1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
|
#include "bcftools.pysam.h"
/* The MIT License
Copyright (c) 2014-2017 Genome Research Ltd.
Author: Petr Danecek <pd3@sanger.ac.uk>
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <strings.h>
#include <errno.h>
#include <getopt.h>
#include <unistd.h>
#include <ctype.h>
#include <htslib/vcf.h>
#include <htslib/kstring.h>
#include <htslib/synced_bcf_reader.h>
#include <htslib/kseq.h>
#include <htslib/bgzf.h>
#include "regidx.h"
#include "bcftools.h"
#include "rbuf.h"
#include "filter.h"
// Logic of the filters: include or exclude sites which match the filters?
#define FLT_INCLUDE 1
#define FLT_EXCLUDE 2
#define PICK_REF 1
#define PICK_ALT 2
#define PICK_LONG 4
#define PICK_SHORT 8
typedef struct
{
int num; // number of ungapped blocks in this chain
int *block_lengths; // length of the ungapped blocks in this chain
int *ref_gaps; // length of the gaps on the reference sequence between blocks
int *alt_gaps; // length of the gaps on the alternative sequence between blocks
int ori_pos;
int ref_last_block_ori; // start position on the reference sequence of the following ungapped block (0-based)
int alt_last_block_ori; // start position on the alternative sequence of the following ungapped block (0-based)
}
chain_t;
typedef struct
{
kstring_t fa_buf; // buffered reference sequence
int fa_ori_pos; // start position of the fa_buffer (wrt original sequence)
int fa_frz_pos; // protected position to avoid conflicting variants (last pos for SNPs/ins)
int fa_mod_off; // position difference of fa_frz_pos in the ori and modified sequence (ins positive)
int fa_end_pos; // region's end position in the original sequence
int fa_length; // region's length in the original sequence (in case end_pos not provided in the FASTA header)
int fa_case; // output upper case or lower case?
int fa_src_pos; // last genomic coordinate read from the input fasta (0-based)
char prev_base; // this is only to validate the REF allele in the VCF - the modified fa_buf cannot be used for inserts following deletions, see 600#issuecomment-383186778
int prev_base_pos; // the position of prev_base
rbuf_t vcf_rbuf;
bcf1_t **vcf_buf;
int nvcf_buf, rid;
char *chr;
regidx_t *mask;
regitr_t *itr;
int chain_id; // chain_id, to provide a unique ID to each chain in the chain output
chain_t *chain; // chain structure to store the sequence of ungapped blocks between the ref and alt sequences
// Note that the chain is re-initialised for each chromosome/seq_region
filter_t *filter;
char *filter_str;
int filter_logic; // include or exclude sites which match the filters? One of FLT_INCLUDE/FLT_EXCLUDE
bcf_srs_t *files;
bcf_hdr_t *hdr;
FILE *fp_out;
FILE *fp_chain;
char **argv;
int argc, output_iupac, haplotype, allele, isample;
char *fname, *ref_fname, *sample, *output_fname, *mask_fname, *chain_fname, missing_allele;
}
args_t;
static chain_t* init_chain(chain_t *chain, int ref_ori_pos)
{
// fprintf(bcftools_stderr, "init_chain(*chain, ref_ori_pos=%d)\n", ref_ori_pos);
chain = (chain_t*) calloc(1,sizeof(chain_t));
chain->num = 0;
chain->block_lengths = NULL;
chain->ref_gaps = NULL;
chain->alt_gaps = NULL;
chain->ori_pos = ref_ori_pos;
chain->ref_last_block_ori = ref_ori_pos;
chain->alt_last_block_ori = ref_ori_pos;
return chain;
}
static void destroy_chain(args_t *args)
{
chain_t *chain = args->chain;
free(chain->ref_gaps);
free(chain->alt_gaps);
free(chain->block_lengths);
free(chain);
