File: global_hypothesis_verification.py

package info (click to toggle)
python-pcl 0.3.0~rc1%2Bdfsg-14
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 31,828 kB
  • sloc: python: 3,094; cpp: 283; makefile: 181; sh: 24; ansic: 12
file content (461 lines) | stat: -rw-r--r-- 19,387 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
# -*- coding: utf-8 -*-
# http://pointclouds.org/documentation/tutorials/global_hypothesis_verification.php#global-hypothesis-verification

import pcl

# struct CloudStyle
# {
#     double r;
#     double g;
#     double b;
#     double size;
# 
#     CloudStyle (double r,
#                 double g,
#                 double b,
#                 double size) :
#         r (r),
#         g (g),
#         b (b),
#         size (size)
#     {
#     }
# };
# 
# CloudStyle style_white (255.0, 255.0, 255.0, 4.0);
# CloudStyle style_red (255.0, 0.0, 0.0, 3.0);
# CloudStyle style_green (0.0, 255.0, 0.0, 5.0);
# CloudStyle style_cyan (93.0, 200.0, 217.0, 4.0);
# CloudStyle style_violet (255.0, 0.0, 255.0, 8.0);
# 
# std::string model_filename_;
# std::string scene_filename_;
# 
# //Algorithm params 
# bool show_keypoints_ (false);
# bool use_hough_ (true);
# float model_ss_ (0.02f);
# float scene_ss_ (0.02f);
# float rf_rad_ (0.015f);
# float descr_rad_ (0.02f);
# float cg_size_ (0.01f);
# float cg_thresh_ (5.0f);
# int icp_max_iter_ (5);
# float icp_corr_distance_ (0.005f);
# float hv_clutter_reg_ (5.0f);
# float hv_inlier_th_ (0.005f);
# float hv_occlusion_th_ (0.01f);
# float hv_rad_clutter_ (0.03f);
# float hv_regularizer_ (3.0f);
# float hv_rad_normals_ (0.05);
# bool hv_detect_clutter_ (true);

# /**
#  * Prints out Help message
#  * @param filename Runnable App Name
#  */
# void
# showHelp (char *filename)
# {
#   std::cout << std::endl;
#   std::cout << "***************************************************************************" << std::endl;
#   std::cout << "*                                                                         *" << std::endl;
#   std::cout << "*          Global Hypothese Verification Tutorial - Usage Guide          *" << std::endl;
#   std::cout << "*                                                                         *" << std::endl;
#   std::cout << "***************************************************************************" << std::endl << std::endl;
#   std::cout << "Usage: " << filename << " model_filename.pcd scene_filename.pcd [Options]" << std::endl << std::endl;
#   std::cout << "Options:" << std::endl;
#   std::cout << "     -h:                          Show this help." << std::endl;
#   std::cout << "     -k:                          Show keypoints." << std::endl;
#   std::cout << "     --algorithm (Hough|GC):      Clustering algorithm used (default Hough)." << std::endl;
#   std::cout << "     --model_ss val:              Model uniform sampling radius (default " << model_ss_ << ")" << std::endl;
#   std::cout << "     --scene_ss val:              Scene uniform sampling radius (default " << scene_ss_ << ")" << std::endl;
#   std::cout << "     --rf_rad val:                Reference frame radius (default " << rf_rad_ << ")" << std::endl;
#   std::cout << "     --descr_rad val:             Descriptor radius (default " << descr_rad_ << ")" << std::endl;
#   std::cout << "     --cg_size val:               Cluster size (default " << cg_size_ << ")" << std::endl;
#   std::cout << "     --cg_thresh val:             Clustering threshold (default " << cg_thresh_ << ")" << std::endl << std::endl;
#   std::cout << "     --icp_max_iter val:          ICP max iterations number (default " << icp_max_iter_ << ")" << std::endl;
#   std::cout << "     --icp_corr_distance val:     ICP correspondence distance (default " << icp_corr_distance_ << ")" << std::endl << std::endl;
#   std::cout << "     --hv_clutter_reg val:        Clutter Regularizer (default " << hv_clutter_reg_ << ")" << std::endl;
