1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889
|
/* The MIT License
Copyright (c) 2016-2018 Genome Research Ltd.
Author: Petr Danecek <pd3@sanger.ac.uk>
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
/*
Things that would be nice to have
- for stop-lost events (also in frameshifts) report the number of truncated aa's
- memory could be greatly reduced by indexing gff (but it is quite compact already)
- deletions that go beyond transcript boundaries are not checked at sequence level
- alloc tscript->ref in hap_finalize, introduce fa_off_beg:16,fa_off_end:16
- see test/csq/ENST00000573314/insertion-overlap.vcf #1476288882
Read about transcript types here
http://vega.sanger.ac.uk/info/about/gene_and_transcript_types.html
http://www.ensembl.org/info/genome/variation/predicted_data.html
http://www.gencodegenes.org/gencode_biotypes.html
List of supported biotypes
antisense
IG_C_gene
IG_D_gene
IG_J_gene
IG_LV_gene
IG_V_gene
lincRNA
macro_lncRNA
miRNA
misc_RNA
Mt_rRNA
Mt_tRNA
polymorphic_pseudogene
processed_transcript
protein_coding
ribozyme
rRNA
sRNA
scRNA
scaRNA
sense_intronic
sense_overlapping
snRNA
snoRNA
TR_C_gene
TR_D_gene
TR_J_gene
TR_V_gene
The gff parsing logic
We collect features such by combining gff lines A,B,C as follows:
A .. gene line with a supported biotype
A.ID=~/^gene:/
B .. transcript line referencing A with supported biotype
B.ID=~/^transcript:/ && B.Parent=~/^gene:A.ID/
C .. corresponding CDS, exon, and UTR lines:
C[3] in {"CDS","exon","three_prime_UTR","five_prime_UTR"} && C.Parent=~/^transcript:B.ID/
For coding biotypes ("protein_coding" or "polymorphic_pseudogene") the
complete chain link C -> B -> A is required. For the rest, link B -> A suffices.
The supported consequence types, sorted by impact:
splice_acceptor_variant .. end region of an intron changed (2bp at the 3' end of an intron)
splice_donor_variant .. start region of an intron changed (2bp at the 5' end of an intron)
stop_gained .. DNA sequence variant resulting in a stop codon
frameshift_variant .. number of inserted/deleted bases not a multiple of three, disrupted translational frame
stop_lost .. elongated transcript, stop codon changed
start_lost .. the first codon changed
inframe_altering .. combination of indels leading to unchanged reading frame and length
inframe_insertion .. inserted coding sequence, unchanged reading frame
inframe_deletion .. deleted coding sequence, unchanged reading frame
missense_variant .. amino acid (aa) change, unchanged length
splice_region_variant .. change within 1-3 bases of the exon or 3-8 bases of the intron
synonymous_variant .. DNA sequence variant resulting in no amino acid change
stop_retained_variant .. different stop codon
non_coding_variant .. variant in non-coding sequence, such as RNA gene
5_prime_UTR_variant
3_prime_UTR_variant
intron_variant .. reported only if none of the above
intergenic_variant .. reported only if none of the above
The annotation algorithm.
The algorithm checks if the variant falls in a region of a supported type. The
search is performed in the following order, until a match is found:
1. idx_cds(gf_cds_t) - lookup CDS by position, create haplotypes, call consequences
2. idx_utr(gf_utr_t) - check UTR hits
3. idx_exon(gf_exon_t) - check for splice variants
4. idx_tscript(tscript_t) - check for intronic variants, RNAs, etc.
These regidx indexes are created by parsing a gff3 file as follows:
1. create the array "ftr" of all UTR, CDS, exons. This will be
processed later and pruned based on transcript types we want to keep.
In the same go, create the hash "id2tr" of transcripts to keep
(based on biotype) which maps from transcript_id to a transcript. At
the same time also build the hash "gid2gene" which maps from gene_id to
gf_gene_t pointer.
2. build "idx_cds", "idx_tscript", "idx_utr" and "idx_exon" indexes.
Use only features from "ftr" which are present in "id2tr".
3. clean data that won't be needed anymore: ftr, id2tr, gid2gene.
Data structures.
idx_cds, idx_utr, idx_exon, idx_tscript:
as described above, regidx structures for fast lookup of exons/transcripts
overlapping a region, the payload is a pointer to tscript.cds
*/
#include <stdio.h>
#include <stdlib.h>
#include <getopt.h>
#include <math.h>
#include <htslib/hts.h>
#include <htslib/vcf.h>
#include <htslib/synced_bcf_reader.h>
#include <htslib/khash.h>
#include <htslib/khash_str2int.h>
#include <htslib/kseq.h>
#include <htslib/faidx.h>
#include <errno.h>
#include <unistd.h>
#include <stdint.h>
#include <ctype.h>
#include "bcftools.h"
#include "filter.h"
#include "regidx.h"
#include "kheap.h"
#include "smpl_ilist.h"
#include "rbuf.h"
#ifndef __FUNCTION__
# define __FUNCTION__ __func__
#endif
// Logic of the filters: include or exclude sites which match the filters?
#define FLT_INCLUDE 1
#define FLT_EXCLUDE 2
// Definition of splice_region, splice_acceptor and splice_donor
#define N_SPLICE_DONOR 2
#define N_SPLICE_REGION_EXON 3
#define N_SPLICE_REGION_INTRON 8
#define N_REF_PAD 10 // number of bases to avoid boundary effects
#define STRAND_REV 0
#define STRAND_FWD 1
#define TRIM_NONE 0
#define TRIM_5PRIME 1
#define TRIM_3PRIME 2
// How to treat phased/unphased genotypes
#define PHASE_REQUIRE 0 // --phase r
#define PHASE_MERGE 1 // --phase m
#define PHASE_AS_IS 2 // --phase a
#define PHASE_SKIP 3 // --phase s
#define PHASE_NON_REF 4 // --phase R
#define PHASE_DROP_GT 5 // --samples -
// Node types in the haplotype tree
#define HAP_CDS 0
#define HAP_ROOT 1
#define HAP_SSS 2 // start/stop/splice
#define CSQ_PRINTED_UPSTREAM (1<<0)
#define CSQ_SYNONYMOUS_VARIANT (1<<1)
#define CSQ_MISSENSE_VARIANT (1<<2)
#define CSQ_STOP_LOST (1<<3)
#define CSQ_STOP_GAINED (1<<4)
#define CSQ_INFRAME_DELETION (1<<5)
#define CSQ_INFRAME_INSERTION (1<<6)
#define CSQ_FRAMESHIFT_VARIANT (1<<7)
#define CSQ_SPLICE_ACCEPTOR (1<<8)
#define CSQ_SPLICE_DONOR (1<<9)
#define CSQ_START_LOST (1<<10)
#define CSQ_SPLICE_REGION (1<<11)
#define CSQ_STOP_RETAINED (1<<12)
#define CSQ_UTR5 (1<<13)
#define CSQ_UTR3 (1<<14)
#define CSQ_NON_CODING (1<<15)
#define CSQ_INTRON (1<<16)
//#define CSQ_INTERGENIC (1<<17)
#define CSQ_INFRAME_ALTERING (1<<18)
#define CSQ_UPSTREAM_STOP (1<<19) // adds * in front of the csq string
#define CSQ_INCOMPLETE_CDS (1<<20) // to remove START/STOP in incomplete CDS, see ENSG00000173376/synon.vcf
#define CSQ_CODING_SEQUENCE (1<<21) // cannot tell exactly what it is, but it does affect the coding sequence
// Haplotype-aware consequences, printed in one vcf record only, the rest has a reference @12345
#define CSQ_COMPOUND (CSQ_SYNONYMOUS_VARIANT|CSQ_MISSENSE_VARIANT|CSQ_STOP_LOST|CSQ_STOP_GAINED| \
CSQ_INFRAME_DELETION|CSQ_INFRAME_INSERTION|CSQ_FRAMESHIFT_VARIANT| \
CSQ_START_LOST|CSQ_STOP_RETAINED|CSQ_INFRAME_ALTERING|CSQ_INCOMPLETE_CDS| \
CSQ_UPSTREAM_STOP)
#define CSQ_START_STOP (CSQ_STOP_LOST|CSQ_STOP_GAINED|CSQ_STOP_RETAINED|CSQ_START_LOST)
#define CSQ_PRN_STRAND(csq) ((csq)&CSQ_COMPOUND && !((csq)&(CSQ_SPLICE_ACCEPTOR|CSQ_SPLICE_DONOR|CSQ_SPLICE_REGION)))
#define CSQ_PRN_TSCRIPT (~(CSQ_INTRON|CSQ_NON_CODING))
#define CSQ_PRN_BIOTYPE CSQ_NON_CODING
// see kput_vcsq()
const char *csq_strings[] =
{
NULL,
"synonymous",
"missense",
"stop_lost",
"stop_gained",
"inframe_deletion",
"inframe_insertion",
"frameshift",
"splice_acceptor",
"splice_donor",
"start_lost",
"splice_region",
"stop_retained",
"5_prime_utr",
"3_prime_utr",
"non_coding",
"intron",
"intergenic",
"inframe_altering",
NULL,
NULL,
"coding_sequence"
};
// GFF line types
#define GFF_TSCRIPT_LINE 1
#define GFF_GENE_LINE 2
/*
Genomic features, for fast lookup by position to overlapping features
*/
#define GF_coding_bit 6
#define GF_is_coding(x) ((x) & (1<<GF_coding_bit))
#define GF_MT_rRNA 1 // non-coding: 1, 2, ...
#define GF_MT_tRNA 2
#define GF_lincRNA 3
#define GF_miRNA 4
#define GF_MISC_RNA 5
#define GF_rRNA 6
#define GF_snRNA 7
#define GF_snoRNA 8
#define GF_PROCESSED_TRANSCRIPT 9
#define GF_ANTISENSE 10
#define GF_macro_lncRNA 11
#define GF_ribozyme 12
#define GF_sRNA 13
#define GF_scRNA 14
#define GF_scaRNA 15
#define GF_SENSE_INTRONIC 16
#define GF_SENSE_OVERLAPPING 17
#define GF_PSEUDOGENE 18
#define GF_PROCESSED_PSEUDOGENE 19
#define GF_ARTIFACT 20
#define GF_IG_PSEUDOGENE 21
#define GF_IG_C_PSEUDOGENE 22
#define GF_IG_J_PSEUDOGENE 23
#define GF_IG_V_PSEUDOGENE 24
#define GF_TR_V_PSEUDOGENE 25
#define GF_TR_J_PSEUDOGENE 26
#define GF_MT_tRNA_PSEUDOGENE 27
#define GF_misc_RNA_PSEUDOGENE 28
#define GF_miRNA_PSEUDOGENE 29
#define GF_RIBOZYME 30
#define GF_RETAINED_INTRON 31
#define GF_RETROTRANSPOSED 32
#define GF_tRNA_PSEUDOGENE 33
#define GF_TRANSCRIBED_PROCESSED_PSEUDOGENE 34
#define GF_TRANSCRIBED_UNPROCESSED_PSEUDOGENE 35
#define GF_TRANSCRIBED_UNITARY_PSEUDOGENE 36
#define GF_TRANSLATED_UNPROCESSED_PSEUDOGENE 37
#define GF_TRANSLATED_PROCESSED_PSEUDOGENE 38
#define GF_KNOWN_NCRNA 39
#define GF_UNITARY_PSEUDOGENE 40
#define GF_UNPROCESSED_PSEUDOGENE 41
#define GF_LRG_GENE 42
#define GF_3PRIME_OVERLAPPING_ncRNA 43
#define GF_DISRUPTED_DOMAIN 44
#define GF_vaultRNA 45
#define GF_BIDIRECTIONAL_PROMOTER_lncRNA 46
#define GF_AMBIGUOUS_ORF 47
#define GF_PROTEIN_CODING (1|(1<<GF_coding_bit)) // coding: 65, 66, ...
#define GF_POLYMORPHIC_PSEUDOGENE (2|(1<<GF_coding_bit))
#define GF_IG_C (3|(1<<GF_coding_bit))
#define GF_IG_D (4|(1<<GF_coding_bit))
#define GF_IG_J (5|(1<<GF_coding_bit))
#define GF_IG_LV (6|(1<<GF_coding_bit))
#define GF_IG_V (7|(1<<GF_coding_bit))
#define GF_TR_C (8|(1<<GF_coding_bit))
#define GF_TR_D (9|(1<<GF_coding_bit))
#define GF_TR_J (10|(1<<GF_coding_bit))
#define GF_TR_V (11|(1<<GF_coding_bit))
#define GF_NMD (12|(1<<GF_coding_bit))
#define GF_NON_STOP_DECAY (13|(1<<GF_coding_bit))
#define GF_CDS ((1<<(GF_coding_bit+1))+1) // special types: 129, 130, ...
