svd_lwork, _repeated_svd, dgemm, zgemm
from ..fixes import _infer_dimension_, svd_flip, stable_cumsum, _safe_svd
from .docs import deprecated, fill_doc


def split_list(l, n, idx=False):
    """Split list in n (approx) equal pieces, possibly giving indices."""
    n = int(n)
    tot = len(l)
    sz = tot // n
    start = stop = 0
    for i in range(n - 1):
        stop += sz
        yield (np.arange(start, stop), l[start:stop]) if idx else l[start:stop]
        start += sz
    yield (np.arange(start, tot), l[start:]) if idx else l[start]


def array_split_idx(ary, indices_or_sections, axis=0, n_per_split=1):
    """Do what numpy.array_split does, but add indices."""
    # this only works for indices_or_sections as int
    indices_or_sections = _ensure_int(indices_or_sections)
    ary_split = np.array_split(ary, indices_or_sections, axis=axis)
    idx_split = np.array_split(np.arange(ary.shape[axis]), indices_or_sections)
    idx_split = (np.arange(sp[0] * n_per_split, (sp[-1] + 1) * n_per_split)
                 for sp in idx_split)
    return zip(idx_split, ary_split)


def create_chunks(sequence, size):
    """Generate chunks from a sequence.

    Parameters
    ----------
    sequence : iterable
        Any iterable object
    size : int
        The chunksize to be returned
    """
    return (sequence[p:p + size] for p in range(0, len(sequence), size))


def sum_squared(X):
    """Compute norm of an array.

    Parameters
    ----------
    X : array
        Data whose norm must be found

    Returns
    -------
    value : float
        Sum of squares of the input array X
    """
    X_flat = X.ravel(order='F' if np.isfortran(X) else 'C')
    return np.dot(X_flat, X_flat)


def _compute_row_norms(data):
    """Compute scaling based on estimated norm."""
    norms = np.sqrt(np.sum(data ** 2, axis=1))
    norms[norms == 0] = 1.0
    return norms


def _reg_pinv(x, reg=0, rank='full', rcond=1e-15, svd_lwork=None):
    """Compute a regularized pseudoinverse of a square matrix.

    Regularization is performed by adding a constant value to each diagonal
    element of the matrix before inversion. This is known as "diagonal
    loading". The loading factor is computed as ``reg * np.trace(x) / len(x)``.

    The pseudo-inverse is computed through SVD decomposition and inverting the
    singular values. When the matrix is rank deficient, some singular values
    will be close to zero and will not be used during the inversion. The number
    of singular values to use can either be manually specified or automatically
    estimated.

    Parameters
    ----------
    x : ndarray, shape (n, n)
        Square matrix to invert.
    reg : float
        Regularization parameter. Defaults to 0.
    rank : int | None | 'full'
        This controls the effective rank of the covariance matrix when
        computing the inverse. The rank can be set explicitly by specifying an
        integer value. If ``None``, the rank will be automatically estimated.
        Since applying regularization will always make the covariance matrix
        full rank, the rank is estimated before regularization in this case. If
        'full', the rank will be estimated after regularization and hence
        will mean using the full rank, unless ``reg=0`` is used.
        Defaults to 'full'.
    rcond : float | 'auto'
        Cutoff for detecting small singular values when attempting to estimate
        the rank of the matrix (``rank='auto'``). Singular values smaller than
        the cutoff are set to zero. When set to 'auto', a cutoff based on
        floating point precision will be used. Defaults to 1e-15.

    Returns
    -------
    x_inv : ndarray, shape (n, n)
        The inverted matrix.
    loading_factor : float
        Value added to the diagonal of the matrix during regularization.
    rank : int
        If ``rank`` was set to an integer value, this value is returned,
        else the estimated rank of the matrix, before regularization, is
        returned.
    """
    from ..rank import _estimate_rank_from_s
    if rank is not None and rank != 'full':
        rank = int(operator.index(rank))
    if x.ndim != 2 or x.shape[0] != x.shape[1]:
        raise ValueError('Input matrix must be square.')
    if not np.allclose(x, x.conj().T):
        raise ValueError('Input matrix must be Hermitian (symmetric)')

    # Decompose the matrix
    if svd_lwork is None:
        svd_lwork = _svd_lwork(x.shape, x.dtype)
    U, s, V = _repeated_svd(x, lwork=svd_lwork)