#   std::cout << "     --hv_inlier_th val:          Inlier threshold (default " << hv_inlier_th_ << ")" << std::endl;
#   std::cout << "     --hv_occlusion_th val:       Occlusion threshold (default " << hv_occlusion_th_ << ")" << std::endl;
#   std::cout << "     --hv_rad_clutter val:        Clutter radius (default " << hv_rad_clutter_ << ")" << std::endl;
#   std::cout << "     --hv_regularizer val:        Regularizer value (default " << hv_regularizer_ << ")" << std::endl;
#   std::cout << "     --hv_rad_normals val:        Normals radius (default " << hv_rad_normals_ << ")" << std::endl;
#   std::cout << "     --hv_detect_clutter val:     TRUE if clutter detect enabled (default " << hv_detect_clutter_ << ")" << std::endl << std::endl;
# }
# 
# /**
#  * Parses Command Line Arguments (Argc,Argv)
#  * @param argc
#  * @param argv
#  */
# void
# parseCommandLine (int argc,
#                   char *argv[])
# {
#   //Show help
#   if (pcl::console::find_switch (argc, argv, "-h"))
#   {
#     showHelp (argv[0]);
#     exit (0);
#   }
# 
#   //Model & scene filenames
#   std::vector<int> filenames;
#   filenames = pcl::console::parse_file_extension_argument (argc, argv, ".pcd");
#   if (filenames.size () != 2)
#   {
#     std::cout << "Filenames missing.\n";
#     showHelp (argv[0]);
#     exit (-1);
#   }
# 
#   model_filename_ = argv[filenames[0]];
#   scene_filename_ = argv[filenames[1]];
# 
#   //Program behavior
#   if (pcl::console::find_switch (argc, argv, "-k"))
#   {
#     show_keypoints_ = true;
#   }
# 
#   std::string used_algorithm;
#   if (pcl::console::parse_argument (argc, argv, "--algorithm", used_algorithm) != -1)
#   {
#     if (used_algorithm.compare ("Hough") == 0)
#     {
#       use_hough_ = true;
#     }
#     else if (used_algorithm.compare ("GC") == 0)
#     {
#       use_hough_ = false;
#     }
#     else
#     {
#       std::cout << "Wrong algorithm name.\n";
#       showHelp (argv[0]);
#       exit (-1);
#     }
#   }
# 
#   //General parameters
#   pcl::console::parse_argument (argc, argv, "--model_ss", model_ss_);
#   pcl::console::parse_argument (argc, argv, "--scene_ss", scene_ss_);
#   pcl::console::parse_argument (argc, argv, "--rf_rad", rf_rad_);
#   pcl::console::parse_argument (argc, argv, "--descr_rad", descr_rad_);
#   pcl::console::parse_argument (argc, argv, "--cg_size", cg_size_);
#   pcl::console::parse_argument (argc, argv, "--cg_thresh", cg_thresh_);
#   pcl::console::parse_argument (argc, argv, "--icp_max_iter", icp_max_iter_);
#   pcl::console::parse_argument (argc, argv, "--icp_corr_distance", icp_corr_distance_);
#   pcl::console::parse_argument (argc, argv, "--hv_clutter_reg", hv_clutter_reg_);
#   pcl::console::parse_argument (argc, argv, "--hv_inlier_th", hv_inlier_th_);
#   pcl::console::parse_argument (argc, argv, "--hv_occlusion_th", hv_occlusion_th_);
#   pcl::console::parse_argument (argc, argv, "--hv_rad_clutter", hv_rad_clutter_);
#   pcl::console::parse_argument (argc, argv, "--hv_regularizer", hv_regularizer_);
#   pcl::console::parse_argument (argc, argv, "--hv_rad_normals", hv_rad_normals_);
#   pcl::console::parse_argument (argc, argv, "--hv_detect_clutter", hv_detect_clutter_);
# }

# parseCommandLine (argc, argv);
# pcl::PointCloud<PointType>::Ptr model (new pcl::PointCloud<PointType> ());
#   pcl::PointCloud<PointType>::Ptr model_keypoints (new pcl::PointCloud<PointType> ());
#   pcl::PointCloud<PointType>::Ptr scene (new pcl::PointCloud<PointType> ());
#   pcl::PointCloud<PointType>::Ptr scene_keypoints (new pcl::PointCloud<PointType> ());
#   pcl::PointCloud<NormalType>::Ptr model_normals (new pcl::PointCloud<NormalType> ());
#   pcl::PointCloud<NormalType>::Ptr scene_normals (new pcl::PointCloud<NormalType> ());
#   pcl::PointCloud<DescriptorType>::Ptr model_descriptors (new pcl::PointCloud<DescriptorType> ());
#   pcl::PointCloud<DescriptorType>::Ptr scene_descriptors (new pcl::PointCloud<DescriptorType> ());
# 
#   /**
#    * Load Clouds
#    */
#   if (pcl::io::loadPCDFile (model_filename_, *model) < 0)
#   {
#     std::cout << "Error loading model cloud." << std::endl;
#     showHelp (argv[0]);
#     return (-1);
#   }
#   if (pcl::io::loadPCDFile (scene_filename_, *scene) < 0)
#   {
#     std::cout << "Error loading scene cloud." << std::endl;
#     showHelp (argv[0]);
#     return (-1);
#   }
# 
#   /**
#    * Compute Normals
#    */
#   pcl::NormalEstimationOMP<PointType, NormalType> norm_est;
#   norm_est.setKSearch (10);
#   norm_est.setInputCloud (model);
#   norm_est.compute (*model_normals);
# 
#   norm_est.setInputCloud (scene);
#   norm_est.compute (*scene_normals);
# 
#   /**
#    *  Downsample Clouds to Extract keypoints
#    */
#   pcl::UniformSampling<PointType> uniform_sampling;
#   uniform_sampling.setInputCloud (model);
#   uniform_sampling.setRadiusSearch (model_ss_);
#   uniform_sampling.filter (*model_keypoints);
#   std::cout << "Model total points: " << model->size () << "; Selected Keypoints: " << model_keypoints->size () << std::endl;
# 
#   uniform_sampling.setInputCloud (scene);
#   uniform_sampling.setRadiusSearch (scene_ss_);
#   uniform_sampling.filter (*scene_keypoints);
#   std::cout << "Scene total points: " << scene->size () << "; Selected Keypoints: " << scene_keypoints->size () << std::endl;
# 
#   /**
#    *  Compute Descriptor for keypoints
#    */
#   pcl::SHOTEstimationOMP<PointType, NormalType, DescriptorType> descr_est;
#   descr_est.setRadiusSearch (descr_rad_);
# 
#   descr_est.setInputCloud (model_keypoints);
#   descr_est.setInputNormals (model_normals);
#   descr_est.setSearchSurface (model);
#   descr_est.compute (*model_descriptors);
# 
#   descr_est.setInputCloud (scene_keypoints);
#   descr_est.setInputNormals (scene_normals);
#   descr_est.setSearchSurface (scene);
#   descr_est.compute (*scene_descriptors);
# 
#   /**
#    *  Find Model-Scene Correspondences with KdTree
#    */
#   pcl::CorrespondencesPtr model_scene_corrs (new pcl::Correspondences ());
#   pcl::KdTreeFLANN<DescriptorType> match_search;
#   match_search.setInputCloud (model_descriptors);
#   std::vector<int> model_good_keypoints_indices;
#   std::vector<int> scene_good_keypoints_indices;
# 
#   for (size_t i = 0; i < scene_descriptors->size (); ++i)
#   {
#     std::vector<int> neigh_indices (1);
#     std::vector<float> neigh_sqr_dists (1);
#     if (!pcl_isfinite (scene_descriptors->at (i).descriptor[0]))  //skipping NaNs
#     {
#       continue;
#     }
#     int found_neighs = match_search.nearestKSearch (scene_descriptors->at (i), 1, neigh_indices, neigh_sqr_dists);
#     if (found_neighs == 1 && neigh_sqr_dists[0] < 0.25f)
#     {
#       pcl::Correspondence corr (neigh_indices[0], static_cast<int> (i), neigh_sqr_dists[0]);
#       model_scene_corrs->push_back (corr);
#       model_good_keypoints_indices.push_back (corr.index_query);
#       scene_good_keypoints_indices.push_back (corr.index_match);
#     }
#   }
#   pcl::PointCloud<PointType>::Ptr model_good_kp (new pcl::PointCloud<PointType> ());
#   pcl::PointCloud<PointType>::Ptr scene_good_kp (new pcl::PointCloud<PointType> ());
#   pcl::copyPointCloud (*model_keypoints, model_good_keypoints_indices, *model_good_kp);
#   pcl::copyPointCloud (*scene_keypoints, scene_good_keypoints_indices, *scene_good_kp);
# 
#   std::cout << "Correspondences found: " << model_scene_corrs->size () << std::endl;
# 
#   /**
#    *  Clustering
#    */
#   std::vector<Eigen::Matrix4f, Eigen::aligned_allocator<Eigen::Matrix4f> > rototranslations;
#   std::vector < pcl::Correspondences > clustered_corrs;
# 
#   if (use_hough_)
#   {
#     pcl::PointCloud<RFType>::Ptr model_rf (new pcl::PointCloud<RFType> ());
#     pcl::PointCloud<RFType>::Ptr scene_rf (new pcl::PointCloud<RFType> ());
# 
#     pcl::BOARDLocalReferenceFrameEstimation<PointType, NormalType, RFType> rf_est;