#define GF_EXON ((1<<(GF_coding_bit+1))+2)
#define GF_UTR3 ((1<<(GF_coding_bit+1))+3)
#define GF_UTR5 ((1<<(GF_coding_bit+1))+4)
// GF_MAX = (1<<30)-1, see hap_node_t
typedef struct _tscript_t tscript_t;
typedef struct
{
tscript_t *tr; // transcript
uint32_t beg; // the start coordinate of the CDS (on the reference strand, 0-based)
uint32_t pos; // 0-based index of the first exon base within the transcript (only to
// update hap_node_t.sbeg in hap_init, could be calculated on the fly)
uint32_t len; // exon length
uint32_t icds:30, // exon index within the transcript
phase:2; // offset of the CDS
}
gf_cds_t;
typedef struct
{
char *name; // human readable name, e.g. ORF45
uint8_t iseq;
}
gf_gene_t;
typedef struct
{
uint32_t beg,end;
tscript_t *tr;
}
gf_exon_t;
typedef enum { prime3, prime5 } utr_t;
typedef struct
{
utr_t which;
uint32_t beg,end;
tscript_t *tr;
}
gf_utr_t;
/*
Structures related to VCF output:
vcsq_t
information required to assemble consequence lines such as "inframe_deletion|XYZ|ENST01|+|5TY>5I|121ACG>A+124TA>T"
vcrec_t
single VCF record and csq tied to this record. (Haplotype can have multiple
consequences in several VCF records. Each record can have multiple consequences
from multiple haplotypes.)
csq_t
a top-level consequence tied to a haplotype
vbuf_t
pos2vbuf
VCF records with the same position clustered together for a fast lookup via pos2vbuf
*/
typedef struct _vbuf_t vbuf_t;
typedef struct _vcsq_t vcsq_t;
struct _vcsq_t
{
uint32_t strand:1,
type:31; // one of CSQ_* types
uint32_t trid;
uint32_t biotype; // one of GF_* types
char *gene; // gene name
bcf1_t *ref; // if type&CSQ_PRINTED_UPSTREAM, ref consequence "@1234"
kstring_t vstr; // variant string, eg 5TY>5I|121ACG>A+124TA>T
};
typedef struct
{
bcf1_t *line;
uint32_t *smpl; // bitmask of sample consequences with first/second haplotype interleaved
uint32_t nfmt:4, nvcsq:28, mvcsq;
vcsq_t *vcsq; // there can be multiple consequences for a single VCF record
}
vrec_t;
typedef struct
{
uint32_t pos;
vrec_t *vrec; // vcf line that this csq is tied to; needed when printing haplotypes (hap_stage_vcf)
int idx; // 0-based index of the csq at the VCF line, for FMT/BCSQ
vcsq_t type;
}
csq_t;
struct _vbuf_t
{
vrec_t **vrec; // buffer of VCF lines with the same position
int n, m;
};
KHASH_MAP_INIT_INT(pos2vbuf, vbuf_t*)
/*
Structures related to haplotype-aware consequences in coding regions
hap_node_t
node of a haplotype tree. Each transcript has one tree
tscript_t
despite its general name, it is intended for coding transcripts only
hap_t
hstack_t
for traversal of the haplotype tree and braking combined
consequences into independent parts
*/
typedef struct _hap_node_t hap_node_t;
struct _hap_node_t
{
char *seq; // cds segment [parent_node,this_node)
char *var; // variant "ref>alt"
uint32_t type:2, // HAP_ROOT or HAP_CDS
csq:30; // this node's consequence
int dlen; // alt minus ref length: <0 del, >0 ins, 0 substitution
uint32_t rbeg; // variant's VCF position (0-based, inclusive)
int32_t rlen; // variant's rlen; alen=rlen+dlen; fake for non CDS types
uint32_t sbeg; // variant's position on the spliced reference transcript (0-based, inclusive, N_REF_PAD not included)
uint32_t icds; // which exon does this node's variant overlaps
hap_node_t **child, *prev; // children haplotypes and previous coding node
int nchild, mchild;
bcf1_t *cur_rec, *rec; // current VCF record and node's VCF record
uint32_t nend; // number of haplotypes ending in this node
int *cur_child, mcur_child; // mapping from the allele to the currently active child
csq_t *csq_list; // list of haplotype's consequences, broken by position
int ncsq_list, mcsq_list;
};
struct _tscript_t
{
uint32_t id; // transcript id
uint32_t beg,end; // transcript's beg and end coordinate (ref strand, 0-based, inclusive)
uint32_t strand:1, // STRAND_REV or STRAND_FWD
ncds:31, // number of exons
mcds;
gf_cds_t **cds; // ordered list of exons
char *ref; // reference sequence, padded with N_REF_PAD bases on both ends
char *sref; // spliced reference sequence, padded with N_REF_PAD bases on both ends
hap_node_t *root; // root of the haplotype tree
hap_node_t **hap; // pointer to haplotype leaves, two for each sample
int nhap, nsref; // number of haplotypes and length of sref, including 2*N_REF_PAD
uint32_t trim:2, // complete, 5' or 3' trimmed, see TRIM_* types
type:30; // one of GF_* types
gf_gene_t *gene;
};
static inline int cmp_tscript(tscript_t **a, tscript_t **b)
{
return ( (*a)->end < (*b)->end ) ? 1 : 0;
}
KHEAP_INIT(trhp, tscript_t*, cmp_tscript)
typedef khp_trhp_t tr_heap_t;
typedef struct
{
hap_node_t *node; // current node
int ichild; // current child in the active node
int dlen; // total dlen, from the root to the active node
size_t slen; // total sequence length, from the root to the active node
}
hstack_t;
typedef struct
{
int mstack;
hstack_t *stack;
tscript_t *tr; // tr->ref: spliced transcript on ref strand
kstring_t sseq; // spliced haplotype sequence on ref strand
kstring_t tseq; // the variable part of translated haplotype transcript, coding strand
kstring_t tref; // the variable part of translated reference transcript, coding strand
uint32_t sbeg; // stack's sbeg, for cases first node's type is HAP_SSS
int upstream_stop;
}
hap_t;
/*
Helper structures, only for initialization
ftr_t
temporary list of all exons, CDS, UTRs
*/
KHASH_MAP_INIT_INT(int2tscript, tscript_t*)
KHASH_MAP_INIT_INT(int2gene, gf_gene_t*)
typedef struct
{
int type; // GF_CDS, GF_EXON, GF_5UTR, GF_3UTR
uint32_t beg;
uint32_t end;
uint32_t trid;
uint32_t strand:1; // STRAND_REV,STRAND_FWD
uint32_t phase:2; // 0, 1 or 2
uint32_t iseq:29;
}
ftr_t;
/*
Mapping from GFF ID string (such as ENST00000450305 or Zm00001d027230_P001)
to integer id. To keep the memory requirements low, the original version
relied on IDs in the form of a string prefix and a numerical id. However,
it turns out that this assumption is not valid for some ensembl GFFs, see
for example Zea_mays.AGPv4.36.gff3.gz
*/
typedef struct
{
void *str2id; // khash_str2int
int nstr, mstr;
char **str; // numeric id to string
}
id_tbl_t;
typedef struct
{
// all exons, CDS, UTRs
ftr_t *ftr;
int nftr, mftr;
// mapping from gene id to gf_gene_t
kh_int2gene_t *gid2gene;
// mapping from transcript id to tscript, for quick CDS anchoring
kh_int2tscript_t *id2tr;
// sequences
void *seq2int; // str2int hash
char **seq;
int nseq, mseq;
// ignored biotypes
void *ignored_biotypes;
id_tbl_t gene_ids; // temporary table for mapping between gene id (eg. Zm00001d027245) and a numeric idx
}
aux_t;
typedef struct _args_t
{
// the main regidx lookups, from chr:beg-end to overlapping features and
// index iterator
regidx_t *idx_cds, *idx_utr, *idx_exon, *idx_tscript;
regitr_t *itr;
// temporary structures, deleted after initializtion
aux_t init;
// text tab-delimited output (out) or vcf/bcf output (out_fh)
FILE *out;
htsFile *out_fh;
// vcf
bcf_srs_t *sr;
bcf_hdr_t *hdr;
int hdr_nsmpl; // actual number of samples in the vcf, for bcf_update_format_values()
// include or exclude sites which match the filters
filter_t *filter;
char *filter_str;
int filter_logic; // FLT_INCLUDE or FLT_EXCLUDE
// samples to process
int sample_is_file;
char *sample_list;
smpl_ilist_t *smpl;
char *outdir, **argv, *fa_fname, *gff_fname, *output_fname;
char *bcsq_tag;
int argc, output_type;
int phase, quiet, local_csq;
int ncsq_max, nfmt_bcsq; // maximum number of csq per site that can be accessed from FORMAT/BCSQ
int ncsq_small_warned;
int rid; // current chromosome
tr_heap_t *active_tr; // heap of active transcripts for quick flushing
hap_t *hap; // transcript haplotype recursion
vbuf_t **vcf_buf; // buffered VCF lines to annotate with CSQ and flush
rbuf_t vcf_rbuf; // round buffer indexes to vcf_buf
kh_pos2vbuf_t *pos2vbuf; // fast lookup of buffered lines by position
tscript_t **rm_tr; // buffer of transcripts to clean
int nrm_tr, mrm_tr;
csq_t *csq_buf; // pool of csq not managed by hap_node_t, i.e. non-CDS csqs
int ncsq_buf, mcsq_buf;
id_tbl_t tscript_ids; // mapping between transcript id (eg. Zm00001d027245_T001) and a numeric idx
int force; // force run under various conditions. Currently only to skip out-of-phase transcripts
faidx_t *fai;
kstring_t str, str2;
int32_t *gt_arr, mgt_arr;
}
args_t;
// AAA, AAC, ...
const char *gencode = "KNKNTTTTRSRSIIMIQHQHPPPPRRRRLLLLEDEDAAAAGGGGVVVV*Y*YSSSS*CWCLFLF";
const uint8_t nt4[] =
{
4,4,4,4, 4,4,4,4, 4,4,4,4, 4,4,4,4,
4,4,4,4, 4,4,4,4, 4,4,4,4, 4,4,4,4,
4,4,4,4, 4,4,4,4, 4,4,4,4, 4,4,4,4,
4,4,4,4, 4,4,4,4, 4,4,4,4, 4,4,4,4,
4,0,4,1, 4,4,4,2, 4,4,4,4, 4,4,4,4,
4,4,4,4, 3,4,4,4, 4,4,4,4, 4,4,4,4,
4,0,4,1, 4,4,4,2, 4,4,4,4, 4,4,4,4,
4,4,4,4, 3
};
const uint8_t cnt4[] =
{
4,4,4,4, 4,4,4,4, 4,4,4,4, 4,4,4,4,
4,4,4,4, 4,4,4,4, 4,4,4,4, 4,4,4,4,
4,4,4,4, 4,4,4,4, 4,4,4,4, 4,4,4,4,
4,4,4,4, 4,4,4,4, 4,4,4,4, 4,4,4,4,
4,3,4,2, 4,4,4,1, 4,4,4,4, 4,4,4,4,
4,4,4,4, 0,4,4,4, 4,4,4,4, 4,4,4,4,
4,3,4,2, 4,4,4,1, 4,4,4,4, 4,4,4,4,
4,4,4,4, 0
};
#define dna2aa(x) gencode[ nt4[(uint8_t)(x)[0]]<<4 | nt4[(uint8_t)(x)[1]]<<2 | nt4[(uint8_t)(x)[2]] ]
#define cdna2aa(x) gencode[ cnt4[(uint8_t)(x)[2]]<<4 | cnt4[(uint8_t)(x)[1]]<<2 | cnt4[(uint8_t)(x)[0]] ]
static const char *gf_strings_noncoding[] =
{
"MT_rRNA", "MT_tRNA", "lincRNA", "miRNA", "misc_RNA", "rRNA", "snRNA", "snoRNA", "processed_transcript",
"antisense", "macro_lncRNA", "ribozyme", "sRNA", "scRNA", "scaRNA", "sense_intronic", "sense_overlapping",
"pseudogene", "processed_pseudogene", "artifact", "IG_pseudogene", "IG_C_pseudogene", "IG_J_pseudogene",
"IG_V_pseudogene", "TR_V_pseudogene", "TR_J_pseudogene", "MT_tRNA_pseudogene", "misc_RNA_pseudogene",
"miRNA_pseudogene", "ribozyme", "retained_intron", "retrotransposed", "Trna_pseudogene", "transcribed_processed_pseudogene",
"transcribed_unprocessed_pseudogene", "transcribed_unitary_pseudogene", "translated_unprocessed_pseudogene",
"translated_processed_pseudogene", "known_ncRNA", "unitary_pseudogene", "unprocessed_pseudogene",
"LRG_gene", "3_prime_overlapping_ncRNA", "disrupted_domain", "vaultRNA", "bidirectional_promoter_lncRNA", "ambiguous_orf"
};
static const char *gf_strings_coding[] = { "protein_coding", "polymorphic_pseudogene", "IG_C", "IG_D", "IG_J", "IG_LV", "IG_V", "TR_C", "TR_D", "TR_J", "TR_V", "NMD", "non_stop_decay"};