    # Estimate the rank before regularization
    tol = 'auto' if rcond == 'auto' else rcond * s.max()
    rank_before = _estimate_rank_from_s(s, tol)

    # Decompose the matrix again after regularization
    loading_factor = reg * np.mean(s)
    U, s, V = _repeated_svd(x + loading_factor * np.eye(len(x)),
                            lwork=svd_lwork)

    # Estimate the rank after regularization
    tol = 'auto' if rcond == 'auto' else rcond * s.max()
    rank_after = _estimate_rank_from_s(s, tol)

    # Warn the user if both all parameters were kept at their defaults and the
    # matrix is rank deficient.
    if rank_after < len(x) and reg == 0 and rank == 'full' and rcond == 1e-15:
        warn('Covariance matrix is rank-deficient and no regularization is '
             'done.')
    elif isinstance(rank, int) and rank > len(x):
        raise ValueError('Invalid value for the rank parameter (%d) given '
                         'the shape of the input matrix (%d x %d).' %
                         (rank, x.shape[0], x.shape[1]))

    # Pick the requested number of singular values
    if rank is None:
        sel_s = s[:rank_before]
    elif rank == 'full':
        sel_s = s[:rank_after]
    else:
        sel_s = s[:rank]

    # Invert only non-zero singular values
    s_inv = np.zeros(s.shape)
    nonzero_inds = np.flatnonzero(sel_s != 0)
    if len(nonzero_inds) > 0:
        s_inv[nonzero_inds] = 1. / sel_s[nonzero_inds]

    # Compute the pseudo inverse
    U *= s_inv
    if U.dtype == np.float64:
        gemm = dgemm
    else:
        assert U.dtype == np.complex128
        gemm = zgemm
    x_inv = gemm(1., U, V).T

    if rank is None or rank == 'full':
        return x_inv, loading_factor, rank_before
    else:
        return x_inv, loading_factor, rank


def _gen_events(n_epochs):
    """Generate event structure from number of epochs."""
    events = np.c_[np.arange(n_epochs), np.zeros(n_epochs, int),
                   np.ones(n_epochs, int)]
    return events


def _reject_data_segments(data, reject, flat, decim, info, tstep):
    """Reject data segments using peak-to-peak amplitude."""
    from ..epochs import _is_good
    from ..io.pick import channel_indices_by_type

    data_clean = np.empty_like(data)
    idx_by_type = channel_indices_by_type(info)
    step = int(ceil(tstep * info['sfreq']))
    if decim is not None:
        step = int(ceil(step / float(decim)))
    this_start = 0
    this_stop = 0
    drop_inds = []
    for first in range(0, data.shape[1], step):
        last = first + step
        data_buffer = data[:, first:last]
        if data_buffer.shape[1] < (last - first):
            break  # end of the time segment
        if _is_good(data_buffer, info['ch_names'], idx_by_type, reject,
                    flat, ignore_chs=info['bads']):
            this_stop = this_start + data_buffer.shape[1]
            data_clean[:, this_start:this_stop] = data_buffer
            this_start += data_buffer.shape[1]
        else:
            logger.info("Artifact detected in [%d, %d]" % (first, last))
            drop_inds.append((first, last))
    data = data_clean[:, :this_stop]
    if not data.any():
        raise RuntimeError('No clean segment found. Please '
                           'consider updating your rejection '
                           'thresholds.')
    return data, drop_inds


def _get_inst_data(inst):
    """Get data view from MNE object instance like Raw, Epochs or Evoked."""
    from ..io.base import BaseRaw
    from ..epochs import BaseEpochs
    from .. import Evoked
    from ..time_frequency.tfr import _BaseTFR

    _validate_type(inst, (BaseRaw, BaseEpochs, Evoked, _BaseTFR), "Instance")
    if not inst.preload:
        inst.load_data()
    return inst._data


def compute_corr(x, y):
    """Compute pearson correlations between a vector and a matrix."""
    if len(x) == 0 or len(y) == 0:
        raise ValueError('x or y has zero length')
    X = np.array(x, float)
    Y = np.array(y, float)
    X -= X.mean(0)
    Y -= Y.mean(0)
    x_sd = X.std(0, ddof=1)
    # if covariance matrix is fully expanded, Y needs a
    # transpose / broadcasting else Y is correct
    y_sd = Y.std(0, ddof=1)[:, None if X.shape == Y.shape else Ellipsis]
    return (np.dot(X.T, Y) / float(len(X) - 1)) / (x_sd * y_sd)


@fill_doc
def random_permutation(n_samples, random_state=None):
    """Emulate the randperm matlab function.