chain = NULL;
free(args->chr);
args->chr = NULL;
}
static void print_chain(args_t *args)
{
/*
Example chain format (see: https://genome.ucsc.edu/goldenPath/help/chain.html):
chain 1 500 + 480 500 1 501 + 480 501 1
12 3 1
1 0 3
484
chain line is:
- chain
- score (sum of the length of ungapped block in this case)
- ref_seqname (from the fasta header, parsed by htslib)
- ref_seqlength (from the fasta header)
- ref_strand (+ or -; always + for bcf-consensus)
- ref_start (as defined in the fasta header)
- ref_end (as defined in the fasta header)
- alt_seqname (same as ref_seqname as bcf-consensus only considers SNPs and indels)
- alt_seqlength (adjusted to match the length of the alt sequence)
- alt_strand (+ or -; always + for bcf-consensus)
- alt_start (same as ref_start, as no edits are recorded/applied before that position)
- alt_end (adjusted to match the length of the alt sequence)
- chain_num (just an auto-increment id)
the other (sorted) lines are:
- length of the ungapped alignment block
- gap on the ref sequence between this and the next block (all but the last line)
- gap on the alt sequence between this and the next block (all but the last line)
*/
chain_t *chain = args->chain;
int n = chain->num;
int ref_end_pos = args->fa_length + chain->ori_pos;
int last_block_size = ref_end_pos - chain->ref_last_block_ori;
int alt_end_pos = chain->alt_last_block_ori + last_block_size;
int score = 0;
for (n=0; n<chain->num; n++) {
score += chain->block_lengths[n];
}
score += last_block_size;
fprintf(args->fp_chain, "chain %d %s %d + %d %d %s %d + %d %d %d\n", score, args->chr, ref_end_pos, chain->ori_pos, ref_end_pos, args->chr, alt_end_pos, chain->ori_pos, alt_end_pos, ++args->chain_id);
for (n=0; n<chain->num; n++) {
fprintf(args->fp_chain, "%d %d %d\n", chain->block_lengths[n], chain->ref_gaps[n], chain->alt_gaps[n]);
}
fprintf(args->fp_chain, "%d\n\n", last_block_size);
}
static void push_chain_gap(chain_t *chain, int ref_start, int ref_len, int alt_start, int alt_len)
{
// fprintf(bcftools_stderr, "push_chain_gap(*chain, ref_start=%d, ref_len=%d, alt_start=%d, alt_len=%d)\n", ref_start, ref_len, alt_start, alt_len);
int num = chain->num;
if (ref_start <= chain->ref_last_block_ori) {
// In case this variant is back-to-back with the previous one
chain->ref_last_block_ori = ref_start + ref_len;
chain->alt_last_block_ori = alt_start + alt_len;
chain->ref_gaps[num-1] += ref_len;
chain->alt_gaps[num-1] += alt_len;
} else {
// Extend the ungapped blocks, store the gap length
chain->block_lengths = (int*) realloc(chain->block_lengths, (num + 1) * sizeof(int));
chain->ref_gaps = (int*) realloc(chain->ref_gaps, (num + 1) * sizeof(int));
chain->alt_gaps = (int*) realloc(chain->alt_gaps, (num + 1) * sizeof(int));
chain->block_lengths[num] = ref_start - chain->ref_last_block_ori;
chain->ref_gaps[num] = ref_len;
chain->alt_gaps[num] = alt_len;
// Update the start positions of the next block
chain->ref_last_block_ori = ref_start + ref_len;
chain->alt_last_block_ori = alt_start + alt_len;
// Increment the number of ungapped blocks
chain->num++;
}
}
static void init_data(args_t *args)
{
args->files = bcf_sr_init();
args->files->require_index = 1;
if ( !bcf_sr_add_reader(args->files,args->fname) ) error("Failed to open %s: %s\n", args->fname, bcf_sr_strerror(args->files->errnum));
args->hdr = args->files->readers[0].header;
args->isample = -1;
if ( args->sample )
{
args->isample = bcf_hdr_id2int(args->hdr,BCF_DT_SAMPLE,args->sample);