static const char *gf_strings_special[] = { "CDS", "exon", "3_prime_UTR", "5_prime_UTR" };
const char *gf_type2gff_string(int type)
{
if ( !GF_is_coding(type) )
{
if ( type < (1<<GF_coding_bit) ) return gf_strings_noncoding[type-1];
type &= (1<<(GF_coding_bit+1)) - 1;
return gf_strings_special[type - 1];
}
type &= (1<<GF_coding_bit) - 1;
return gf_strings_coding[type - 1];
}
/*
gff parsing functions
*/
static inline int feature_set_seq(args_t *args, char *chr_beg, char *chr_end)
{
aux_t *aux = &args->init;
char c = chr_end[1];
chr_end[1] = 0;
int iseq;
if ( khash_str2int_get(aux->seq2int, chr_beg, &iseq)!=0 )
{
hts_expand(char*, aux->nseq+1, aux->mseq, aux->seq);
aux->seq[aux->nseq] = strdup(chr_beg);
iseq = khash_str2int_inc(aux->seq2int, aux->seq[aux->nseq]);
aux->nseq++;
assert( aux->nseq < 256 ); // see gf_gene_t.iseq
}
chr_end[1] = c;
return iseq;
}
static inline char *gff_skip(const char *line, char *ss)
{
while ( *ss && *ss!='\t' ) ss++;
if ( !*ss ) error("[%s:%d %s] Could not parse the line: %s\n",__FILE__,__LINE__,__FUNCTION__,line);
return ss+1;
}
static inline void gff_parse_chr(const char *line, char **chr_beg, char **chr_end)
{
char *se = (char*) line;
while ( *se && *se!='\t' ) se++;
if ( !*se ) error("[%s:%d %s] Could not parse the line: %s\n",__FILE__,__LINE__,__FUNCTION__,line);
*chr_beg = (char*) line;
*chr_end = se-1;
}
static inline char *gff_parse_beg_end(const char *line, char *ss, uint32_t *beg, uint32_t *end)
{
char *se = ss;
*beg = strtol(ss, &se, 10) - 1;
if ( ss==se ) error("[%s:%d %s] Could not parse the line:\n\t%s\n\t%s\n",__FILE__,__LINE__,__FUNCTION__,line,ss);
ss = se+1;
*end = strtol(ss, &se, 10) - 1;
if ( ss==se ) error("[%s:%d %s] Could not parse the line: %s\n",__FILE__,__LINE__,__FUNCTION__,line);
return se+1;
}
static void gff_id_init(id_tbl_t *tbl)
{
memset(tbl, 0, sizeof(*tbl));
tbl->str2id = khash_str2int_init();
}
static void gff_id_destroy(id_tbl_t *tbl)
{
khash_str2int_destroy_free(tbl->str2id);
free(tbl->str);
}
static inline uint32_t gff_id_parse(id_tbl_t *tbl, const char *line, const char *needle, char *ss)
{
ss = strstr(ss,needle); // e.g. "ID=transcript:"
if ( !ss ) error("[%s:%d %s] Could not parse the line, \"%s\" not present: %s\n",__FILE__,__LINE__,__FUNCTION__,needle,line);
ss += strlen(needle);
char *se = ss;
while ( *se && *se!=';' && !isspace(*se) ) se++;
char tmp = *se;
*se = 0;
int id;
if ( khash_str2int_get(tbl->str2id, ss, &id) < 0 )
{
id = tbl->nstr++;
hts_expand(char*, tbl->nstr, tbl->mstr, tbl->str);
tbl->str[id] = strdup(ss);
khash_str2int_set(tbl->str2id, tbl->str[id], id);
}
*se = tmp;
return id;
}
static inline int gff_parse_type(char *line)
{
line = strstr(line,"ID=");
if ( !line ) return -1;
line += 3;
if ( !strncmp(line,"transcript:",11) ) return GFF_TSCRIPT_LINE;
else if ( !strncmp(line,"gene:",5) ) return GFF_GENE_LINE;
return -1;
}
static inline int gff_parse_biotype(char *_line)
{
char *line = strstr(_line,"biotype=");
if ( !line ) return -1;
line += 8;
switch (*line)
{
case 'p':
if ( !strncmp(line,"protein_coding",14) ) return GF_PROTEIN_CODING;
else if ( !strncmp(line,"pseudogene",10) ) return GF_PSEUDOGENE;
else if ( !strncmp(line,"processed_transcript",20) ) return GF_PROCESSED_TRANSCRIPT;
else if ( !strncmp(line,"processed_pseudogene",20) ) return GF_PROCESSED_PSEUDOGENE;
else if ( !strncmp(line,"polymorphic_pseudogene",22) ) return GF_POLYMORPHIC_PSEUDOGENE;
break;
case 'a':
if ( !strncmp(line,"artifact",8) ) return GF_ARTIFACT;
else if ( !strncmp(line,"antisense",9) ) return GF_ANTISENSE;
else if ( !strncmp(line,"ambiguous_orf",13) ) return GF_AMBIGUOUS_ORF;
break;
case 'I':
if ( !strncmp(line,"IG_C_gene",9) ) return GF_IG_C;
else if ( !strncmp(line,"IG_D_gene",9) ) return GF_IG_D;
else if ( !strncmp(line,"IG_J_gene",9) ) return GF_IG_J;
else if ( !strncmp(line,"IG_LV_gene",10) ) return GF_IG_LV;
else if ( !strncmp(line,"IG_V_gene",9) ) return GF_IG_V;
else if ( !strncmp(line,"IG_pseudogene",13) ) return GF_IG_PSEUDOGENE;
else if ( !strncmp(line,"IG_C_pseudogene",15) ) return GF_IG_C_PSEUDOGENE;
else if ( !strncmp(line,"IG_J_pseudogene",15) ) return GF_IG_J_PSEUDOGENE;
else if ( !strncmp(line,"IG_V_pseudogene",15) ) return GF_IG_V_PSEUDOGENE;
break;
case 'T':
if ( !strncmp(line,"TR_C_gene",9) ) return GF_TR_C;
else if ( !strncmp(line,"TR_D_gene",9) ) return GF_TR_D;
else if ( !strncmp(line,"TR_J_gene",9) ) return GF_TR_J;
else if ( !strncmp(line,"TR_V_gene",9) ) return GF_TR_V;
else if ( !strncmp(line,"TR_V_pseudogene",15) ) return GF_TR_V_PSEUDOGENE;
else if ( !strncmp(line,"TR_J_pseudogene",15) ) return GF_TR_J_PSEUDOGENE;
break;
case 'M':
if ( !strncmp(line,"Mt_tRNA_pseudogene",18) ) return GF_MT_tRNA_PSEUDOGENE;
else if ( !strncmp(line,"Mt_tRNA",7) ) return GF_MT_tRNA;
else if ( !strncmp(line,"Mt_rRNA",7) ) return GF_MT_tRNA;
break;
case 'l':
if ( !strncmp(line,"lincRNA",7) ) return GF_lincRNA;
break;
case 'm':
if ( !strncmp(line,"macro_lncRNA",12) ) return GF_macro_lncRNA;
else if ( !strncmp(line,"misc_RNA_pseudogene",19) ) return GF_misc_RNA_PSEUDOGENE;
else if ( !strncmp(line,"miRNA_pseudogene",16) ) return GF_miRNA_PSEUDOGENE;
else if ( !strncmp(line,"miRNA",5) ) return GF_miRNA;
else if ( !strncmp(line,"misc_RNA",8) ) return GF_MISC_RNA;
break;
case 'r':
if ( !strncmp(line,"rRNA",4) ) return GF_rRNA;
else if ( !strncmp(line,"ribozyme",8) ) return GF_RIBOZYME;
else if ( !strncmp(line,"retained_intron",15) ) return GF_RETAINED_INTRON;
else if ( !strncmp(line,"retrotransposed",15) ) return GF_RETROTRANSPOSED;
break;
case 's':
if ( !strncmp(line,"snRNA",5) ) return GF_snRNA;
else if ( !strncmp(line,"sRNA",4) ) return GF_sRNA;
else if ( !strncmp(line,"scRNA",5) ) return GF_scRNA;
else if ( !strncmp(line,"scaRNA",6) ) return GF_scaRNA;
else if ( !strncmp(line,"snoRNA",6) ) return GF_snoRNA;
else if ( !strncmp(line,"sense_intronic",14) ) return GF_SENSE_INTRONIC;
else if ( !strncmp(line,"sense_overlapping",17) ) return GF_SENSE_OVERLAPPING;
break;
case 't':
if ( !strncmp(line,"tRNA_pseudogene",15) ) return GF_tRNA_PSEUDOGENE;
else if ( !strncmp(line,"transcribed_processed_pseudogene",32) ) return GF_TRANSCRIBED_PROCESSED_PSEUDOGENE;
else if ( !strncmp(line,"transcribed_unprocessed_pseudogene",34) ) return GF_TRANSCRIBED_UNPROCESSED_PSEUDOGENE;
else if ( !strncmp(line,"transcribed_unitary_pseudogene",30) ) return GF_TRANSCRIBED_UNITARY_PSEUDOGENE;
else if ( !strncmp(line,"translated_unprocessed_pseudogene",33) ) return GF_TRANSLATED_UNPROCESSED_PSEUDOGENE;
else if ( !strncmp(line,"translated_processed_pseudogene",31) ) return GF_TRANSLATED_PROCESSED_PSEUDOGENE;
break;
case 'n':
if ( !strncmp(line,"nonsense_mediated_decay",23) ) return GF_NMD;
else if ( !strncmp(line,"non_stop_decay",14) ) return GF_NON_STOP_DECAY;
break;
case 'k':
if ( !strncmp(line,"known_ncrna",11) ) return GF_KNOWN_NCRNA;
break;
case 'u':
if ( !strncmp(line,"unitary_pseudogene",18) ) return GF_UNITARY_PSEUDOGENE;
else if ( !strncmp(line,"unprocessed_pseudogene",22) ) return GF_UNPROCESSED_PSEUDOGENE;
break;
case 'L':
if ( !strncmp(line,"LRG_gene",8) ) return GF_LRG_GENE;
break;
case '3':
if ( !strncmp(line,"3prime_overlapping_ncRNA",24) ) return GF_3PRIME_OVERLAPPING_ncRNA;
break;
case 'd':
if ( !strncmp(line,"disrupted_domain",16) ) return GF_DISRUPTED_DOMAIN;
break;
case 'v':
if ( !strncmp(line,"vaultRNA",8) ) return GF_vaultRNA;
break;
case 'b':
if ( !strncmp(line,"bidirectional_promoter_lncRNA",29) ) return GF_BIDIRECTIONAL_PROMOTER_lncRNA;
break;
}
return 0;
}
static inline int gff_ignored_biotype(args_t *args, char *ss)
{
ss = strstr(ss,"biotype=");
if ( !ss ) return 0;
ss += 8;
char *se = ss, tmp;
while ( *se && *se!=';' ) se++;
tmp = *se;
*se = 0;
char *key = ss;
int n = 0;
if ( khash_str2int_get(args->init.ignored_biotypes, ss, &n)!=0 ) key = strdup(ss);
khash_str2int_set(args->init.ignored_biotypes, key, n+1);
*se = tmp;
return 1;
}
gf_gene_t *gene_init(aux_t *aux, uint32_t gene_id)
{
khint_t k = kh_get(int2gene, aux->gid2gene, (int)gene_id);
gf_gene_t *gene = (k == kh_end(aux->gid2gene)) ? NULL : kh_val(aux->gid2gene, k);
if ( !gene )
{
gene = (gf_gene_t*) calloc(1,sizeof(gf_gene_t));
int ret;
k = kh_put(int2gene, aux->gid2gene, (int)gene_id, &ret);
kh_val(aux->gid2gene,k) = gene;
}
return gene;
}
void gff_parse_transcript(args_t *args, const char *line, char *ss, ftr_t *ftr)
{
aux_t *aux = &args->init;
int biotype = gff_parse_biotype(ss);
if ( biotype <= 0 )
{
if ( !gff_ignored_biotype(args, ss) && args->quiet<2 ) fprintf(stderr,"ignored transcript: %s\n",line);
return;
}
// create a mapping from transcript_id to gene_id
uint32_t trid = gff_id_parse(&args->tscript_ids, line, "ID=transcript:", ss);
uint32_t gene_id = gff_id_parse(&args->init.gene_ids, line, "Parent=gene:", ss);
tscript_t *tr = (tscript_t*) calloc(1,sizeof(tscript_t));
tr->id = trid;
tr->strand = ftr->strand;
tr->gene = gene_init(aux, gene_id);
tr->type = biotype;
tr->beg = ftr->beg;
tr->end = ftr->end;
khint_t k;
int ret;
k = kh_put(int2tscript, aux->id2tr, (int)trid, &ret);
kh_val(aux->id2tr,k) = tr;
}
void gff_parse_gene(args_t *args, const char *line, char *ss, char *chr_beg, char *chr_end, ftr_t *ftr)
{
int biotype = gff_parse_biotype(ss);
if ( biotype <= 0 )
{
if ( !gff_ignored_biotype(args, ss) && args->quiet<2 ) fprintf(stderr,"ignored gene: %s\n",line);
return;
}
aux_t *aux = &args->init;
// substring search for "ID=gene:ENSG00000437963"
uint32_t gene_id = gff_id_parse(&aux->gene_ids, line, "ID=gene:", ss);
gf_gene_t *gene = gene_init(aux, gene_id);
assert( !gene->name ); // the gene_id should be unique
gene->iseq = feature_set_seq(args, chr_beg,chr_end);
// substring search for "Name=OR4F5"
ss = strstr(chr_end+2,"Name=");
if ( ss )
{
ss += 5;
char *se = ss;
while ( *se && *se!=';' && !isspace(*se) ) se++;
gene->name = (char*) malloc(se-ss+1);
memcpy(gene->name,ss,se-ss);
gene->name[se-ss] = 0;
}
else
gene->name = strdup(aux->gene_ids.str[gene_id]); // Name=<GeneName> field is not present, use the gene ID instead
}
int gff_parse(args_t *args, char *line, ftr_t *ftr)
{
// - skip empty lines and commented lines
// - columns
// 1. chr
// 2. <skip>
// 3. CDS, transcript, gene, ...