    It returns a vector containing a random permutation of the
    integers between 0 and n_samples-1. It returns the same random numbers
    than randperm matlab function whenever the random_state is the same
    as the matlab's random seed.

    This function is useful for comparing against matlab scripts
    which use the randperm function.

    Note: the randperm(n_samples) matlab function generates a random
    sequence between 1 and n_samples, whereas
    random_permutation(n_samples, random_state) function generates
    a random sequence between 0 and n_samples-1, that is:
    randperm(n_samples) = random_permutation(n_samples, random_state) - 1

    Parameters
    ----------
    n_samples : int
        End point of the sequence to be permuted (excluded, i.e., the end point
        is equal to n_samples-1)
    %(random_state)s

    Returns
    -------
    randperm : ndarray, int
        Randomly permuted sequence between 0 and n-1.
    """
    rng = check_random_state(random_state)
    # This can't just be rng.permutation(n_samples) because it's not identical
    # to what MATLAB produces
    idx = rng.uniform(size=n_samples)
    randperm = np.argsort(idx)
    return randperm


@verbose
def _apply_scaling_array(data, picks_list, scalings, verbose=None):
    """Scale data type-dependently for estimation."""
    scalings = _check_scaling_inputs(data, picks_list, scalings)
    if isinstance(scalings, dict):
        logger.debug('    Scaling using mapping %s.' % (scalings,))
        picks_dict = dict(picks_list)
        scalings = [(picks_dict[k], v) for k, v in scalings.items()
                    if k in picks_dict]
        for idx, scaling in scalings:
            data[idx, :] *= scaling  # F - order
    else:
        logger.debug('    Scaling using computed norms.')
        data *= scalings[:, np.newaxis]  # F - order


def _invert_scalings(scalings):
    if isinstance(scalings, dict):
        scalings = {k: 1. / v for k, v in scalings.items()}
    elif isinstance(scalings, np.ndarray):
        scalings = 1. / scalings
    return scalings


def _undo_scaling_array(data, picks_list, scalings):
    scalings = _invert_scalings(_check_scaling_inputs(data, picks_list,
                                                      scalings))
    return _apply_scaling_array(data, picks_list, scalings, verbose=False)


@contextmanager
def _scaled_array(data, picks_list, scalings):
    """Scale, use, unscale array."""
    _apply_scaling_array(data, picks_list=picks_list, scalings=scalings)
    try:
        yield
    finally:
        _undo_scaling_array(data, picks_list=picks_list, scalings=scalings)


def _apply_scaling_cov(data, picks_list, scalings):
    """Scale resulting data after estimation."""
    scalings = _check_scaling_inputs(data, picks_list, scalings)
    scales = None
    if isinstance(scalings, dict):
        n_channels = len(data)
        covinds = list(zip(*picks_list))[1]
        assert len(data) == sum(len(k) for k in covinds)
        assert list(sorted(np.concatenate(covinds))) == list(range(len(data)))
        scales = np.zeros(n_channels)
        for ch_t, idx in picks_list:
            scales[idx] = scalings[ch_t]
    elif isinstance(scalings, np.ndarray):
        if len(scalings) != len(data):
            raise ValueError('Scaling factors and data are of incompatible '
                             'shape')
        scales = scalings
    elif scalings is None:
        pass
    else:
        raise RuntimeError('Arff...')
    if scales is not None:
        assert np.sum(scales == 0.) == 0
        data *= (scales[None, :] * scales[:, None])


def _undo_scaling_cov(data, picks_list, scalings):
    scalings = _invert_scalings(_check_scaling_inputs(data, picks_list,
                                                      scalings))
    return _apply_scaling_cov(data, picks_list, scalings)


def _check_scaling_inputs(data, picks_list, scalings):
    """Aux function."""
    rescale_dict_ = dict(mag=1e15, grad=1e13, eeg=1e6)

    scalings_ = None
    if isinstance(scalings, str) and scalings == 'norm':
        scalings_ = 1. / _compute_row_norms(data)
    elif isinstance(scalings, dict):
        rescale_dict_.update(scalings)
        scalings_ = rescale_dict_
    elif isinstance(scalings, np.ndarray):
        scalings_ = scalings
    elif scalings is None:
        pass
    else:
        raise NotImplementedError("No way! That's not a rescaling "
                                  'option: %s' % scalings)
    return scalings_


@deprecated('mne.utils.md5sum will be deprecated in 0.19, please use '
            'mne.utils.hashfunc(... , hash_type="md5") instead.')
def md5sum(fname, block_size=1048576):  # 2 ** 20
    """Calculate the md5sum for a file.