if ( args->isample<0 ) error("No such sample: %s\n", args->sample);
}
if ( (args->haplotype || args->allele) && args->isample<0 )
{
if ( bcf_hdr_nsamples(args->hdr) > 1 ) error("The --sample option is expected with --haplotype\n");
args->isample = 0;
}
if ( args->mask_fname )
{
args->mask = regidx_init(args->mask_fname,NULL,NULL,0,NULL);
if ( !args->mask ) error("Failed to initialize mask regions\n");
args->itr = regitr_init(args->mask);
}
// In case we want to store the chains
if ( args->chain_fname )
{
args->fp_chain = fopen(args->chain_fname,"w");
if ( ! args->fp_chain ) error("Failed to create %s: %s\n", args->chain_fname, strerror(errno));
args->chain_id = 0;
}
rbuf_init(&args->vcf_rbuf, 100);
args->vcf_buf = (bcf1_t**) calloc(args->vcf_rbuf.m, sizeof(bcf1_t*));
if ( args->output_fname ) {
args->fp_out = fopen(args->output_fname,"w");
if ( ! args->fp_out ) error("Failed to create %s: %s\n", args->output_fname, strerror(errno));
}
else args->fp_out = bcftools_stdout;
if ( args->isample<0 ) fprintf(bcftools_stderr,"Note: the --sample option not given, applying all records regardless of the genotype\n");
if ( args->filter_str )
args->filter = filter_init(args->hdr, args->filter_str);
}
static void destroy_data(args_t *args)
{
if (args->filter) filter_destroy(args->filter);
bcf_sr_destroy(args->files);
int i;
for (i=0; i<args->vcf_rbuf.m; i++)
if ( args->vcf_buf[i] ) bcf_destroy1(args->vcf_buf[i]);
free(args->vcf_buf);
free(args->fa_buf.s);
free(args->chr);
if ( args->mask ) regidx_destroy(args->mask);
if ( args->itr ) regitr_destroy(args->itr);
if ( args->chain_fname )
if ( fclose(args->fp_chain) ) error("Close failed: %s\n", args->chain_fname);
if ( fclose(args->fp_out) ) error("Close failed: %s\n", args->output_fname);
}
static void init_region(args_t *args, char *line)
{
char *ss, *se = line;
while ( *se && !isspace(*se) && *se!=':' ) se++;
int from = 0, to = 0;
char tmp = 0, *tmp_ptr = NULL;
if ( *se )
{
tmp = *se; *se = 0; tmp_ptr = se;
ss = ++se;
from = strtol(ss,&se,10);
if ( ss==se || !*se || *se!='-' ) from = 0;
else
{
from--;
ss = ++se;
to = strtol(ss,&se,10);
if ( ss==se || (*se && !isspace(*se)) ) { from = 0; to = 0; }
else to--;
}
}
free(args->chr);
args->chr = strdup(line);
args->rid = bcf_hdr_name2id(args->hdr,line);
if ( args->rid<0 ) fprintf(bcftools_stderr,"Warning: Sequence \"%s\" not in %s\n", line,args->fname);
args->prev_base_pos = -1;
args->fa_buf.l = 0;
args->fa_length = 0;
args->fa_end_pos = to;
args->fa_ori_pos = from;
args->fa_src_pos = from;
args->fa_mod_off = 0;
args->fa_frz_pos = -1;
args->fa_case = -1;
args->vcf_rbuf.n = 0;
bcf_sr_seek(args->files,line,args->fa_ori_pos);
if ( tmp_ptr ) *tmp_ptr = tmp;
fprintf(args->fp_out,">%s\n",line);
if (args->chain_fname )
{
args->chain = init_chain(args->chain, args->fa_ori_pos);
} else {
args->chain = NULL;
}
}
static bcf1_t **next_vcf_line(args_t *args)
{
if ( args->vcf_rbuf.n )
{
int i = rbuf_shift(&args->vcf_rbuf);
return &args->vcf_buf[i];
}
while ( bcf_sr_next_line(args->files) )
{
if ( args->filter )
{
int is_ok = filter_test(args->filter, bcf_sr_get_line(args->files,0), NULL);
if ( args->filter_logic & FLT_EXCLUDE ) is_ok = is_ok ? 0 : 1;
if ( !is_ok ) continue;
}
return &args->files->readers[0].buffer[0];
}
return NULL;
}
static void unread_vcf_line(args_t *args, bcf1_t **rec_ptr)
{
bcf1_t *rec = *rec_ptr;
if ( args->vcf_rbuf.n >= args->vcf_rbuf.m )