// 4-5. beg,end
// 6. <skip>
// 7. strand
// 8. phase
// 9. Parent=transcript:ENST(\d+);ID=... etc
char *ss = line;
if ( !*ss ) return -1; // skip blank lines
if ( *ss=='#' ) return -1; // skip comments
char *chr_beg, *chr_end;
gff_parse_chr(line, &chr_beg, &chr_end);
ss = gff_skip(line, chr_end + 2);
// 3. column: is this a CDS, transcript, gene, etc.
if ( !strncmp("exon\t",ss,5) ) { ftr->type = GF_EXON; ss += 5; }
else if ( !strncmp("CDS\t",ss,4) ) { ftr->type = GF_CDS; ss += 4; }
else if ( !strncmp("three_prime_UTR\t",ss,16) ) { ftr->type = GF_UTR3; ss += 16; }
else if ( !strncmp("five_prime_UTR\t",ss,15) ) { ftr->type = GF_UTR5; ss += 15; }
else
{
ss = gff_skip(line, ss);
ss = gff_parse_beg_end(line, ss, &ftr->beg,&ftr->end);
ss = gff_skip(line, ss);
int type = gff_parse_type(ss);
if ( type!=GFF_TSCRIPT_LINE && type!=GFF_GENE_LINE )
{
// we ignore these, debug print to see new types:
ss = strstr(ss,"ID=");
if ( !ss ) return -1; // no ID, ignore the line
if ( !strncmp("chromosome",ss+3,10) ) return -1;
if ( !strncmp("supercontig",ss+3,11) ) return -1;
if ( args->quiet<2 ) fprintf(stderr,"ignored: %s\n", line);
return -1;
}
// 7. column: strand
if ( *ss == '+' ) ftr->strand = STRAND_FWD;
else if ( *ss == '-' ) ftr->strand = STRAND_REV;
else error("Unknown strand: %c .. %s\n", *ss,ss);
if ( type==GFF_TSCRIPT_LINE )
gff_parse_transcript(args, line, ss, ftr);
else
gff_parse_gene(args, line, ss, chr_beg, chr_end, ftr);
return -1;
}
ss = gff_parse_beg_end(line, ss, &ftr->beg,&ftr->end);
ss = gff_skip(line, ss);
// 7. column: strand
if ( *ss == '+' ) ftr->strand = STRAND_FWD;
else if ( *ss == '-' ) ftr->strand = STRAND_REV;
else { if ( args->quiet<2 ) fprintf(stderr,"Skipping unknown strand: %c\n", *ss); return -1; }
ss += 2;
// 8. column: phase (codon offset)
if ( *ss == '0' ) ftr->phase = 0;
else if ( *ss == '1' ) ftr->phase = 1;
else if ( *ss == '2' ) ftr->phase = 2;
else if ( *ss == '.' ) ftr->phase = 0; // exons do not have phase
else { if ( args->quiet<2 ) fprintf(stderr,"Skipping unknown phase: %c, %s\n", *ss, line); return -1; }
ss += 2;
// substring search for "Parent=transcript:ENST00000437963"
ftr->trid = gff_id_parse(&args->tscript_ids, line, "Parent=transcript:", ss);
ftr->iseq = feature_set_seq(args, chr_beg,chr_end);
return 0;
}
static int cmp_cds_ptr(const void *a, const void *b)
{
// comparison function for qsort of transcripts's CDS
if ( (*((gf_cds_t**)a))->beg < (*((gf_cds_t**)b))->beg ) return -1;
if ( (*((gf_cds_t**)a))->beg > (*((gf_cds_t**)b))->beg ) return 1;
return 0;
}
static inline void chr_beg_end(aux_t *aux, int iseq, char **chr_beg, char **chr_end)
{
*chr_beg = *chr_end = aux->seq[iseq];
while ( (*chr_end)[1] ) (*chr_end)++;
}
tscript_t *tscript_init(aux_t *aux, uint32_t trid)
{
khint_t k = kh_get(int2tscript, aux->id2tr, (int)trid);
tscript_t *tr = (k == kh_end(aux->id2tr)) ? NULL : kh_val(aux->id2tr, k);
assert( tr );
return tr;
}
void register_cds(args_t *args, ftr_t *ftr)
{
// Make the CDS searchable via idx_cds. Note we do not malloc tr->cds just yet.
// ftr is the result of parsing a gff CDS line
aux_t *aux = &args->init;
tscript_t *tr = tscript_init(aux, ftr->trid);
if ( tr->strand != ftr->strand ) error("Conflicting strand in transcript %"PRIu32" .. %d vs %d\n",ftr->trid,tr->strand,ftr->strand);
gf_cds_t *cds = (gf_cds_t*) malloc(sizeof(gf_cds_t));
cds->tr = tr;
cds->beg = ftr->beg;
cds->len = ftr->end - ftr->beg + 1;
cds->icds = 0; // to keep valgrind on mac happy
cds->phase = ftr->phase;
hts_expand(gf_cds_t*,tr->ncds+1,tr->mcds,tr->cds);
tr->cds[tr->ncds++] = cds;
}
void register_utr(args_t *args, ftr_t *ftr)
{
aux_t *aux = &args->init;
gf_utr_t *utr = (gf_utr_t*) malloc(sizeof(gf_utr_t));
utr->which = ftr->type==GF_UTR3 ? prime3 : prime5;
utr->beg = ftr->beg;
utr->end = ftr->end;
utr->tr = tscript_init(aux, ftr->trid);
char *chr_beg, *chr_end;
chr_beg_end(&args->init, utr->tr->gene->iseq, &chr_beg, &chr_end);
regidx_push(args->idx_utr, chr_beg,chr_end, utr->beg,utr->end, &utr);
}
void register_exon(args_t *args, ftr_t *ftr)
{
aux_t *aux = &args->init;
gf_exon_t *exon = (gf_exon_t*) malloc(sizeof(gf_exon_t));
exon->beg = ftr->beg;
exon->end = ftr->end;
exon->tr = tscript_init(aux, ftr->trid);
char *chr_beg, *chr_end;
chr_beg_end(&args->init, exon->tr->gene->iseq, &chr_beg, &chr_end);
regidx_push(args->idx_exon, chr_beg,chr_end, exon->beg - N_SPLICE_REGION_INTRON, exon->end + N_SPLICE_REGION_INTRON, &exon);
}
void tscript_init_cds(args_t *args)
{
aux_t *aux = &args->init;
// Sort CDS in all transcripts, set offsets, check their phase, length, create index (idx_cds)
khint_t k;
for (k=0; k<kh_end(aux->id2tr); k++)
{
if ( !kh_exist(aux->id2tr, k) ) continue;
tscript_t *tr = (tscript_t*) kh_val(aux->id2tr, k);
// position-to-tscript lookup
char *chr_beg, *chr_end;
chr_beg_end(aux, tr->gene->iseq, &chr_beg, &chr_end);
regidx_push(args->idx_tscript, chr_beg, chr_end, tr->beg, tr->end, &tr);
if ( !tr->ncds ) continue; // transcript with no CDS
// sort CDs
qsort(tr->cds, tr->ncds, sizeof(gf_cds_t*), cmp_cds_ptr);
// trim non-coding start
int i, len = 0;
if ( tr->strand==STRAND_FWD )
{
if ( tr->cds[0]->phase ) tr->trim |= TRIM_5PRIME;
tr->cds[0]->beg += tr->cds[0]->phase;
tr->cds[0]->len -= tr->cds[0]->phase;
tr->cds[0]->phase = 0;
// sanity check phase; the phase number in gff tells us how many bases to skip in this
// feature to reach the first base of the next codon
int tscript_ok = 1;
for (i=0; i<tr->ncds; i++)
{
int phase = tr->cds[i]->phase ? 3 - tr->cds[i]->phase : 0;
if ( phase!=len%3)
{
if ( args->force )
{
if ( args->quiet < 2 )
fprintf(stderr,"Warning: GFF3 assumption failed for transcript %s, CDS=%d: phase!=len%%3 (phase=%d, len=%d)\n",args->tscript_ids.str[tr->id],tr->cds[i]->beg+1,phase,len);
tscript_ok = 0;
break;
}
error("Error: GFF3 assumption failed for transcript %s, CDS=%d: phase!=len%%3 (phase=%d, len=%d)\n",args->tscript_ids.str[tr->id],tr->cds[i]->beg+1,phase,len);
}
len += tr->cds[i]->len;
}
if ( !tscript_ok ) continue; // skip this transcript
}
else
{
// Check that the phase is not bigger than CDS length. Curiously, this can really happen,
// see Mus_musculus.GRCm38.85.gff3.gz, transcript:ENSMUST00000163141
// todo: the same for the fwd strand
i = tr->ncds - 1;
int phase = tr->cds[i]->phase;
if ( phase ) tr->trim |= TRIM_5PRIME;
while ( i>=0 && phase > tr->cds[i]->len )
{
phase -= tr->cds[i]->len;
tr->cds[i]->phase = 0;
tr->cds[i]->len = 0;
i--;
}
tr->cds[i]->len -= tr->cds[i]->phase;
tr->cds[i]->phase = 0;
// sanity check phase
int tscript_ok = 1;
for (i=tr->ncds-1; i>=0; i--)
{
int phase = tr->cds[i]->phase ? 3 - tr->cds[i]->phase : 0;
if ( phase!=len%3)
{
if ( args->force )
{
if ( args->quiet < 2 )
fprintf(stderr,"Warning: GFF3 assumption failed for transcript %s, CDS=%d: phase!=len%%3 (phase=%d, len=%d)\n",args->tscript_ids.str[tr->id],tr->cds[i]->beg+1,phase,len);
tscript_ok = 0;
break;
}
error("Error: GFF3 assumption failed for transcript %s, CDS=%d: phase!=len%%3 (phase=%d, len=%d)\n",args->tscript_ids.str[tr->id],tr->cds[i]->beg+1,phase,len);
}
len += tr->cds[i]->len;
}
if ( !tscript_ok ) continue; // skip this transcript
}
// set len. At the same check that CDS within a transcript do not overlap
len = 0;
for (i=0; i<tr->ncds; i++)
{
tr->cds[i]->icds = i;
len += tr->cds[i]->len;
if ( !i ) continue;
gf_cds_t *a = tr->cds[i-1];
gf_cds_t *b = tr->cds[i];
if ( a->beg + a->len - 1 >= b->beg )
error("Error: CDS overlap in the transcript %"PRIu32": %"PRIu32"-%"PRIu32" and %"PRIu32"-%"PRIu32"\n",
kh_key(aux->id2tr, k), a->beg+1,a->beg+a->len, b->beg+1,b->beg+b->len);
}
if ( len%3 != 0 )
{
// There are 13k transcripts with incomplete 3' CDS. See for example ENST00000524289
// http://sep2015.archive.ensembl.org/Homo_sapiens/Transcript/Sequence_cDNA?db=core;g=ENSG00000155868;r=5:157138846-157159019;t=ENST00000524289
// Also, the incomplete CDS can be too short (1 or 2bp), so it is not enough to trim the last one.
tr->trim |= TRIM_3PRIME;
if ( tr->strand==STRAND_FWD )
{
i = tr->ncds - 1;
while ( i>=0 && len%3 )
{
int dlen = tr->cds[i]->len >= len%3 ? len%3 : tr->cds[i]->len;
tr->cds[i]->len -= dlen;
len -= dlen;
i--;
}
}
else
{
i = 0;
while ( i<tr->ncds && len%3 )
{
int dlen = tr->cds[i]->len >= len%3 ? len%3 : tr->cds[i]->len;
tr->cds[i]->len -= dlen;
tr->cds[i]->beg += dlen;
len -= dlen;
i++;
}
}
}
// set CDS offsets and insert into regidx
len=0;
for (i=0; i<tr->ncds; i++)
{
tr->cds[i]->pos = len;
len += tr->cds[i]->len;
regidx_push(args->idx_cds, chr_beg,chr_end, tr->cds[i]->beg,tr->cds[i]->beg+tr->cds[i]->len-1, &tr->cds[i]);
}
}
}
void regidx_free_gf(void *payload) { free(*((gf_cds_t**)payload)); }
void regidx_free_tscript(void *payload) { tscript_t *tr = *((tscript_t**)payload); free(tr->cds); free(tr); }
void init_gff(args_t *args)
{
aux_t *aux = &args->init;
aux->seq2int = khash_str2int_init(); // chrom's numeric id
aux->gid2gene = kh_init(int2gene); // gene id to gf_gene_t, for idx_gene
aux->id2tr = kh_init(int2tscript); // transcript id to tscript_t
args->idx_tscript = regidx_init(NULL, NULL, regidx_free_tscript, sizeof(tscript_t*), NULL);
aux->ignored_biotypes = khash_str2int_init();
gff_id_init(&aux->gene_ids);
gff_id_init(&args->tscript_ids);
// parse gff
kstring_t str = {0,0,0};
htsFile *fp = hts_open(args->gff_fname,"r");
if ( !fp ) error("Failed to read %s\n", args->gff_fname);
while ( hts_getline(fp, KS_SEP_LINE, &str) > 0 )
{
hts_expand(ftr_t, aux->nftr+1, aux->mftr, aux->ftr);
int ret = gff_parse(args, str.s, aux->ftr + aux->nftr);
if ( !ret ) aux->nftr++;
}
free(str.s);
if ( hts_close(fp)!=0 ) error("Close failed: %s\n", args->gff_fname);
// process gff information: connect CDS and exons to transcripts
args->idx_cds = regidx_init(NULL, NULL, regidx_free_gf, sizeof(gf_cds_t*), NULL);
args->idx_utr = regidx_init(NULL, NULL, regidx_free_gf, sizeof(gf_utr_t*), NULL);
args->idx_exon = regidx_init(NULL, NULL, regidx_free_gf, sizeof(gf_exon_t*), NULL);
args->itr = regitr_init(NULL);
int i;
for (i=0; i<aux->nftr; i++)
{
ftr_t *ftr = &aux->ftr[i];
// check whether to keep this feature: is there a mapping trid -> gene_id -> gene?
khint_t k = kh_get(int2tscript, aux->id2tr, (int)ftr->trid);
if ( k==kh_end(aux->id2tr) ) continue; // no such transcript
tscript_t *tr = kh_val(aux->id2tr,k);
if ( !tr->gene->name )
{
// not a supported biotype (e.g. gene:pseudogene, transcript:processed_transcript)
regidx_free_tscript(&tr);
kh_del(int2tscript, aux->id2tr,k);
continue;
}
// populate regidx by category:
// ftr->type .. GF_CDS, GF_EXON, GF_UTR3, GF_UTR5
// gene->type .. GF_PROTEIN_CODING, GF_MT_rRNA, GF_IG_C, ...