    Parameters
    ----------
    fname : str
        Filename.
    block_size : int
        Block size to use when reading.

    Returns
    -------
    hash_ : str
        The hexadecimal digest of the hash.
    """
    md5 = hashlib.md5()
    with open(fname, 'rb') as fid:
        while True:
            data = fid.read(block_size)
            if not data:
                break
            md5.update(data)
    return md5.hexdigest()


def hashfunc(fname, block_size=1048576, hash_type="md5"):  # 2 ** 20
    """Calculate the hash for a file.

    Parameters
    ----------
    fname : str
        Filename.
    block_size : int
        Block size to use when reading.

    Returns
    -------
    hash_ : str
        The hexadecimal digest of the hash.
    """
    if hash_type == "md5":
        hasher = hashlib.md5()
    elif hash_type == "sha1":
        hasher = hashlib.sha1()
    with open(fname, 'rb') as fid:
        while True:
            data = fid.read(block_size)
            if not data:
                break
            hasher.update(data)
    return hasher.hexdigest()


def _replace_md5(fname):
    """Replace a file based on MD5sum."""
    # adapted from sphinx-gallery
    assert fname.endswith('.new')
    fname_old = fname[:-4]
    if op.isfile(fname_old) and hashfunc(fname) == hashfunc(fname_old):
        os.remove(fname)
    else:
        shutil.move(fname, fname_old)


def create_slices(start, stop, step=None, length=1):
    """Generate slices of time indexes.

    Parameters
    ----------
    start : int
        Index where first slice should start.
    stop : int
        Index where last slice should maximally end.
    length : int
        Number of time sample included in a given slice.
    step: int | None
        Number of time samples separating two slices.
        If step = None, step = length.

    Returns
    -------
    slices : list
        List of slice objects.
    """
    # default parameters
    if step is None:
        step = length

    # slicing
    slices = [slice(t, t + length, 1) for t in
              range(start, stop - length + 1, step)]
    return slices


def _time_mask(times, tmin=None, tmax=None, sfreq=None, raise_error=True,
               include_tmax=True):
    """Safely find sample boundaries."""
    orig_tmin = tmin
    orig_tmax = tmax
    tmin = -np.inf if tmin is None else tmin
    tmax = np.inf if tmax is None else tmax
    if not np.isfinite(tmin):
        tmin = times[0]
    if not np.isfinite(tmax):
        tmax = times[-1]
        include_tmax = True  # ignore this param when tmax is infinite
    if sfreq is not None:
        # Push to a bit past the nearest sample boundary first
        sfreq = float(sfreq)
        tmin = int(round(tmin * sfreq)) / sfreq - 0.5 / sfreq
        tmax = int(round(tmax * sfreq)) / sfreq
        tmax += (0.5 if include_tmax else -0.5) / sfreq
    else:
        assert include_tmax  # can only be used when sfreq is known
    if raise_error and tmin > tmax:
        raise ValueError('tmin (%s) must be less than or equal to tmax (%s)'
                         % (orig_tmin, orig_tmax))
    mask = (times >= tmin)
    mask &= (times <= tmax)
    if raise_error and not mask.any():
        extra = '' if include_tmax else 'when include_tmax=False '
        raise ValueError('No samples remain when using tmin=%s and tmax=%s %s'
                         '(original time bounds are [%s, %s])'
                         % (orig_tmin, orig_tmax, extra, times[0], times[-1]))
    return mask