error("FIXME: too many overlapping records near %s:%d\n", bcf_seqname(args->hdr,rec),rec->pos+1);
// Insert the new record in the buffer. The line would be overwritten in
// the next bcf_sr_next_line call, therefore we need to swap it with an
// unused one
int i = rbuf_append(&args->vcf_rbuf);
if ( !args->vcf_buf[i] ) args->vcf_buf[i] = bcf_init1();
bcf1_t *tmp = rec; *rec_ptr = args->vcf_buf[i]; args->vcf_buf[i] = tmp;
}
static void flush_fa_buffer(args_t *args, int len)
{
if ( !args->fa_buf.l ) return;
int nwr = 0;
while ( nwr + 60 <= args->fa_buf.l )
{
if ( fwrite(args->fa_buf.s+nwr,1,60,args->fp_out) != 60 ) error("Could not write: %s\n", args->output_fname);
if ( fwrite("\n",1,1,args->fp_out) != 1 ) error("Could not write: %s\n", args->output_fname);
nwr += 60;
}
if ( nwr )
args->fa_ori_pos += nwr;
if ( len )
{
// not finished on this chr yet and the buffer cannot be emptied completely
if ( nwr && nwr < args->fa_buf.l )
memmove(args->fa_buf.s,args->fa_buf.s+nwr,args->fa_buf.l-nwr);
args->fa_buf.l -= nwr;
return;
}
// empty the whole buffer
if ( nwr == args->fa_buf.l ) { args->fa_buf.l = 0; return; }
if ( fwrite(args->fa_buf.s+nwr,1,args->fa_buf.l - nwr,args->fp_out) != args->fa_buf.l - nwr ) error("Could not write: %s\n", args->output_fname);
if ( fwrite("\n",1,1,args->fp_out) != 1 ) error("Could not write: %s\n", args->output_fname);
args->fa_ori_pos += args->fa_buf.l - nwr - args->fa_mod_off;
args->fa_mod_off = 0;
args->fa_buf.l = 0;
}
static void apply_variant(args_t *args, bcf1_t *rec)
{
static int warned_haplotype = 0;
if ( rec->n_allele==1 && !args->missing_allele ) return;
if ( args->mask )
{
char *chr = (char*)bcf_hdr_id2name(args->hdr,args->rid);
int start = rec->pos;
int end = rec->pos + rec->rlen - 1;
if ( regidx_overlap(args->mask, chr,start,end,NULL) ) return;
}
int i, ialt = 1; // the alternate allele
if ( args->isample >= 0 )
{
bcf_unpack(rec, BCF_UN_FMT);
bcf_fmt_t *fmt = bcf_get_fmt(args->hdr, rec, "GT");
if ( !fmt ) return;
if ( fmt->type!=BCF_BT_INT8 )
error("Todo: GT field represented with BCF_BT_INT8, too many alleles at %s:%d?\n",bcf_seqname(args->hdr,rec),rec->pos+1);
uint8_t *ptr = fmt->p + fmt->size*args->isample;
if ( args->haplotype )
{
if ( args->haplotype > fmt->n )
{
if ( bcf_gt_is_missing(ptr[fmt->n-1]) || bcf_gt_is_missing(ptr[0]) )
{
if ( !args->missing_allele ) return;
ialt = -1;
}
else
{
if ( !warned_haplotype )
{
fprintf(bcftools_stderr, "Can't apply %d-th haplotype at %s:%d. (This warning is printed only once.)\n", args->haplotype,bcf_seqname(args->hdr,rec),rec->pos+1);
warned_haplotype = 1;
}
return;
}
}
else
{
ialt = (int8_t)ptr[args->haplotype-1];
if ( bcf_gt_is_missing(ialt) || ialt==bcf_int8_vector_end )
{
if ( !args->missing_allele ) return;
ialt = -1;
}
else
ialt = bcf_gt_allele(ialt);
}
}
else if ( args->output_iupac )
{
ialt = ptr[0];
if ( bcf_gt_is_missing(ialt) || ialt==bcf_int32_vector_end )
{
if ( !args->missing_allele ) return;
ialt = -1;
}
else
ialt = bcf_gt_allele(ialt);
int jalt;
if ( fmt->n>1 )
{
jalt = ptr[1];
if ( bcf_gt_is_missing(jalt) )
{
if ( !args->missing_allele ) return;
ialt = -1;
}
else if ( jalt==bcf_int32_vector_end ) jalt = ialt;
else
jalt = bcf_gt_allele(jalt);
}
else jalt = ialt;
if ( ialt>=0 )
{
if ( rec->n_allele <= ialt || rec->n_allele <= jalt ) error("Invalid VCF, too few ALT alleles at %s:%d\n", bcf_seqname(args->hdr,rec),rec->pos+1);
if ( ialt!=jalt && !rec->d.allele[ialt][1] && !rec->d.allele[jalt][1] ) // is this a het snp?