#     rf_est.setFindHoles (true);
#     rf_est.setRadiusSearch (rf_rad_);
# 
#     rf_est.setInputCloud (model_keypoints);
#     rf_est.setInputNormals (model_normals);
#     rf_est.setSearchSurface (model);
#     rf_est.compute (*model_rf);
# 
#     rf_est.setInputCloud (scene_keypoints);
#     rf_est.setInputNormals (scene_normals);
#     rf_est.setSearchSurface (scene);
#     rf_est.compute (*scene_rf);
# 
#     //  Clustering
#     pcl::Hough3DGrouping<PointType, PointType, RFType, RFType> clusterer;
#     clusterer.setHoughBinSize (cg_size_);
#     clusterer.setHoughThreshold (cg_thresh_);
#     clusterer.setUseInterpolation (true);
#     clusterer.setUseDistanceWeight (false);
# 
#     clusterer.setInputCloud (model_keypoints);
#     clusterer.setInputRf (model_rf);
#     clusterer.setSceneCloud (scene_keypoints);
#     clusterer.setSceneRf (scene_rf);
#     clusterer.setModelSceneCorrespondences (model_scene_corrs);
# 
#     clusterer.recognize (rototranslations, clustered_corrs);
#   }
#   else
#   {
#     pcl::GeometricConsistencyGrouping<PointType, PointType> gc_clusterer;
#     gc_clusterer.setGCSize (cg_size_);
#     gc_clusterer.setGCThreshold (cg_thresh_);
# 
#     gc_clusterer.setInputCloud (model_keypoints);
#     gc_clusterer.setSceneCloud (scene_keypoints);
#     gc_clusterer.setModelSceneCorrespondences (model_scene_corrs);
# 
#     gc_clusterer.recognize (rototranslations, clustered_corrs);
#   }
# 
#   /**
#    * Stop if no instances
#    */
#   if (rototranslations.size () <= 0)
#   {
#     cout << "*** No instances found! ***" << endl;
#     return (0);
#   }
#   else
#   {
#     cout << "Recognized Instances: " << rototranslations.size () << endl << endl;
#   }
# 
#   /**
#    * Generates clouds for each instances found 
#    */
#   std::vector<pcl::PointCloud<PointType>::ConstPtr> instances;
# 
#   for (size_t i = 0; i < rototranslations.size (); ++i)
#   {
#     pcl::PointCloud<PointType>::Ptr rotated_model (new pcl::PointCloud<PointType> ());
#     pcl::transformPointCloud (*model, *rotated_model, rototranslations[i]);
#     instances.push_back (rotated_model);
#   }
# 
#   /**
#    * ICP
#    */
#   std::vector<pcl::PointCloud<PointType>::ConstPtr> registered_instances;
#   if (true)
#   {
#     cout << "--- ICP ---------" << endl;
# 
#     for (size_t i = 0; i < rototranslations.size (); ++i)
#     {
#       pcl::IterativeClosestPoint<PointType, PointType> icp;
#       icp.setMaximumIterations (icp_max_iter_);
#       icp.setMaxCorrespondenceDistance (icp_corr_distance_);
#       icp.setInputTarget (scene);
#       icp.setInputSource (instances[i]);
#       pcl::PointCloud<PointType>::Ptr registered (new pcl::PointCloud<PointType>);
#       icp.align (*registered);
#       registered_instances.push_back (registered);
#       cout << "Instance " << i << " ";
#       if (icp.hasConverged ())
#       {
#         cout << "Aligned!" << endl;
#       }
#       else
#       {
#         cout << "Not Aligned!" << endl;
#       }
#     }
# 
#     cout << "-----------------" << endl << endl;
#   }
# 
#   /**
#    * Hypothesis Verification
#    */
#   cout << "--- Hypotheses Verification ---" << endl;
#   std::vector<bool> hypotheses_mask;  // Mask Vector to identify positive hypotheses
# 
#   pcl::GlobalHypothesesVerification<PointType, PointType> GoHv;
# 
#   GoHv.setSceneCloud (scene);  // Scene Cloud
#   GoHv.addModels (registered_instances, true);  //Models to verify
# 
#   GoHv.setInlierThreshold (hv_inlier_th_);
#   GoHv.setOcclusionThreshold (hv_occlusion_th_);
#   GoHv.setRegularizer (hv_regularizer_);
#   GoHv.setRadiusClutter (hv_rad_clutter_);
#   GoHv.setClutterRegularizer (hv_clutter_reg_);
#   GoHv.setDetectClutter (hv_detect_clutter_);
#   GoHv.setRadiusNormals (hv_rad_normals_);
# 
#   GoHv.verify ();
#   GoHv.getMask (hypotheses_mask);  // i-element TRUE if hvModels[i] verifies