def _freq_mask(freqs, sfreq, fmin=None, fmax=None, raise_error=True):
    """Safely find frequency boundaries."""
    orig_fmin = fmin
    orig_fmax = fmax
    fmin = -np.inf if fmin is None else fmin
    fmax = np.inf if fmax is None else fmax
    if not np.isfinite(fmin):
        fmin = freqs[0]
    if not np.isfinite(fmax):
        fmax = freqs[-1]
    if sfreq is None:
        raise ValueError('sfreq can not be None')
    # Push 0.5/sfreq past the nearest frequency boundary first
    sfreq = float(sfreq)
    fmin = int(round(fmin * sfreq)) / sfreq - 0.5 / sfreq
    fmax = int(round(fmax * sfreq)) / sfreq + 0.5 / sfreq
    if raise_error and fmin > fmax:
        raise ValueError('fmin (%s) must be less than or equal to fmax (%s)'
                         % (orig_fmin, orig_fmax))
    mask = (freqs >= fmin)
    mask &= (freqs <= fmax)
    if raise_error and not mask.any():
        raise ValueError('No frequencies remain when using fmin=%s and '
                         'fmax=%s (original frequency bounds are [%s, %s])'
                         % (orig_fmin, orig_fmax, freqs[0], freqs[-1]))
    return mask


def grand_average(all_inst, interpolate_bads=True, drop_bads=True):
    """Make grand average of a list evoked or AverageTFR data.

    For evoked data, the function interpolates bad channels based on the
    ``interpolate_bads`` parameter. If ``interpolate_bads`` is True, the grand
    average file will contain good channels and the bad channels interpolated
    from the good MEG/EEG channels.
    For AverageTFR data, the function takes the subset of channels not marked
    as bad in any of the instances.

    The grand_average.nave attribute will be equal to the number
    of evoked datasets used to calculate the grand average.

    Note: Grand average evoked should not be used for source localization.

    Parameters
    ----------
    all_inst : list of Evoked or AverageTFR
        The evoked datasets.
    interpolate_bads : bool
        If True, bad MEG and EEG channels are interpolated. Ignored for
        AverageTFR.
    drop_bads : bool
        If True, drop all bad channels marked as bad in any data set.
        If neither interpolate_bads nor drop_bads is True, in the output file,
        every channel marked as bad in at least one of the input files will be
        marked as bad, but no interpolation or dropping will be performed.

    Returns
    -------
    grand_average : Evoked | AverageTFR
        The grand average data. Same type as input.

    Notes
    -----
    .. versionadded:: 0.11.0
    """
    # check if all elements in the given list are evoked data
    from ..evoked import Evoked
    from ..time_frequency import AverageTFR
    from ..channels.channels import equalize_channels
    assert len(all_inst) > 1
    inst_type = type(all_inst[0])
    _validate_type(all_inst[0], (Evoked, AverageTFR), 'All elements')
    for inst in all_inst:
        _validate_type(inst, inst_type, 'All elements', 'of the same type')

    # Copy channels to leave the original evoked datasets intact.
    all_inst = [inst.copy() for inst in all_inst]

    # Interpolates if necessary
    if isinstance(all_inst[0], Evoked):
        if interpolate_bads:
            all_inst = [inst.interpolate_bads() if len(inst.info['bads']) > 0
                        else inst for inst in all_inst]
        equalize_channels(all_inst)  # apply equalize_channels
        from ..evoked import combine_evoked as combine
        weights = [1. / len(all_inst)] * len(all_inst)
    else:  # isinstance(all_inst[0], AverageTFR):
        from ..time_frequency.tfr import combine_tfr as combine
        weights = 'equal'

    if drop_bads:
        bads = list({b for inst in all_inst for b in inst.info['bads']})
        if bads:
            for inst in all_inst:
                inst.drop_channels(bads)

    # make grand_average object using combine_[evoked/tfr]
    grand_average = combine(all_inst, weights=weights)
    # change the grand_average.nave to the number of Evokeds
    grand_average.nave = len(all_inst)
    # change comment field
    grand_average.comment = "Grand average (n = %d)" % grand_average.nave
    return grand_average


def object_hash(x, h=None):
    """Hash a reasonable python object.

    Parameters
    ----------
    x : object
        Object to hash. Can be anything comprised of nested versions of:
        {dict, list, tuple, ndarray, str, bytes, float, int, None}.
    h : hashlib HASH object | None
        Optional, object to add the hash to. None creates an MD5 hash.