{
char ial = rec->d.allele[ialt][0];
char jal = rec->d.allele[jalt][0];
if ( !ialt ) ialt = jalt; // only ialt is used, make sure 0/1 is not ignored
rec->d.allele[ialt][0] = gt2iupac(ial,jal);
}
}
}
else
{
int is_hom = 1;
for (i=0; i<fmt->n; i++)
{
if ( bcf_gt_is_missing(ptr[i]) )
{
if ( !args->missing_allele ) return; // ignore missing or half-missing genotypes
ialt = -1;
break;
}
if ( ptr[i]==(uint8_t)bcf_int8_vector_end ) break;
ialt = bcf_gt_allele(ptr[i]);
if ( i>0 && ialt!=bcf_gt_allele(ptr[i-1]) ) { is_hom = 0; break; }
}
if ( !is_hom )
{
int prev_len = 0, jalt;
for (i=0; i<fmt->n; i++)
{
if ( ptr[i]==(uint8_t)bcf_int8_vector_end ) break;
jalt = bcf_gt_allele(ptr[i]);
if ( rec->n_allele <= jalt ) error("Broken VCF, too few alts at %s:%d\n", bcf_seqname(args->hdr,rec),rec->pos+1);
if ( args->allele & (PICK_LONG|PICK_SHORT) )
{
int len = jalt==0 ? rec->rlen : strlen(rec->d.allele[jalt]);
if ( i==0 ) ialt = jalt, prev_len = len;
else if ( len == prev_len )
{
if ( args->allele & PICK_REF && jalt==0 ) ialt = jalt, prev_len = len;
else if ( args->allele & PICK_ALT && ialt==0 ) ialt = jalt, prev_len = len;
}
else if ( args->allele & PICK_LONG && len > prev_len ) ialt = jalt, prev_len = len;
else if ( args->allele & PICK_SHORT && len < prev_len ) ialt = jalt, prev_len = len;
}
else
{
if ( args->allele & PICK_REF && jalt==0 ) ialt = jalt;
else if ( args->allele & PICK_ALT && ialt==0 ) ialt = jalt;
}
}
}
}
if ( !ialt ) return; // ref allele
if ( rec->n_allele <= ialt ) error("Broken VCF, too few alts at %s:%d\n", bcf_seqname(args->hdr,rec),rec->pos+1);
}
else if ( args->output_iupac && !rec->d.allele[0][1] && !rec->d.allele[1][1] )
{
char ial = rec->d.allele[0][0];
char jal = rec->d.allele[1][0];
rec->d.allele[1][0] = gt2iupac(ial,jal);
}
if ( rec->n_allele==1 && ialt!=-1 ) return; // non-missing reference
if ( ialt==-1 )
{
char alleles[4];
alleles[0] = rec->d.allele[0][0];
alleles[1] = ',';
alleles[2] = args->missing_allele;
alleles[3] = 0;
bcf_update_alleles_str(args->hdr, rec, alleles);
ialt = 1;
}
// Overlapping variant? Can be still OK iff this is an insertion
if ( rec->pos <= args->fa_frz_pos && (rec->pos!=args->fa_frz_pos || rec->d.allele[0][0]!=rec->d.allele[ialt][0]) )
{
fprintf(bcftools_stderr,"The site %s:%d overlaps with another variant, skipping...\n", bcf_seqname(args->hdr,rec),rec->pos+1);
return;
}
int len_diff = 0, alen = 0;
int idx = rec->pos - args->fa_ori_pos + args->fa_mod_off;
if ( idx<0 )
{
fprintf(bcftools_stderr,"Warning: ignoring overlapping variant starting at %s:%d\n", bcf_seqname(args->hdr,rec),rec->pos+1);
return;
}
if ( rec->rlen > args->fa_buf.l - idx )
{
rec->rlen = args->fa_buf.l - idx;
alen = strlen(rec->d.allele[ialt]);
if ( alen > rec->rlen )
{
rec->d.allele[ialt][rec->rlen] = 0;
fprintf(bcftools_stderr,"Warning: trimming variant starting at %s:%d\n", bcf_seqname(args->hdr,rec),rec->pos+1);
}
}
if ( idx>=args->fa_buf.l )
error("FIXME: %s:%d .. idx=%d, ori_pos=%d, len=%"PRIu64", off=%d\n",bcf_seqname(args->hdr,rec),rec->pos+1,idx,args->fa_ori_pos,(uint64_t)args->fa_buf.l,args->fa_mod_off);
// sanity check the reference base
if ( rec->d.allele[ialt][0]=='<' )
{
if ( strcasecmp(rec->d.allele[ialt], "<DEL>") )
error("Symbolic alleles other than <DEL> are currently not supported: %s at %s:%d\n",rec->d.allele[ialt],bcf_seqname(args->hdr,rec),rec->pos+1);