if ( ftr->type==GF_CDS ) register_cds(args, ftr);
else if ( ftr->type==GF_EXON ) register_exon(args, ftr);
else if ( ftr->type==GF_UTR5 ) register_utr(args, ftr);
else if ( ftr->type==GF_UTR3 ) register_utr(args, ftr);
else
error("something: %s\t%d\t%d\t%s\t%s\n", aux->seq[ftr->iseq],ftr->beg+1,ftr->end+1,args->tscript_ids.str[ftr->trid],gf_type2gff_string(ftr->type));
}
tscript_init_cds(args);
if ( !args->quiet )
{
fprintf(stderr,"Indexed %d transcripts, %d exons, %d CDSs, %d UTRs\n",
regidx_nregs(args->idx_tscript),
regidx_nregs(args->idx_exon),
regidx_nregs(args->idx_cds),
regidx_nregs(args->idx_utr));
}
free(aux->ftr);
khash_str2int_destroy_free(aux->seq2int);
// keeping only to destroy the genes at the end: kh_destroy(int2gene,aux->gid2gene);
kh_destroy(int2tscript,aux->id2tr);
free(aux->seq);
gff_id_destroy(&aux->gene_ids);
if ( args->quiet<2 && khash_str2int_size(aux->ignored_biotypes) )
{
khash_t(str2int) *ign = (khash_t(str2int)*)aux->ignored_biotypes;
fprintf(stderr,"Ignored the following biotypes:\n");
for (i = kh_begin(ign); i < kh_end(ign); i++)
{
if ( !kh_exist(ign,i)) continue;
fprintf(stderr,"\t%dx\t.. %s\n", kh_value(ign,i), kh_key(ign,i));
}
}
khash_str2int_destroy_free(aux->ignored_biotypes);
}
void init_data(args_t *args)
{
args->nfmt_bcsq = 1 + (args->ncsq_max - 1) / 32;
if ( !args->quiet ) fprintf(stderr,"Parsing %s ...\n", args->gff_fname);
init_gff(args);
args->rid = -1;
if ( args->filter_str )
args->filter = filter_init(args->hdr, args->filter_str);
args->fai = fai_load(args->fa_fname);
if ( !args->fai ) error("Failed to load the fai index: %s\n", args->fa_fname);
args->pos2vbuf = kh_init(pos2vbuf);
args->active_tr = khp_init(trhp);
args->hap = (hap_t*) calloc(1,sizeof(hap_t));
// init samples
if ( !bcf_hdr_nsamples(args->hdr) ) args->phase = PHASE_DROP_GT;
if ( args->sample_list && !strcmp("-",args->sample_list) )
{
// ignore all samples
if ( args->output_type==FT_TAB_TEXT )
{
// significant speedup for plain VCFs
bcf_hdr_set_samples(args->hdr,NULL,0);
}
args->phase = PHASE_DROP_GT;
}
else
args->smpl = smpl_ilist_init(args->hdr, args->sample_list, args->sample_is_file, SMPL_STRICT);
args->hdr_nsmpl = args->phase==PHASE_DROP_GT ? 0 : bcf_hdr_nsamples(args->hdr);
if ( args->output_type==FT_TAB_TEXT )
{
args->out = args->output_fname ? fopen(args->output_fname,"w") : stdout;
if ( !args->out ) error("Failed to open %s: %s\n", args->output_fname,strerror(errno));
fprintf(args->out,"# This file was produced by: bcftools +csq(%s+htslib-%s)\n", bcftools_version(),hts_version());
fprintf(args->out,"# The command line was:\tbcftools +%s", args->argv[0]);
int i;
for (i=1; i<args->argc; i++)
fprintf(args->out," %s",args->argv[i]);
fprintf(args->out,"\n");
fprintf(args->out,"# LOG\t[2]Message\n");
fprintf(args->out,"# CSQ"); i = 1;
fprintf(args->out,"\t[%d]Sample", ++i);
fprintf(args->out,"\t[%d]Haplotype", ++i);
fprintf(args->out,"\t[%d]Chromosome", ++i);
fprintf(args->out,"\t[%d]Position", ++i);
fprintf(args->out,"\t[%d]Consequence", ++i);
fprintf(args->out,"\n");
}
else
{
args->out_fh = hts_open(args->output_fname? args->output_fname : "-",hts_bcf_wmode(args->output_type));
if ( args->out_fh == NULL ) error("Can't write to %s: %s\n", args->output_fname? args->output_fname : "standard output", strerror(errno));
bcf_hdr_append_version(args->hdr,args->argc,args->argv,"bcftools/csq");
bcf_hdr_printf(args->hdr,"##INFO=<ID=%s,Number=.,Type=String,Description=\"%s consequence annotation from BCFtools/csq. Format: '[*]consequence|gene|transcript|biotype[|strand|amino_acid_change|dna_change]' or, for consequences of variants split across multiple sites, a pointer to the record storing the consequences '@position'. '*' prefix indicates a consequence downstream from a stop \">",args->bcsq_tag, args->local_csq ? "Local" : "Haplotype-aware");
if ( args->hdr_nsmpl )
bcf_hdr_printf(args->hdr,"##FORMAT=<ID=%s,Number=.,Type=Integer,Description=\"Bitmask of indexes to INFO/BCSQ, with interleaved first/second haplotype. Use \\\"bcftools query -f'[%%CHROM\\t%%POS\\t%%SAMPLE\\t%%TBCSQ\\n]'\\\" to translate.\">",args->bcsq_tag);
bcf_hdr_write(args->out_fh, args->hdr);
}
if ( !args->quiet ) fprintf(stderr,"Calling...\n");
}
void destroy_data(args_t *args)
{
regidx_destroy(args->idx_cds);
regidx_destroy(args->idx_utr);
regidx_destroy(args->idx_exon);
regidx_destroy(args->idx_tscript);
regitr_destroy(args->itr);
khint_t k,i,j;
for (k=0; k<kh_end(args->init.gid2gene); k++)
{
if ( !kh_exist(args->init.gid2gene, k) ) continue;
gf_gene_t *gene = (gf_gene_t*) kh_val(args->init.gid2gene, k);
free(gene->name);
free(gene);
}
kh_destroy(int2gene,args->init.gid2gene);
if ( args->filter )
filter_destroy(args->filter);
khp_destroy(trhp,args->active_tr);
kh_destroy(pos2vbuf,args->pos2vbuf);
if ( args->smpl ) smpl_ilist_destroy(args->smpl);
int ret;
if ( args->out_fh )
ret = hts_close(args->out_fh);
else
ret = fclose(args->out);
if ( ret ) error("Error: close failed .. %s\n", args->output_fname?args->output_fname:"stdout");
for (i=0; i<args->vcf_rbuf.m; i++)
{
vbuf_t *vbuf = args->vcf_buf[i];
if ( !vbuf ) continue;
for (j=0; j<vbuf->m; j++)
{
if ( !vbuf->vrec[j] ) continue;
if ( vbuf->vrec[j]->line ) bcf_destroy(vbuf->vrec[j]->line);
free(vbuf->vrec[j]->smpl);
free(vbuf->vrec[j]->vcsq);
free(vbuf->vrec[j]);
}
free(vbuf->vrec);
free(vbuf);
}
free(args->vcf_buf);
free(args->rm_tr);
free(args->csq_buf);
free(args->hap->stack);
free(args->hap->sseq.s);
free(args->hap->tseq.s);
free(args->hap->tref.s);
free(args->hap);
fai_destroy(args->fai);
free(args->gt_arr);
free(args->str.s);
free(args->str2.s);
gff_id_destroy(&args->tscript_ids);
}
/*
The splice_* functions are for consquences around splice sites: start,stop,splice_*
*/
#define SPLICE_VAR_REF 0 // ref: ACGT>ACGT, csq not applicable, skip completely
#define SPLICE_OUTSIDE 1 // splice acceptor or similar; csq set and is done, does not overlap the region
#define SPLICE_INSIDE 2 // overlaps coding region; csq can be set but coding prediction is needed
#define SPLICE_OVERLAP 3 // indel overlaps region boundary, csq set but could not determine csq
typedef struct
{
tscript_t *tr;
struct {
int32_t pos, rlen, alen;
char *ref, *alt;
bcf1_t *rec;
} vcf;
uint16_t check_acceptor:1, // check distance from exon start (fwd) or end (rev)
check_start:1, // this is the first coding exon (relative to transcript orientation), check first (fwd) or last (rev) codon
check_stop:1, // this is the last coding exon (relative to transcript orientation), check last (fwd) or first (rev) codon
check_donor:1, // as with check_acceptor
check_region_beg:1, // do/don't check for splices at this end, eg. in the first or last exon
check_region_end:1, //
check_utr:1, // check splice sites (acceptor/donor/region_*) only if not in utr
set_refalt:1; // set kref,kalt, if set, check also for synonymous events
uint32_t csq;
int tbeg, tend; // number of trimmed bases from beg and end of ref,alt allele
uint32_t ref_beg, // ref coordinates with spurious bases removed, ACC>AC can become AC>A or CC>C, whichever gives
ref_end; // a more conservative csq (the first and last base in kref.s)
kstring_t kref, kalt; // trimmed alleles, set only with SPLICE_OLAP
}
splice_t;
void splice_init(splice_t *splice, bcf1_t *rec)
{
memset(splice,0,sizeof(*splice));
splice->vcf.rec = rec;
splice->vcf.pos = rec->pos;
splice->vcf.rlen = rec->rlen;
splice->vcf.ref = rec->d.allele[0];
}
static inline void splice_build_hap(splice_t *splice, uint32_t beg, int len)
{
// len>0 .. beg is the first base, del filled from right
// len<0 .. beg is the last base, del filled from left
int rlen, alen, rbeg, abeg; // first base to include (ref coordinates)
if ( len<0 )
{
rlen = alen = -len;
rbeg = beg - rlen + 1;
int dlen = splice->vcf.alen - splice->vcf.rlen;
if ( dlen<0 && beg < splice->ref_end ) // incomplete del, beg is in the middle
dlen += splice->ref_end - beg;
abeg = rbeg + dlen;
}
else
{
rbeg = abeg = beg;
rlen = alen = len;
// check for incomplete del as above??
}
#define XDBG 0
#if XDBG
fprintf(stderr,"build_hap: rbeg=%d + %d abeg=%d \n",rbeg,rlen,abeg);
#endif
splice->kref.l = 0;
splice->kalt.l = 0;
// add the part before vcf.ref, in the vcf.ref and after vcf.ref
int roff; // how many vcf.ref bases already used
if ( rbeg < splice->vcf.pos )
{
assert( splice->tr->beg <= rbeg ); // this can be extended thanks to N_REF_PAD
kputsn(splice->tr->ref + N_REF_PAD + rbeg - splice->tr->beg, splice->vcf.pos - rbeg, &splice->kref);
roff = 0;
}
else
roff = rbeg - splice->vcf.pos;
#if XDBG
fprintf(stderr,"r1: %s roff=%d\n",splice->kref.s,roff);
#endif
if ( roff < splice->vcf.rlen && splice->kref.l < rlen )
{
int len = splice->vcf.rlen - roff; // len still available in vcf.ref
if ( len > rlen - splice->kref.l ) len = rlen - splice->kref.l; // how much of ref allele is still needed
kputsn(splice->vcf.ref + roff, len, &splice->kref);
}
#if XDBG
fprintf(stderr,"r2: %s\n",splice->kref.s);
#endif
uint32_t end = splice->vcf.pos + splice->vcf.rlen; // position just after the ref allele
if ( splice->kref.l < rlen )
{
if ( end + rlen - splice->kref.l - 1 > splice->tr->end ) // trim, the requested sequence is too long (could be extended, see N_REF_PAD)
rlen -= end + rlen - splice->kref.l - 1 - splice->tr->end;
if ( splice->kref.l < rlen )
kputsn(splice->tr->ref + N_REF_PAD + end - splice->tr->beg, rlen - splice->kref.l, &splice->kref);
}
#if XDBG
fprintf(stderr,"r3: %s\n",splice->kref.s);
#endif
int aoff;
if ( abeg < splice->vcf.pos )
{
assert( splice->tr->beg <= abeg );
kputsn(splice->tr->ref + N_REF_PAD + abeg - splice->tr->beg, splice->vcf.pos - abeg, &splice->kalt);
aoff = 0;
}
else
aoff = abeg - splice->vcf.pos;
#if XDBG
fprintf(stderr,"a1: %s aoff=%d\n",splice->kalt.s,aoff);
#endif
if ( aoff < splice->vcf.alen && splice->kalt.l < alen )
{
int len = splice->vcf.alen - aoff; // len still available in vcf.alt
if ( len > alen - splice->kalt.l ) len = alen - splice->kalt.l; // how much of alt allele is still needed
kputsn(splice->vcf.alt + aoff, len, &splice->kalt);
aoff -= len;
}
if ( aoff < 0 ) aoff = 0;
else aoff--;
#if XDBG
fprintf(stderr,"a2: %s aoff=%d\n",splice->kalt.s,aoff);
#endif
end = splice->vcf.pos + splice->vcf.rlen; // position just after the ref allele
if ( splice->kalt.l < alen )
{
if ( end + alen + aoff - splice->kalt.l - 1 > splice->tr->end ) // trim, the requested sequence is too long
alen -= end + alen + aoff - splice->kalt.l - 1 - splice->tr->end;
if ( alen > 0 && alen > splice->kalt.l )
kputsn(splice->tr->ref + aoff + N_REF_PAD + end - splice->tr->beg, alen - splice->kalt.l, &splice->kalt);
}
#if XDBG
fprintf(stderr,"a3: %s\n",splice->kalt.s);
fprintf(stderr," [%s]\n [%s]\n\n",splice->kref.s,splice->kalt.s);
#endif
}
void csq_stage(args_t *args, csq_t *csq, bcf1_t *rec);
static inline int csq_stage_utr(args_t *args, regitr_t *itr, bcf1_t *rec, uint32_t trid)
{
while ( regitr_overlap(itr) )
{
gf_utr_t *utr = regitr_payload(itr, gf_utr_t*);
tscript_t *tr = utr->tr;
if ( tr->id != trid ) continue;
csq_t csq;
memset(&csq, 0, sizeof(csq_t));
csq.pos = rec->pos;
csq.type.type = utr->which==prime5 ? CSQ_UTR5 : CSQ_UTR3;
csq.type.biotype = tr->type;
csq.type.strand = tr->strand;