hypotheses
# 
#   for (int i = 0; i < hypotheses_mask.size (); i++)
#   {
#     if (hypotheses_mask[i])
#     {
#       cout << "Instance " << i << " is GOOD! <---" << endl;
#     }
#     else
#     {
#       cout << "Instance " << i << " is bad!" << endl;
#     }
#   }
#   cout << "-------------------------------" << endl;
# 
#   /**
#    *  Visualization
#    */
#   pcl::visualization::PCLVisualizer viewer ("Hypotheses Verification");
#   viewer.addPointCloud (scene, "scene_cloud");
# 
#   pcl::PointCloud<PointType>::Ptr off_scene_model (new pcl::PointCloud<PointType> ());
#   pcl::PointCloud<PointType>::Ptr off_scene_model_keypoints (new pcl::PointCloud<PointType> ());
# 
#   pcl::PointCloud<PointType>::Ptr off_model_good_kp (new pcl::PointCloud<PointType> ());
#   pcl::transformPointCloud (*model, *off_scene_model, Eigen::Vector3f (-1, 0, 0), Eigen::Quaternionf (1, 0, 0, 0));
#   pcl::transformPointCloud (*model_keypoints, *off_scene_model_keypoints, Eigen::Vector3f (-1, 0, 0), Eigen::Quaternionf (1, 0, 0, 0));
#   pcl::transformPointCloud (*model_good_kp, *off_model_good_kp, Eigen::Vector3f (-1, 0, 0), Eigen::Quaternionf (1, 0, 0, 0));
# 
#   if (show_keypoints_)
#   {
#     CloudStyle modelStyle = style_white;
#     pcl::visualization::PointCloudColorHandlerCustom<PointType> off_scene_model_color_handler (off_scene_model, modelStyle.r, modelStyle.g, modelStyle.b);
#     viewer.addPointCloud (off_scene_model, off_scene_model_color_handler, "off_scene_model");
#     viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, modelStyle.size, "off_scene_model");
#   }
# 
#   if (show_keypoints_)
#   {
#     CloudStyle goodKeypointStyle = style_violet;
#     pcl::visualization::PointCloudColorHandlerCustom<PointType> model_good_keypoints_color_handler (off_model_good_kp, goodKeypointStyle.r, goodKeypointStyle.g,
#                                                                                                     goodKeypointStyle.b);
#     viewer.addPointCloud (off_model_good_kp, model_good_keypoints_color_handler, "model_good_keypoints");
#     viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, goodKeypointStyle.size, "model_good_keypoints");
# 
#     pcl::visualization::PointCloudColorHandlerCustom<PointType> scene_good_keypoints_color_handler (scene_good_kp, goodKeypointStyle.r, goodKeypointStyle.g,
#                                                                                                     goodKeypointStyle.b);
#     viewer.addPointCloud (scene_good_kp, scene_good_keypoints_color_handler, "scene_good_keypoints");
#     viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, goodKeypointStyle.size, "scene_good_keypoints");
#   }
# 
#   for (size_t i = 0; i < instances.size (); ++i)
#   {
#     std::stringstream ss_instance;
#     ss_instance << "instance_" << i;
# 
#     CloudStyle clusterStyle = style_red;
#     pcl::visualization::PointCloudColorHandlerCustom<PointType> instance_color_handler (instances[i], clusterStyle.r, clusterStyle.g, clusterStyle.b);
#     viewer.addPointCloud (instances[i], instance_color_handler, ss_instance.str ());
#     viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, clusterStyle.size, ss_instance.str ());
# 
#     CloudStyle registeredStyles = hypotheses_mask[i] ? style_green : style_cyan;
#     ss_instance << "_registered" << endl;
#     pcl::visualization::PointCloudColorHandlerCustom<PointType> registered_instance_color_handler (registered_instances[i], registeredStyles.r,
#                                                                                                    registeredStyles.g, registeredStyles.b);
#     viewer.addPointCloud (registered_instances[i], registered_instance_color_handler, ss_instance.str ());
#     viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, registeredStyles.size, ss_instance.str ());
#   }
# 

# while (!viewer.wasStopped ())
# 	viewer.spinOnce ();