assert( rec->d.allele[0][1]==0 ); // todo: for now expecting strlen(REF) = 1
len_diff = 1-rec->rlen;
rec->d.allele[ialt] = rec->d.allele[0]; // according to VCF spec, REF must precede the event
alen = strlen(rec->d.allele[ialt]);
}
else if ( strncasecmp(rec->d.allele[0],args->fa_buf.s+idx,rec->rlen) )
{
// This is hacky, handle a special case: if insert follows a deletion (AAC>A, C>CAA),
// the reference base in fa_buf is lost and the check fails. We do not keep a buffer
// with the original sequence as it should not be necessary, we should encounter max
// one base overlap
int fail = 1;
if ( args->prev_base_pos==rec->pos && toupper(rec->d.allele[0][0])==toupper(args->prev_base) )
{
if ( rec->rlen==1 ) fail = 0;
else if ( !strncasecmp(rec->d.allele[0]+1,args->fa_buf.s+idx+1,rec->rlen-1) ) fail = 0;
}
if ( fail )
{
char tmp = 0;
if ( args->fa_buf.l - idx > rec->rlen )
{
tmp = args->fa_buf.s[idx+rec->rlen];
args->fa_buf.s[idx+rec->rlen] = 0;
}
error(
"The fasta sequence does not match the REF allele at %s:%d:\n"
" .vcf: [%s]\n"
" .vcf: [%s] <- (ALT)\n"
" .fa: [%s]%c%s\n",
bcf_seqname(args->hdr,rec),rec->pos+1, rec->d.allele[0], rec->d.allele[ialt], args->fa_buf.s+idx,
tmp?tmp:' ',tmp?args->fa_buf.s+idx+rec->rlen+1:""
);
}
alen = strlen(rec->d.allele[ialt]);
len_diff = alen - rec->rlen;
}
else
{
alen = strlen(rec->d.allele[ialt]);
len_diff = alen - rec->rlen;
}
if ( args->fa_case )
for (i=0; i<alen; i++) rec->d.allele[ialt][i] = toupper(rec->d.allele[ialt][i]);
else
for (i=0; i<alen; i++) rec->d.allele[ialt][i] = tolower(rec->d.allele[ialt][i]);
if ( len_diff <= 0 )
{
// deletion or same size event
for (i=0; i<alen; i++)
args->fa_buf.s[idx+i] = rec->d.allele[ialt][i];
if ( len_diff )
{
args->prev_base = rec->d.allele[0][rec->rlen - 1];
args->prev_base_pos = rec->pos + rec->rlen - 1;
memmove(args->fa_buf.s+idx+alen,args->fa_buf.s+idx+rec->rlen,args->fa_buf.l-idx-rec->rlen);
}
}
else
{
// insertion
ks_resize(&args->fa_buf, args->fa_buf.l + len_diff);
memmove(args->fa_buf.s + idx + rec->rlen + len_diff, args->fa_buf.s + idx + rec->rlen, args->fa_buf.l - idx - rec->rlen);
for (i=0; i<alen; i++)
args->fa_buf.s[idx+i] = rec->d.allele[ialt][i];
}
if (args->chain && len_diff != 0)
{
// If first nucleotide of both REF and ALT are the same... (indels typically include the nucleotide before the variant)
if ( strncasecmp(rec->d.allele[0],rec->d.allele[ialt],1) == 0)
{
// ...extend the block by 1 bp: start is 1 bp further and alleles are 1 bp shorter
push_chain_gap(args->chain, rec->pos + 1, rec->rlen - 1, rec->pos + 1 + args->fa_mod_off, alen - 1);
}
else
{
// otherwise, just the coordinates of the variant as given
push_chain_gap(args->chain, rec->pos, rec->rlen, rec->pos + args->fa_mod_off, alen);
}
}
args->fa_buf.l += len_diff;
args->fa_mod_off += len_diff;
args->fa_frz_pos = rec->pos + rec->rlen - 1;
}
static void mask_region(args_t *args, char *seq, int len)
{
int start = args->fa_src_pos - len;
int end = args->fa_src_pos;
if ( !regidx_overlap(args->mask, args->chr,start,end, args->itr) ) return;
int idx_start, idx_end, i;
while ( regitr_overlap(args->itr) )
{
idx_start = args->itr->beg - start;
idx_end = args->itr->end - start;
if ( idx_start < 0 ) idx_start = 0;
if ( idx_end >= len ) idx_end = len - 1;
for (i=idx_start; i<=idx_end; i++) seq[i] = 'N';
}
}
static void consensus(args_t *args)
{
BGZF *fasta = bgzf_open(args->ref_fname, "r");