csq.type.trid = tr->id;
csq.type.gene = tr->gene->name;
csq_stage(args, &csq, rec);
return csq.type.type;
}
return 0;
}
static inline void csq_stage_splice(args_t *args, bcf1_t *rec, tscript_t *tr, uint32_t type)
{
#if XDBG
fprintf(stderr,"csq_stage_splice %d: type=%d\n",rec->pos+1,type);
#endif
if ( !type ) return;
csq_t csq;
memset(&csq, 0, sizeof(csq_t));
csq.pos = rec->pos;
csq.type.type = type;
csq.type.biotype = tr->type;
csq.type.strand = tr->strand;
csq.type.trid = tr->id;
csq.type.gene = tr->gene->name;
csq_stage(args, &csq, rec);
}
static inline int splice_csq_ins(args_t *args, splice_t *splice, uint32_t ex_beg, uint32_t ex_end)
{
// coordinates that matter for consequences, eg AC>ACG trimmed to C>CG, 1bp
// before and after the inserted bases
if ( splice->tbeg || splice->vcf.ref[0]!=splice->vcf.alt[0] )
{
splice->ref_beg = splice->vcf.pos + splice->tbeg - 1;
splice->ref_end = splice->vcf.pos + splice->vcf.rlen - splice->tend;
}
else
{
if ( splice->tend ) splice->tend--;
splice->ref_beg = splice->vcf.pos;
splice->ref_end = splice->vcf.pos + splice->vcf.rlen - splice->tend;
}
#if XDBG
fprintf(stderr,"ins: %s>%s .. ex=%d,%d beg,end=%d,%d tbeg,tend=%d,%d check_utr=%d start,stop,beg,end=%d,%d,%d,%d\n", splice->vcf.ref,splice->vcf.alt,ex_beg,ex_end,splice->ref_beg,splice->ref_end,splice->tbeg,splice->tend,splice->check_utr,splice->check_start,splice->check_stop,splice->check_region_beg,splice->check_region_end);
#endif
int ret;
if ( splice->ref_beg >= ex_end ) // fully outside, beyond the exon
{
if ( splice->check_utr )
{
regitr_t *itr = regitr_init(NULL);
const char *chr = bcf_seqname(args->hdr,splice->vcf.rec);
if ( regidx_overlap(args->idx_utr,chr,splice->ref_beg+1,splice->ref_beg+1, itr) ) // adjacent utr
{
ret = csq_stage_utr(args, itr, splice->vcf.rec, splice->tr->id);
if ( ret!=0 )
{
regitr_destroy(itr);
return SPLICE_OUTSIDE; // overlaps utr
}
}
regitr_destroy(itr);
}
if ( !splice->check_region_end ) return SPLICE_OUTSIDE;
char *ref = NULL, *alt = NULL;
if ( splice->set_refalt ) // seq identity is checked only when tr->ref is available
{
splice_build_hap(splice, ex_end+1, N_SPLICE_REGION_INTRON);
ref = splice->kref.s, alt = splice->kalt.s;
}
if ( splice->ref_beg < ex_end + N_SPLICE_REGION_INTRON && splice->ref_end > ex_end + N_SPLICE_DONOR )
{
splice->csq |= CSQ_SPLICE_REGION;
if ( ref && !strncmp(ref,alt,N_SPLICE_REGION_INTRON) ) splice->csq |= CSQ_SYNONYMOUS_VARIANT;
}
if ( splice->ref_beg < ex_end + N_SPLICE_DONOR )
{
if ( splice->check_donor && splice->tr->strand==STRAND_FWD ) splice->csq |= CSQ_SPLICE_DONOR;
if ( splice->check_acceptor && splice->tr->strand==STRAND_REV ) splice->csq |= CSQ_SPLICE_ACCEPTOR;
if ( ref && !strncmp(ref,alt,N_SPLICE_DONOR) ) splice->csq |= CSQ_SYNONYMOUS_VARIANT;
}
csq_stage_splice(args, splice->vcf.rec, splice->tr, splice->csq);
return SPLICE_OUTSIDE;
}
if ( splice->ref_end < ex_beg || (splice->ref_end == ex_beg && !splice->check_region_beg) ) // fully outside, before the exon
{
if ( splice->check_utr )
{
regitr_t *itr = regitr_init(NULL);
const char *chr = bcf_seqname(args->hdr,splice->vcf.rec);
if ( regidx_overlap(args->idx_utr,chr,splice->ref_end-1,splice->ref_end-1, itr) ) // adjacent utr
{
ret = csq_stage_utr(args, itr, splice->vcf.rec, splice->tr->id);
if ( ret!=0 )
{
regitr_destroy(itr);
return SPLICE_OUTSIDE; // overlaps utr
}
}
regitr_destroy(itr);
}
if ( !splice->check_region_beg ) return SPLICE_OUTSIDE;
char *ref = NULL, *alt = NULL;
if ( splice->set_refalt ) // seq identity is checked only when tr->ref is available
{
splice_build_hap(splice, ex_beg - N_SPLICE_REGION_INTRON, N_SPLICE_REGION_INTRON);
ref = splice->kref.s, alt = splice->kalt.s;
}
if ( splice->ref_end > ex_beg - N_SPLICE_REGION_INTRON && splice->ref_beg < ex_beg - N_SPLICE_DONOR )
{
splice->csq |= CSQ_SPLICE_REGION;
if ( ref && !strncmp(ref,alt,N_SPLICE_REGION_INTRON) ) splice->csq |= CSQ_SYNONYMOUS_VARIANT;
}
if ( splice->ref_end > ex_beg - N_SPLICE_DONOR )
{
if ( splice->check_donor && splice->tr->strand==STRAND_REV ) splice->csq |= CSQ_SPLICE_DONOR;
if ( splice->check_acceptor && splice->tr->strand==STRAND_FWD ) splice->csq |= CSQ_SPLICE_ACCEPTOR;
if ( ref && !strncmp(ref+N_SPLICE_REGION_INTRON-N_SPLICE_DONOR,alt+N_SPLICE_REGION_INTRON-N_SPLICE_DONOR,N_SPLICE_DONOR) ) splice->csq |= CSQ_SYNONYMOUS_VARIANT;
}
csq_stage_splice(args, splice->vcf.rec, splice->tr, splice->csq);
return SPLICE_OUTSIDE;
}
// overlaps the exon or inside the exon
// possible todo: find better alignment for frameshifting variants?
if ( splice->ref_beg <= ex_beg + 2 ) // in the first 3bp
{
if ( splice->check_region_beg ) splice->csq |= CSQ_SPLICE_REGION;
if ( splice->tr->strand==STRAND_FWD ) { if ( splice->check_start ) splice->csq |= CSQ_START_LOST; }
else { if ( splice->check_stop ) splice->csq |= CSQ_STOP_LOST; }
}
if ( splice->ref_end > ex_end - 2 )
{
if ( splice->check_region_end ) splice->csq |= CSQ_SPLICE_REGION;
if ( splice->tr->strand==STRAND_REV ) { if ( splice->check_start ) splice->csq |= CSQ_START_LOST; }
else { if ( splice->check_stop ) splice->csq |= CSQ_STOP_LOST; }
}
if ( splice->set_refalt )
{
// Make sure the variant will not end up left aligned to avoid overlapping vcf records
// splice_build_hap(splice, splice->ref_beg, splice->vcf.alen - splice->tend - splice->tbeg + 1);
// splice->vcf.rlen -= splice->tbeg + splice->tend - 1;
// if ( splice->kref.l > splice->vcf.rlen ) { splice->kref.l = splice->vcf.rlen; splice->kref.s[splice->kref.l] = 0; }
if ( splice->ref_beg < splice->vcf.pos ) // this must have been caused by too much trimming from right
{
int dlen = splice->vcf.pos - splice->ref_beg;
assert( dlen==1 );
splice->tbeg += dlen;
if ( splice->tbeg + splice->tend == splice->vcf.rlen ) splice->tend -= dlen;
splice->ref_beg = splice->vcf.pos;
}
if ( splice->ref_end==ex_beg ) splice->tend--; // prevent zero-length ref allele
splice_build_hap(splice, splice->ref_beg, splice->vcf.alen - splice->tend - splice->tbeg + 1);
splice->vcf.rlen -= splice->tbeg + splice->tend - 1;
if ( splice->kref.l > splice->vcf.rlen ) { splice->kref.l = splice->vcf.rlen; splice->kref.s[splice->kref.l] = 0; }
}
csq_stage_splice(args, splice->vcf.rec, splice->tr, splice->csq);
return SPLICE_INSIDE;
}
static inline int splice_csq_del(args_t *args, splice_t *splice, uint32_t ex_beg, uint32_t ex_end)
{
// coordinates that matter for consequences, eg AC>ACG trimmed to C>CG
splice->ref_beg = splice->vcf.pos + splice->tbeg - 1; // 1b before the deleted base
splice->ref_end = splice->vcf.pos + splice->vcf.rlen - splice->tend - 1; // the last deleted base
#if XDBG
fprintf(stderr,"del: %s>%s .. ex=%d,%d beg,end=%d,%d tbeg,tend=%d,%d check_utr=%d start,stop,beg,end=%d,%d,%d,%d\n", splice->vcf.ref,splice->vcf.alt,ex_beg,ex_end,splice->ref_beg,splice->ref_end,splice->tbeg,splice->tend,splice->check_utr,splice->check_start,splice->check_stop,splice->check_region_beg,splice->check_region_end);
#endif
if ( splice->ref_beg + 1 < ex_beg ) // the part before the exon; ref_beg is off by -1
{
if ( splice->check_region_beg )
{
int csq = 0;
if ( splice->check_utr )
{
regitr_t *itr = regitr_init(NULL);
const char *chr = bcf_seqname(args->hdr,splice->vcf.rec);
if ( regidx_overlap(args->idx_utr,chr,splice->ref_beg,ex_beg-1, itr) ) // adjacent utr
csq = csq_stage_utr(args, itr, splice->vcf.rec, splice->tr->id);
regitr_destroy(itr);
}
if ( !csq )
{
char *ref = NULL, *alt = NULL;
if ( splice->set_refalt ) // seq identity is checked only when tr->ref is available
{
// filling from the left does not work for ENST00000341065/frame3.vcf
// CAG.GTGGCCAG CAG.GTGGCCAG
// CA-.--GGCCAG vs CAG.---GCCAG
// splice_build_hap(splice, ex_beg-1, -N_SPLICE_REGION_INTRON);
//
// filling from the right:
splice_build_hap(splice, ex_beg - N_SPLICE_REGION_INTRON, N_SPLICE_REGION_INTRON);
ref = splice->kref.s, alt = splice->kalt.s;
}
if ( splice->ref_end >= ex_beg - N_SPLICE_REGION_INTRON && splice->ref_beg < ex_beg - N_SPLICE_DONOR )
{
splice->csq |= CSQ_SPLICE_REGION;
if ( ref && alt && !strncmp(ref,alt,N_SPLICE_REGION_INTRON) ) splice->csq |= CSQ_SYNONYMOUS_VARIANT;
}
if ( splice->ref_end >= ex_beg - N_SPLICE_DONOR )
{
if ( splice->check_donor && splice->tr->strand==STRAND_REV ) splice->csq |= CSQ_SPLICE_DONOR;
if ( splice->check_acceptor && splice->tr->strand==STRAND_FWD ) splice->csq |= CSQ_SPLICE_ACCEPTOR;
if ( ref && alt && !strncmp(ref+N_SPLICE_REGION_INTRON-N_SPLICE_DONOR,alt+N_SPLICE_REGION_INTRON-N_SPLICE_DONOR,N_SPLICE_DONOR) ) splice->csq |= CSQ_SYNONYMOUS_VARIANT;
}
}
}
if ( splice->ref_end >= ex_beg )
{
splice->tbeg = splice->ref_beg - splice->vcf.pos + 1;
splice->ref_beg = ex_beg - 1;
if ( splice->tbeg + splice->tend == splice->vcf.alen )
{
// the deletion overlaps ex_beg and cannot be easily realigned to the right
if ( !splice->tend )
{
splice->csq |= CSQ_CODING_SEQUENCE;
return SPLICE_OVERLAP;
}
splice->tend--;
}
}
}
if ( ex_end < splice->ref_end ) // the part after the exon
{
if ( splice->check_region_end )
{
int csq = 0;
if ( splice->check_utr )
{
regitr_t *itr = regitr_init(NULL);
const char *chr = bcf_seqname(args->hdr,splice->vcf.rec);
if ( regidx_overlap(args->idx_utr,chr,ex_end+1,splice->ref_end, itr) ) // adjacent utr
csq = csq_stage_utr(args, itr, splice->vcf.rec, splice->tr->id);
regitr_destroy(itr);
}
if ( !csq )
{
char *ref = NULL, *alt = NULL;
if ( splice->set_refalt ) // seq identity is checked only when tr->ref is available
{
splice_build_hap(splice, ex_end+1, N_SPLICE_REGION_INTRON); // ref,alt positioned at the first intron base
ref = splice->kref.s, alt = splice->kalt.s;
}
if ( splice->ref_beg < ex_end + N_SPLICE_REGION_INTRON && splice->ref_end > ex_end + N_SPLICE_DONOR )
{
splice->csq |= CSQ_SPLICE_REGION;
if ( ref && alt && !strncmp(ref,alt,N_SPLICE_REGION_INTRON) ) splice->csq |= CSQ_SYNONYMOUS_VARIANT;
}
if ( splice->ref_beg < ex_end + N_SPLICE_DONOR )
{
if ( splice->check_donor && splice->tr->strand==STRAND_FWD ) splice->csq |= CSQ_SPLICE_DONOR;
if ( splice->check_acceptor && splice->tr->strand==STRAND_REV ) splice->csq |= CSQ_SPLICE_ACCEPTOR;
if ( ref && alt && !strncmp(ref+N_SPLICE_REGION_INTRON-N_SPLICE_DONOR,alt+N_SPLICE_REGION_INTRON-N_SPLICE_DONOR,N_SPLICE_DONOR) ) splice->csq |= CSQ_SYNONYMOUS_VARIANT;
}
}
}
if ( splice->ref_beg < ex_end )
{
splice->tend = splice->vcf.rlen - (splice->ref_end - splice->vcf.pos + 1);
splice->ref_end = ex_end;
}
}
if ( splice->ref_end < ex_beg || splice->ref_beg >= ex_end )
{
csq_stage_splice(args, splice->vcf.rec, splice->tr, splice->csq);
return SPLICE_OUTSIDE;
}
if ( splice->ref_beg < ex_beg + 2 ) // ref_beg is off by -1
{
if ( splice->check_region_beg ) splice->csq |= CSQ_SPLICE_REGION;
if ( splice->tr->strand==STRAND_FWD ) { if ( splice->check_start ) splice->csq |= CSQ_START_LOST; }
else { if ( splice->check_stop ) splice->csq |= CSQ_STOP_LOST; }
}
if ( splice->ref_end > ex_end - 3 )
{
if ( splice->check_region_end ) splice->csq |= CSQ_SPLICE_REGION;
if ( splice->tr->strand==STRAND_REV ) { if ( splice->check_start ) splice->csq |= CSQ_START_LOST; }
else { if ( splice->check_stop ) splice->csq |= CSQ_STOP_LOST; }
}
if ( splice->set_refalt )
{
if ( splice->tbeg>0 ) splice->tbeg--; //why is this?