    Returns
    -------
    digest : int
        The digest resulting from the hash.
    """
    if h is None:
        h = hashlib.md5()
    if hasattr(x, 'keys'):
        # dict-like types
        keys = _sort_keys(x)
        for key in keys:
            object_hash(key, h)
            object_hash(x[key], h)
    elif isinstance(x, bytes):
        # must come before "str" below
        h.update(x)
    elif isinstance(x, (str, float, int, type(None))):
        h.update(str(type(x)).encode('utf-8'))
        h.update(str(x).encode('utf-8'))
    elif isinstance(x, (np.ndarray, np.number, np.bool_)):
        x = np.asarray(x)
        h.update(str(x.shape).encode('utf-8'))
        h.update(str(x.dtype).encode('utf-8'))
        h.update(x.tostring())
    elif hasattr(x, '__len__'):
        # all other list-like types
        h.update(str(type(x)).encode('utf-8'))
        for xx in x:
            object_hash(xx, h)
    else:
        raise RuntimeError('unsupported type: %s (%s)' % (type(x), x))
    return int(h.hexdigest(), 16)


def object_size(x):
    """Estimate the size of a reasonable python object.

    Parameters
    ----------
    x : object
        Object to approximate the size of.
        Can be anything comprised of nested versions of:
        {dict, list, tuple, ndarray, str, bytes, float, int, None}.

    Returns
    -------
    size : int
        The estimated size in bytes of the object.
    """
    # Note: this will not process object arrays properly (since those only)
    # hold references
    if isinstance(x, (bytes, str, int, float, type(None))):
        size = sys.getsizeof(x)
    elif isinstance(x, np.ndarray):
        # On newer versions of NumPy, just doing sys.getsizeof(x) works,
        # but on older ones you always get something small :(
        size = sys.getsizeof(np.array([])) + x.nbytes
    elif isinstance(x, np.generic):
        size = x.nbytes
    elif isinstance(x, dict):
        size = sys.getsizeof(x)
        for key, value in x.items():
            size += object_size(key)
            size += object_size(value)
    elif isinstance(x, (list, tuple)):
        size = sys.getsizeof(x) + sum(object_size(xx) for xx in x)
    elif sparse.isspmatrix_csc(x) or sparse.isspmatrix_csr(x):
        size = sum(sys.getsizeof(xx)
                   for xx in [x, x.data, x.indices, x.indptr])
    else:
        raise RuntimeError('unsupported type: %s (%s)' % (type(x), x))
    return size


def _sort_keys(x):
    """Sort and return keys of dict."""
    keys = list(x.keys())  # note: not thread-safe
    idx = np.argsort([str(k) for k in keys])
    keys = [keys[ii] for ii in idx]
    return keys


def _array_equal_nan(a, b):
    try:
        np.testing.assert_array_equal(a, b)
    except AssertionError:
        return False
    return True


def object_diff(a, b, pre=''):
    """Compute all differences between two python variables.

    Parameters
    ----------
    a : object
        Currently supported: dict, list, tuple, ndarray, int, str, bytes,
        float, StringIO, BytesIO.
    b : object
        Must be same type as ``a``.
    pre : str
        String to prepend to each line.

    Returns
    -------
    diffs : str
        A string representation of the differences.
    """
    out = ''
    if type(a) != type(b):
        # Deal with NamedInt and NamedFloat
        for sub in (int, float):
            if isinstance(a, sub) and isinstance(b, sub):
                break
        else:
            return pre + ' type mismatch (%s, %s)\n' % (type(a), type(b))
    if isinstance(a, dict):
        k1s = _sort_keys(a)
        k2s = _sort_keys(b)
        m1 = set(k2s) - set(k1s)
        if len(m1):
            out += pre + ' left missing keys %s\n' % (m1)
        for key in k1s:
            if key not in k2s:
                out += pre + ' right missing key %s\n' % key
            else:
                out += object_diff(a[key], b[key],
                                   pre=(pre + '[%s]' % repr(key)))
    elif isinstance(a, (list, tuple)):
        if len(a) != len(b):
            out += pre + ' length mismatch (%s, %s)\n' % (len(a), len(b))
        else:
            for ii, (xx1, xx2) in enumerate(zip(a, b)):
                out += object_diff(xx1, xx2, pre + '[%s]' % ii)
    elif isinstance(a, (str, int, float, bytes, np.generic)):
        if a != b:
            out += pre + ' value mismatch (%s, %s)\n' % (a, b)
    elif a is None:
        if b is not None:
            out += pre + ' left is None, right is not (%s)\n' % (b)
    elif isinstance(a, np.ndarray):
        if not _array_equal_nan(a, b):
            out += pre + ' array mismatch\n'
    elif isinstance(a, (StringIO, BytesIO)):
        if a.getvalue() != b.getvalue():
            out += pre + ' StringIO mismatch\n'
    elif sparse.isspmatrix(a):
        # sparsity and sparse type of b vs a already checked above by type()
        if b.shape != a.shape:
            out += pre + (' sparse matrix a and b shape mismatch'
                          '(%s vs %s)' % (a.shape, b.shape))
        else:
            c = a - b
            c.eliminate_zeros()
            if c.nnz > 0:
                out += pre + (' sparse matrix a and b differ on %s '
                              'elements' % c.nnz)
    elif hasattr(a, '__getstate__'):
        out += object_diff(a.__getstate__(), b.__getstate__(), pre)
    else:
        raise RuntimeError(pre + ': unsupported type %s (%s)' % (type(a), a))
    return out