if ( !fasta ) error("Error reading %s\n", args->ref_fname);
kstring_t str = {0,0,0};
while ( bgzf_getline(fasta, '\n', &str) > 0 )
{
if ( str.s[0]=='>' )
{
// new sequence encountered
if (args->chain) {
print_chain(args);
destroy_chain(args);
}
// apply all cached variants
while ( args->vcf_rbuf.n )
{
bcf1_t *rec = args->vcf_buf[args->vcf_rbuf.f];
if ( rec->rid!=args->rid || ( args->fa_end_pos && rec->pos > args->fa_end_pos ) ) break;
int i = rbuf_shift(&args->vcf_rbuf);
apply_variant(args, args->vcf_buf[i]);
}
flush_fa_buffer(args, 0);
init_region(args, str.s+1);
continue;
}
args->fa_length += str.l;
args->fa_src_pos += str.l;
// determine if uppercase or lowercase is used in this fasta file
if ( args->fa_case==-1 ) args->fa_case = toupper(str.s[0])==str.s[0] ? 1 : 0;
if ( args->mask && args->rid>=0) mask_region(args, str.s, str.l);
kputs(str.s, &args->fa_buf);
bcf1_t **rec_ptr = NULL;
while ( args->rid>=0 && (rec_ptr = next_vcf_line(args)) )
{
bcf1_t *rec = *rec_ptr;
// still the same chr and the same region? if not, fasta buf can be flushed
if ( rec->rid!=args->rid || ( args->fa_end_pos && rec->pos > args->fa_end_pos ) )
{
// save the vcf record until next time and flush
unread_vcf_line(args, rec_ptr);
rec_ptr = NULL;
break;
}
// is the vcf record well beyond cached fasta buffer? if yes, the buf can be flushed
if ( args->fa_ori_pos + args->fa_buf.l - args->fa_mod_off <= rec->pos )
{
unread_vcf_line(args, rec_ptr);
rec_ptr = NULL;
break;
}
// is the cached fasta buffer full enough? if not, read more fasta, no flushing
if ( args->fa_ori_pos + args->fa_buf.l - args->fa_mod_off < rec->pos + rec->rlen )
{
unread_vcf_line(args, rec_ptr);
break;
}
apply_variant(args, rec);
}
if ( !rec_ptr ) flush_fa_buffer(args, 60);
}
bcf1_t **rec_ptr = NULL;
while ( args->rid>=0 && (rec_ptr = next_vcf_line(args)) )
{
bcf1_t *rec = *rec_ptr;
if ( rec->rid!=args->rid ) break;
if ( args->fa_end_pos && rec->pos > args->fa_end_pos ) break;
if ( args->fa_ori_pos + args->fa_buf.l - args->fa_mod_off <= rec->pos ) break;
apply_variant(args, rec);
}
if (args->chain)
{
print_chain(args);
destroy_chain(args);
}
flush_fa_buffer(args, 0);
bgzf_close(fasta);
free(str.s);
}
static void usage(args_t *args)
{
fprintf(bcftools_stderr, "\n");
fprintf(bcftools_stderr, "About: Create consensus sequence by applying VCF variants to a reference fasta\n");
fprintf(bcftools_stderr, " file. By default, the program will apply all ALT variants. Using the\n");
fprintf(bcftools_stderr, " --sample (and, optionally, --haplotype) option will apply genotype\n");
fprintf(bcftools_stderr, " (or haplotype) calls from FORMAT/GT. The program ignores allelic depth\n");
fprintf(bcftools_stderr, " information, such as INFO/AD or FORMAT/AD.\n");
fprintf(bcftools_stderr, "Usage: bcftools consensus [OPTIONS] <file.vcf.gz>\n");
fprintf(bcftools_stderr, "Options:\n");
fprintf(bcftools_stderr, " -c, --chain <file> write a chain file for liftover\n");
fprintf(bcftools_stderr, " -e, --exclude <expr> exclude sites for which the expression is true (see man page for details)\n");
fprintf(bcftools_stderr, " -f, --fasta-ref <file> reference sequence in fasta format\n");
fprintf(bcftools_stderr, " -H, --haplotype <which> choose which allele to use from the FORMAT/GT field, note\n");
fprintf(bcftools_stderr, " the codes are case-insensitive:\n");
fprintf(bcftools_stderr, " 1: first allele from GT\n");