if ( splice->vcf.rlen > splice->tbeg + splice->tend && splice->vcf.alen > splice->tbeg + splice->tend )
{
splice->vcf.rlen -= splice->tbeg + splice->tend;
splice->vcf.alen -= splice->tbeg + splice->tend;
}
splice->kref.l = 0; kputsn(splice->vcf.ref + splice->tbeg, splice->vcf.rlen, &splice->kref);
splice->kalt.l = 0; kputsn(splice->vcf.alt + splice->tbeg, splice->vcf.alen, &splice->kalt);
if ( (splice->ref_beg+1 < ex_beg && splice->ref_end >= ex_beg) || (splice->ref_beg+1 < ex_end && splice->ref_end >= ex_end) ) // ouch, ugly ENST00000409523/long-overlapping-del.vcf
{
splice->csq |= (splice->ref_end - splice->ref_beg)%3 ? CSQ_FRAMESHIFT_VARIANT : CSQ_INFRAME_DELETION;
return SPLICE_OVERLAP;
}
}
csq_stage_splice(args, splice->vcf.rec, splice->tr, splice->csq);
return SPLICE_INSIDE;
}
static inline int splice_csq_mnp(args_t *args, splice_t *splice, uint32_t ex_beg, uint32_t ex_end)
{
// not a real variant, can be ignored: eg ACGT>ACGT
if ( splice->tbeg + splice->tend == splice->vcf.rlen ) return SPLICE_VAR_REF;
splice->ref_beg = splice->vcf.pos + splice->tbeg;
splice->ref_end = splice->vcf.pos + splice->vcf.rlen - splice->tend - 1;
#if XDBG
fprintf(stderr,"mnp: %s>%s .. ex=%d,%d beg,end=%d,%d tbeg,tend=%d,%d check_utr=%d start,stop,beg,end=%d,%d,%d,%d\n", splice->vcf.ref,splice->vcf.alt,ex_beg,ex_end,splice->ref_beg,splice->ref_end,splice->tbeg,splice->tend,splice->check_utr,splice->check_start,splice->check_stop,splice->check_region_beg,splice->check_region_end);
#endif
if ( splice->ref_beg < ex_beg ) // the part before the exon
{
if ( splice->check_region_beg )
{
int csq = 0;
if ( splice->check_utr )
{
regitr_t *itr = regitr_init(NULL);
const char *chr = bcf_seqname(args->hdr,splice->vcf.rec);
if ( regidx_overlap(args->idx_utr,chr,splice->ref_beg,ex_beg-1, itr) ) // adjacent utr
csq = csq_stage_utr(args, itr, splice->vcf.rec, splice->tr->id);
regitr_destroy(itr);
}
if ( !csq )
{
if ( splice->ref_end >= ex_beg - N_SPLICE_REGION_INTRON && splice->ref_beg < ex_beg - N_SPLICE_DONOR )
splice->csq |= CSQ_SPLICE_REGION;
if ( splice->ref_end >= ex_beg - N_SPLICE_DONOR )
{
if ( splice->check_donor && splice->tr->strand==STRAND_REV ) splice->csq |= CSQ_SPLICE_DONOR;
if ( splice->check_acceptor && splice->tr->strand==STRAND_FWD ) splice->csq |= CSQ_SPLICE_ACCEPTOR;
}
}
}
if ( splice->ref_end >= ex_beg )
{
splice->tbeg = splice->ref_beg - splice->vcf.pos;
splice->ref_beg = ex_beg;
}
}
if ( ex_end < splice->ref_end ) // the part after the exon
{
if ( splice->check_region_end )
{
int csq = 0;
if ( splice->check_utr )
{
regitr_t *itr = regitr_init(NULL);
const char *chr = bcf_seqname(args->hdr,splice->vcf.rec);
if ( regidx_overlap(args->idx_utr,chr,ex_end+1,splice->ref_end, itr) ) // adjacent utr
csq = csq_stage_utr(args, itr, splice->vcf.rec, splice->tr->id);
regitr_destroy(itr);
}
if ( !csq )
{
if ( splice->ref_beg <= ex_end + N_SPLICE_REGION_INTRON && splice->ref_end > ex_end + N_SPLICE_DONOR )
splice->csq |= CSQ_SPLICE_REGION;
if ( splice->ref_beg <= ex_end + N_SPLICE_DONOR )
{
if ( splice->check_donor && splice->tr->strand==STRAND_FWD ) splice->csq |= CSQ_SPLICE_DONOR;
if ( splice->check_acceptor && splice->tr->strand==STRAND_REV ) splice->csq |= CSQ_SPLICE_ACCEPTOR;
}
}
}
if ( splice->ref_beg <= ex_end )
{
splice->tend = splice->vcf.rlen - (splice->ref_end - splice->vcf.pos + 1);
splice->ref_end = ex_end;
}
}
if ( splice->ref_end < ex_beg || splice->ref_beg > ex_end )
{
csq_stage_splice(args, splice->vcf.rec, splice->tr, splice->csq);
return SPLICE_OUTSIDE;
}
if ( splice->ref_beg < ex_beg + 3 )
{
if ( splice->check_region_beg ) splice->csq |= CSQ_SPLICE_REGION;
if ( splice->tr->strand==STRAND_FWD ) { if ( splice->check_start ) splice->csq |= CSQ_START_LOST; }
else { if ( splice->check_stop ) splice->csq |= CSQ_STOP_LOST; }
}
if ( splice->ref_end > ex_end - 3 )
{
if ( splice->check_region_end ) splice->csq |= CSQ_SPLICE_REGION;
if ( splice->tr->strand==STRAND_REV ) { if ( splice->check_start ) splice->csq |= CSQ_START_LOST; }
else { if ( splice->check_stop ) splice->csq |= CSQ_STOP_LOST; }
}
if ( splice->set_refalt )
{
splice->vcf.rlen -= splice->tbeg + splice->tend;
splice->kref.l = 0; kputsn(splice->vcf.ref + splice->tbeg, splice->vcf.rlen, &splice->kref);
splice->kalt.l = 0; kputsn(splice->vcf.alt + splice->tbeg, splice->vcf.rlen, &splice->kalt);
}
csq_stage_splice(args, splice->vcf.rec, splice->tr, splice->csq);
return SPLICE_INSIDE;
}
static inline int splice_csq(args_t *args, splice_t *splice, uint32_t ex_beg, uint32_t ex_end)
{
splice->csq = 0;
splice->vcf.alen = strlen(splice->vcf.alt);
int rlen1 = splice->vcf.rlen - 1, alen1 = splice->vcf.alen - 1, i = 0;
splice->tbeg = 0, splice->tend = 0;
// trim from the right, then from the left
while ( i<=rlen1 && i<=alen1 )
{
if ( splice->vcf.ref[rlen1-i] != splice->vcf.alt[alen1-i] ) break;
i++;
}
splice->tend = i;
rlen1 -= i, alen1 -= i, i = 0;
while ( i<=rlen1 && i<=alen1 )
{
if ( splice->vcf.ref[i] != splice->vcf.alt[i] ) break;
i++;
}
splice->tbeg = i;
// The mnp, ins and del code was split into near-identical functions for clarity and debugging;
// possible todo: generalize once stable
if ( splice->vcf.rlen==splice->vcf.alen ) return splice_csq_mnp(args, splice, ex_beg, ex_end);
if ( splice->vcf.rlen < splice->vcf.alen ) return splice_csq_ins(args, splice, ex_beg, ex_end);
if ( splice->vcf.rlen > splice->vcf.alen ) return splice_csq_del(args, splice, ex_beg, ex_end);
return 0;
}
// return value: 0 added, 1 overlapping variant, 2 silent discard (intronic,alt=ref)
int hap_init(args_t *args, hap_node_t *parent, hap_node_t *child, gf_cds_t *cds, bcf1_t *rec, int ial)
{
int i;
kstring_t str = {0,0,0};
tscript_t *tr = cds->tr;
child->icds = cds->icds; // index of cds in the tscript's list of exons
splice_t splice;
splice_init(&splice, rec);
splice.tr = tr;
splice.vcf.alt = rec->d.allele[ial];
splice.check_acceptor = splice.check_donor = splice.set_refalt = splice.check_utr = 1;
if ( !(tr->trim & TRIM_5PRIME) )
{
if ( tr->strand==STRAND_FWD ) { if ( child->icds==0 ) splice.check_start = 1; }
else { if ( child->icds==tr->ncds-1 ) splice.check_start = 1; }
}
if ( !(tr->trim & TRIM_3PRIME) )
{
if ( tr->strand==STRAND_FWD ) { if ( child->icds==tr->ncds-1 ) splice.check_stop = 1; }
else { if ( child->icds==0 ) splice.check_stop = 1; }
}
if ( splice.check_start ) // do not check starts in incomplete CDS, defined as not starting with M
{
if ( tr->strand==STRAND_FWD ) { if ( dna2aa(tr->ref+N_REF_PAD+cds->beg-tr->beg) != 'M' ) splice.check_start = 0; }
else { if ( cdna2aa(tr->ref+N_REF_PAD+cds->beg-tr->beg+cds->len-3) != 'M' ) splice.check_start = 0; }
}
if ( child->icds!=0 ) splice.check_region_beg = 1;
if ( child->icds!=tr->ncds-1 ) splice.check_region_end = 1;
#if XDBG
fprintf(stderr,"\n%d [%s][%s] check start:%d,stop:%d\n",splice.vcf.pos+1,splice.vcf.ref,splice.vcf.alt,splice.check_start,splice.check_stop);
#endif
int ret = splice_csq(args, &splice, cds->beg, cds->beg + cds->len - 1);
#if XDBG
fprintf(stderr,"cds splice_csq: %d [%s][%s] .. beg,end=%d %d, ret=%d, csq=%d\n\n",splice.vcf.pos+1,splice.kref.s,splice.kalt.s,splice.ref_beg+1,splice.ref_end+1,ret,splice.csq);
#endif
if ( ret==SPLICE_VAR_REF ) return 2; // not a variant, eg REF=CA ALT=CA
if ( ret==SPLICE_OUTSIDE || ret==SPLICE_OVERLAP ) // not a coding csq
{
free(splice.kref.s);
free(splice.kalt.s);
if ( !splice.csq ) return 2; // fully intronic, no csq
// splice_region/acceptor/donor
child->seq = NULL;
child->sbeg = 0;
child->rbeg = rec->pos;
child->rlen = 0;
child->dlen = 0;
kputs(rec->d.allele[0],&str);
kputc('>',&str);
kputs(rec->d.allele[ial],&str);
child->var = str.s;
child->type = HAP_SSS;
child->csq = splice.csq;
child->rec = rec;
return 0;
}
if ( splice.csq & CSQ_SYNONYMOUS_VARIANT ) splice.csq &= ~CSQ_SYNONYMOUS_VARIANT; // synonymous&splice,frame could become synonymous&frame,splice
int dbeg = 0;
if ( splice.ref_beg < cds->beg )
{
// The vcf record overlaps the exon boundary, but the variant itself
// should fit inside since we are here. This will need more work.