class _PCA(object):
    """Principal component analysis (PCA)."""

    # Adapted from sklearn and stripped down to just use linalg.svd
    # and make it easier to later provide a "center" option if we want

    def __init__(self, n_components=None, whiten=False):
        self.n_components = n_components
        self.whiten = whiten

    def fit_transform(self, X, y=None):
        X = X.copy()
        U, S, _ = self._fit(X)
        U = U[:, :self.n_components_]

        if self.whiten:
            # X_new = X * V / S * sqrt(n_samples) = U * sqrt(n_samples)
            U *= sqrt(X.shape[0] - 1)
        else:
            # X_new = X * V = U * S * V^T * V = U * S
            U *= S[:self.n_components_]

        return U

    def _fit(self, X):
        if self.n_components is None:
            n_components = min(X.shape)
        else:
            n_components = self.n_components
        n_samples, n_features = X.shape

        if n_components == 'mle':
            if n_samples < n_features:
                raise ValueError("n_components='mle' is only supported "
                                 "if n_samples >= n_features")
        elif not 0 <= n_components <= min(n_samples, n_features):
            raise ValueError("n_components=%r must be between 0 and "
                             "min(n_samples, n_features)=%r with "
                             "svd_solver='full'"
                             % (n_components, min(n_samples, n_features)))
        elif n_components >= 1:
            if not isinstance(n_components, (numbers.Integral, np.integer)):
                raise ValueError("n_components=%r must be of type int "
                                 "when greater than or equal to 1, "
                                 "was of type=%r"
                                 % (n_components, type(n_components)))

        self.mean_ = np.mean(X, axis=0)
        X -= self.mean_

        U, S, V = _safe_svd(X, full_matrices=False)
        # flip eigenvectors' sign to enforce deterministic output
        U, V = svd_flip(U, V)

        components_ = V

        # Get variance explained by singular values
        explained_variance_ = (S ** 2) / (n_samples - 1)
        total_var = explained_variance_.sum()
        explained_variance_ratio_ = explained_variance_ / total_var
        singular_values_ = S.copy()  # Store the singular values.

        # Postprocess the number of components required
        if n_components == 'mle':
            n_components = \
                _infer_dimension_(explained_variance_, n_samples, n_features)
        elif 0 < n_components < 1.0:
            # number of components for which the cumulated explained
            # variance percentage is superior to the desired threshold
            ratio_cumsum = stable_cumsum(explained_variance_ratio_)
            n_components = np.searchsorted(ratio_cumsum, n_components) + 1

        # Compute noise covariance using Probabilistic PCA model
        # The sigma2 maximum likelihood (cf. eq. 12.46)
        if n_components < min(n_features, n_samples):
            self.noise_variance_ = explained_variance_[n_components:].mean()
        else:
            self.noise_variance_ = 0.

        self.n_samples_, self.n_features_ = n_samples, n_features
        self.components_ = components_[:n_components]
        self.n_components_ = n_components
        self.explained_variance_ = explained_variance_[:n_components]
        self.explained_variance_ratio_ = \
            explained_variance_ratio_[:n_components]
        self.singular_values_ = singular_values_[:n_components]

        return U, S, V


def _mask_to_onsets_offsets(mask):
    """Group boolean mask into contiguous onset:offset pairs."""
    assert mask.dtype == bool and mask.ndim == 1
    mask = mask.astype(int)
    diff = np.diff(mask)
    onsets = np.where(diff > 0)[0] + 1
    if mask[0]:
        onsets = np.concatenate([[0], onsets])
    offsets = np.where(diff < 0)[0] + 1
    if mask[-1]:
        offsets = np.concatenate([offsets, [len(mask)]])
    assert len(onsets) == len(offsets)
    return onsets, offsets