fprintf(bcftools_stderr, " 2: second allele\n");
fprintf(bcftools_stderr, " R: REF allele in het genotypes\n");
fprintf(bcftools_stderr, " A: ALT allele\n");
fprintf(bcftools_stderr, " LR,LA: longer allele and REF/ALT if equal length\n");
fprintf(bcftools_stderr, " SR,SA: shorter allele and REF/ALT if equal length\n");
fprintf(bcftools_stderr, " -i, --include <expr> select sites for which the expression is true (see man page for details)\n");
fprintf(bcftools_stderr, " -I, --iupac-codes output variants in the form of IUPAC ambiguity codes\n");
fprintf(bcftools_stderr, " -m, --mask <file> replace regions with N\n");
fprintf(bcftools_stderr, " -M, --missing <char> output <char> instead of skipping the missing genotypes\n");
fprintf(bcftools_stderr, " -o, --output <file> write output to a file [standard output]\n");
fprintf(bcftools_stderr, " -s, --sample <name> apply variants of the given sample\n");
fprintf(bcftools_stderr, "Examples:\n");
fprintf(bcftools_stderr, " # Get the consensus for one region. The fasta header lines are then expected\n");
fprintf(bcftools_stderr, " # in the form \">chr:from-to\".\n");
fprintf(bcftools_stderr, " samtools faidx ref.fa 8:11870-11890 | bcftools consensus in.vcf.gz > out.fa\n");
fprintf(bcftools_stderr, "\n");
exit(1);
}
int main_consensus(int argc, char *argv[])
{
args_t *args = (args_t*) calloc(1,sizeof(args_t));
args->argc = argc; args->argv = argv;
static struct option loptions[] =
{
{"exclude",required_argument,NULL,'e'},
{"include",required_argument,NULL,'i'},
{"sample",1,0,'s'},
{"iupac-codes",0,0,'I'},
{"haplotype",1,0,'H'},
{"output",1,0,'o'},
{"fasta-ref",1,0,'f'},
{"mask",1,0,'m'},
{"missing",1,0,'M'},
{"chain",1,0,'c'},
{0,0,0,0}
};
int c;
while ((c = getopt_long(argc, argv, "h?s:1Ii:e:H:f:o:m:c:M:",loptions,NULL)) >= 0)
{
switch (c)
{
case 's': args->sample = optarg; break;
case 'o': args->output_fname = optarg; break;
case 'I': args->output_iupac = 1; break;
case 'e': args->filter_str = optarg; args->filter_logic |= FLT_EXCLUDE; break;
case 'i': args->filter_str = optarg; args->filter_logic |= FLT_INCLUDE; break;
case 'f': args->ref_fname = optarg; break;
case 'm': args->mask_fname = optarg; break;
case 'M':
args->missing_allele = optarg[0];
if ( optarg[1]!=0 ) error("Expected single character with -M, got \"%s\"\n", optarg);
break;
case 'c': args->chain_fname = optarg; break;
case 'H':
if ( !strcasecmp(optarg,"R") ) args->allele |= PICK_REF;
else if ( !strcasecmp(optarg,"A") ) args->allele |= PICK_ALT;
else if ( !strcasecmp(optarg,"L") ) args->allele |= PICK_LONG|PICK_REF;
else if ( !strcasecmp(optarg,"S") ) args->allele |= PICK_SHORT|PICK_REF;
else if ( !strcasecmp(optarg,"LR") ) args->allele |= PICK_LONG|PICK_REF;
else if ( !strcasecmp(optarg,"LA") ) args->allele |= PICK_LONG|PICK_ALT;
else if ( !strcasecmp(optarg,"SR") ) args->allele |= PICK_SHORT|PICK_REF;
else if ( !strcasecmp(optarg,"SA") ) args->allele |= PICK_SHORT|PICK_ALT;
else
{
args->haplotype = optarg[0] - '0';
if ( args->haplotype <=0 ) error("Expected positive integer with --haplotype\n");
}
break;
default: usage(args); break;
}
}
if ( optind>=argc ) usage(args);
args->fname = argv[optind];
if ( !args->ref_fname && !isatty(fileno((FILE *)stdin)) ) args->ref_fname = "-";
if ( !args->ref_fname ) usage(args);
init_data(args);
consensus(args);
destroy_data(args);
free(args);
return 0;
}
|