// #1475227917
dbeg = cds->beg - splice.ref_beg;
splice.kref.l -= dbeg;
splice.ref_beg = cds->beg;
assert( dbeg <= splice.kalt.l );
}
assert( parent->type!=HAP_SSS );
if ( parent->type==HAP_CDS )
{
i = parent->icds;
if ( i!=cds->icds )
{
// the variant is on a new exon, finish up the previous
int len = tr->cds[i]->len - parent->rbeg - parent->rlen + tr->cds[i]->beg;
if ( len > 0 )
kputsn_(tr->ref + N_REF_PAD + parent->rbeg + parent->rlen - tr->beg, len, &str);
}
// append any skipped non-variant exons
while ( ++i < cds->icds )
kputsn_(tr->ref + N_REF_PAD + tr->cds[i]->beg - tr->beg, tr->cds[i]->len, &str);
if ( parent->icds==child->icds )
{
int len = splice.ref_beg - parent->rbeg - parent->rlen;
if ( len < 0 ) // overlapping variants
{
free(str.s);
return 1;
}
kputsn_(tr->ref + N_REF_PAD + parent->rbeg + parent->rlen - tr->beg, len, &str);
}
else
kputsn_(tr->ref + N_REF_PAD + cds->beg - tr->beg, splice.ref_beg - cds->beg, &str);
}
kputs(splice.kalt.s + dbeg, &str);
child->seq = str.s;
child->sbeg = cds->pos + (splice.ref_beg - cds->beg);
child->rbeg = splice.ref_beg;
child->rlen = splice.kref.l;
child->type = HAP_CDS;
child->prev = parent;
child->rec = rec;
child->csq = splice.csq;
// set vlen and the "ref>alt" string
{
int rlen = strlen(rec->d.allele[0]);
int alen = strlen(rec->d.allele[ial]);
child->dlen = alen - rlen;
child->var = (char*) malloc(rlen+alen+2);
memcpy(child->var,rec->d.allele[0],rlen);
child->var[rlen] = '>';
memcpy(child->var+rlen+1,rec->d.allele[ial],alen);
child->var[rlen+alen+1] = 0;
}
// yuck, the whole CDS is modified/deleted, not ready for this, todo.
if ( child->rbeg + child->rlen > cds->beg + cds->len )
{
child->type = HAP_SSS;
if ( !child->csq ) child->csq |= CSQ_CODING_SEQUENCE; // hack, specifically for ENST00000390520/deletion-overlap.vcf
}
free(splice.kref.s);
free(splice.kalt.s);
return 0;
}
void hap_destroy(hap_node_t *hap)
{
int i;
for (i=0; i<hap->nchild; i++)
if ( hap->child[i] ) hap_destroy(hap->child[i]);
for (i=0; i<hap->mcsq_list; i++) free(hap->csq_list[i].type.vstr.s);
free(hap->csq_list);
free(hap->child);
free(hap->cur_child);
free(hap->seq);
free(hap->var);
free(hap);
}
/*
ref: spliced reference and its length (ref.l)
seq: part of the spliced query transcript on the reference strand to translate, its
length (seq.l) and the total length of the complete transcript (seq.m)
sbeg: seq offset within the spliced query transcript
rbeg: seq offset within ref, 0-based
rend: last base of seq within ref, plus one. If seq does not contain indels, it is rend=rbeg+seq->l
strand: coding strand - 0:rev, 1:fwd
tseq: translated sequence (aa)
fill: frameshift, fill until the end (strand=fwd) or from the start (strand=rev)
*/
void cds_translate(kstring_t *_ref, kstring_t *_seq, uint32_t sbeg, uint32_t rbeg, uint32_t rend, int strand, kstring_t *tseq, int fill)
{
#if XDBG
fprintf(stderr,"translate: %d %d %d fill=%d seq.l=%d\n",sbeg,rbeg,rend,fill,(int)_seq->l);
#endif
char tmp[3], *codon, *end;
int i, len, npad;
kstring_t ref = *_ref;
kstring_t seq = *_seq;
tseq->l = 0;
if ( !seq.l )
{
kputc('?', tseq);
return;
}
#define DBG 0
#if DBG
fprintf(stderr,"translate: sbeg,rbeg,rend=%d %d %d fill=%d seq.l=%d\n",sbeg,rbeg,rend,fill,(int)_seq->l);
fprintf(stderr," ref: l=%d %s\n", (int)ref.l,ref.s);
fprintf(stderr," seq: l=%d m=%d ", (int)seq.l,(int)seq.m);
for (i=0; i<seq.l; i++) fprintf(stderr,"%c",seq.s[i]); fprintf(stderr,"\n");
fprintf(stderr," sbeg,rbeg,rend: %d,%d,%d\n", sbeg,rbeg,rend);
fprintf(stderr," strand,fill: %d,%d\n", strand,fill);
#endif
if ( strand==STRAND_FWD )
{
// left padding
npad = sbeg % 3;
#if DBG>1
fprintf(stderr," npad: %d\n",npad);
#endif
assert( npad<=rbeg );
for (i=0; i<npad; i++)
tmp[i] = ref.s[rbeg+i-npad+N_REF_PAD];
for (; i<3 && i-npad<seq.l; i++)
tmp[i] = seq.s[i-npad];
len = seq.l - i + npad; // the remaining length of padded sseq
#if DBG>1
fprintf(stderr,"\t i=%d\n", i);
#endif
if ( i==3 )
{
kputc_(dna2aa(tmp), tseq);
#if DBG>1
fprintf(stderr,"[1]%c%c%c\n",tmp[0],tmp[1],tmp[2]);
#endif
codon = seq.s + 3 - npad; // next codon
end = codon + len - 1 - (len % 3); // last position of a valid codon
while ( codon < end )
{
kputc_(dna2aa(codon), tseq);
#if DBG>1
fprintf(stderr,"[2]%c%c%c\n",codon[0],codon[1],codon[2]);
#endif
codon += 3;
}
end = seq.s + seq.l - 1;
for (i=0; codon+i<=end; i++) tmp[i] = codon[i];
}
// right padding
codon = ref.s + rend + N_REF_PAD;
if ( i>0 )
{
#if DBG>1
if(i==1)fprintf(stderr,"[3]%c\n",tmp[0]);
if(i==2)fprintf(stderr,"[3]%c%c\n",tmp[0],tmp[1]);
#endif
for (; i<3; i++)
{
tmp[i] = *codon;
codon++;
}
kputc_(dna2aa(tmp), tseq);
#if DBG>1
fprintf(stderr,"[4]%c%c%c\n",tmp[0],tmp[1],tmp[2]);
#endif
}
if ( fill!=0 )
{
end = ref.s + ref.l - N_REF_PAD;
while ( codon+3 <= end )
{
kputc_(dna2aa(codon), tseq);
#if DBG>1
fprintf(stderr,"[5]%c%c%c\t%c\n",codon[0],codon[1],codon[2],dna2aa(codon));
#endif
codon += 3;
}
}
}
else // STRAND_REV
{
// right padding - number of bases to take from ref
npad = (seq.m - (sbeg + seq.l)) % 3;
#if DBG>1
fprintf(stderr," npad: %d\n",npad);
#endif
if ( !(npad>=0 && sbeg+seq.l+npad<=seq.m) ) fprintf(stderr,"sbeg=%d seq.l=%d seq.m=%d\n",sbeg,(int)seq.l,(int)seq.m);
assert( npad>=0 && sbeg+seq.l+npad<=seq.m ); // todo: first codon on the rev strand
if ( npad==2 )
{
tmp[1] = ref.s[rend+N_REF_PAD];
tmp[2] = ref.s[rend+N_REF_PAD+1];
i = 0;
}
else if ( npad==1 )
{
tmp[2] = ref.s[rend+N_REF_PAD];
i = 1;
}
else
i = 2;
end = seq.s + seq.l;
for (; i>=0 && end>seq.s; i--) tmp[i] = *(--end);
#if DBG>1
fprintf(stderr,"\t i=%d\n", i);
if(i==1)fprintf(stderr,"[0] %c\n",tmp[2]);
if(i==0)fprintf(stderr,"[0] %c%c\n",tmp[1],tmp[2]);
#endif
if ( i==-1 )
{
#if DBG>1
fprintf(stderr,"[1]%c%c%c\t%c\n",tmp[0],tmp[1],tmp[2], cdna2aa(tmp));
#endif
kputc_(cdna2aa(tmp), tseq);
codon = end - 3;
while ( codon >= seq.s )
{
kputc_(cdna2aa(codon), tseq);
#if DBG>1
fprintf(stderr,"[2]%c%c%c\t%c\n",codon[0],codon[1],codon[2], cdna2aa(codon));
#endif
codon -= 3;
}
if ( seq.s-codon==2 )
{
tmp[2] = seq.s[0];
i = 1;
}
else if ( seq.s-codon==1 )
{
tmp[1] = seq.s[0];
tmp[2] = seq.s[1];
i = 0;
}
else
i = -1;
#if DBG>1
if(i==1)fprintf(stderr,"[3] %c\n",tmp[2]);
if(i==0)fprintf(stderr,"[3] %c%c\n",tmp[1],tmp[2]);
#endif
}
// left padding
end = ref.s + N_REF_PAD + rbeg;
if ( i>=0 )
{
for (; i>=0 && end>=ref.s; i--) tmp[i] = *(--end);
kputc_(cdna2aa(tmp), tseq);
#if DBG>1
fprintf(stderr,"[4]%c%c%c\t%c\n",tmp[0],tmp[1],tmp[2],cdna2aa(tmp));
#endif
}
if ( fill!=0 )
{
codon = end - 3;
while ( codon >= ref.s + N_REF_PAD )
{
kputc_(cdna2aa(codon), tseq);
#if DBG>1
fprintf(stderr,"[5]%c%c%c\t%c\n",codon[0],codon[1],codon[2],cdna2aa(codon));
#endif
codon -= 3;
}
}
}
kputc_(0,tseq); tseq->l--;
#if DBG
fprintf(stderr," tseq: %s\n", tseq->s);
#endif
}
void tscript_splice_ref(tscript_t *tr)
{
int i, len = 0;
for (i=0; i<tr->ncds; i++)
len += tr->cds[i]->len;
tr->nsref = len + 2*N_REF_PAD;
tr->sref = (char*) malloc(len + 1 + 2*N_REF_PAD);
len = 0;
memcpy(tr->sref, tr->ref + tr->cds[0]->beg - tr->beg, N_REF_PAD);
len += N_REF_PAD;
for (i=0; i<tr->ncds; i++)
{
memcpy(tr->sref + len, tr->ref + N_REF_PAD + tr->cds[i]->beg - tr->beg, tr->cds[i]->len);
len += tr->cds[i]->len;
}
memcpy(tr->sref + len, tr->ref + N_REF_PAD + tr->cds[tr->ncds-1]->beg - tr->beg, N_REF_PAD);
len += N_REF_PAD;
tr->sref[len] = 0;
}
// returns: 0 if consequence was added, 1 if it already exists or could not be added
int csq_push(args_t *args, csq_t *csq, bcf1_t *rec)
{
#if XDBG
fprintf(stderr,"csq_push: %d .. %d\n",rec->pos+1,csq->type.type);
#endif
khint_t k = kh_get(pos2vbuf, args->pos2vbuf, (int)csq->pos);
vbuf_t *vbuf = (k == kh_end(args->pos2vbuf)) ? NULL : kh_val(args->pos2vbuf, k);
if ( !vbuf ) error("This should not happen. %s:%d %s\n",bcf_seqname(args->hdr,rec),csq->pos+1,csq->type.vstr.s);
int i;
for (i=0; i<vbuf->n; i++)
if ( vbuf->vrec[i]->line==rec ) break;
if ( i==vbuf->n ) error("This should not happen.. %s:%d %s\n", bcf_seqname(args->hdr,rec),csq->pos+1,csq->type.vstr.s);
vrec_t *vrec = vbuf->vrec[i];
// if the variant overlaps donor/acceptor and also splice region, report only donor/acceptor
if ( csq->type.type & CSQ_SPLICE_REGION && csq->type.type & (CSQ_SPLICE_DONOR|CSQ_SPLICE_ACCEPTOR) )
csq->type.type &= ~CSQ_SPLICE_REGION;
if ( csq->type.type & CSQ_PRINTED_UPSTREAM )
{
for (i=0; i<vrec->nvcsq; i++)
{
// Same as below, to avoid records like
// 3630 .. @3632,stop_lost|AL627309.1|ENST00000423372|protein_coding|-
// 3632 .. stop_lost|AL627309.1|ENST00000423372|protein_coding|-|260*>260G|3630T>A+3632A>C
if ( csq->type.type&CSQ_START_STOP && vrec->vcsq[i].type&CSQ_START_STOP )
{
vrec->vcsq[i] = csq->type;
goto exit_duplicate;
}
if ( !(vrec->vcsq[i].type & CSQ_PRINTED_UPSTREAM) ) continue;
if ( csq->type.ref != vrec->vcsq[i].ref ) continue;
goto exit_duplicate;
}
}
else if ( csq->type.type & CSQ_COMPOUND )
{
for (i=0; i<vrec->nvcsq; i++)
{
if ( csq->type.trid != vrec->vcsq[i].trid && (csq->type.type|vrec->vcsq[i].type)&CSQ_PRN_TSCRIPT ) continue;
if ( csq->type.biotype != vrec->vcsq[i].biotype ) continue;
if ( csq->type.gene != vrec->vcsq[i].gene ) continue;
if ( csq->type.vstr.s || vrec->vcsq[i].vstr.s )
{
// This is a bit hacky, but we want a simpler and more predictable output. The splice_csq() function
// can trigger stop/start events based on indel overlap, then another stop/start event can be triggered
// from add_csq() or test_cds_local() based on sequence comparison, and on output we could find two
// consequences:
// stop_lost|AL627309.1|ENST00000423372|protein_coding|-
// stop_lost&inframe_insertion|AL627309.1|ENST00000423372|protein_coding|-|260*>260CL|3630T>TAAA
if ( !csq->type.vstr.s || !vrec->vcsq[i].vstr.s )
{
if ( csq->type.type&CSQ_START_STOP && vrec->vcsq[i].type&CSQ_START_STOP )
{
vrec->vcsq[i].type |= csq->type.type;
// remove stop_lost&synonymous if stop_retained set
if ( vrec->vcsq[i].type&CSQ_STOP_RETAINED )
vrec->vcsq[i].type &= ~(CSQ_STOP_LOST|CSQ_SYNONYMOUS_VARIANT);
if ( !vrec->vcsq[i].vstr.s ) vrec->vcsq[i].vstr = csq->type.vstr;
goto exit_duplicate;
}
continue;
}
if ( strcmp(csq->type.vstr.s,vrec->vcsq[i].vstr.s) ) continue;
}
vrec->vcsq[i].type |= csq->type.type;
goto exit_duplicate;
}
}
else
{
for (i=0; i<vrec->nvcsq; i++)
{
if ( csq->type.trid != vrec->vcsq[i].trid && (csq->type.type|vrec->vcsq[i].type)&CSQ_PRN_TSCRIPT) continue;
if ( csq->type.biotype != vrec->vcsq[i].biotype ) continue;
if ( !(vrec->vcsq[i].type & CSQ_COMPOUND) )
{
vrec->vcsq[i].type |= csq->type.type;
goto exit_duplicate;
}
if ( vrec->vcsq[i].type==(vrec->vcsq[i].type|csq->type.type) ) goto exit_duplicate;
}
}
// no such csq yet in this vcf record
csq->vrec = vrec;
csq->idx = i;
vrec->nvcsq++;
hts_expand0(vcsq_t, vrec->nvcsq, vrec->mvcsq, vrec->vcsq);
vrec->vcsq[i] = csq->type;
return 0;
exit_duplicate:
csq->vrec = vrec;
csq->idx = i;
return 1;
}
// soff .. position of the variant within the trimmed query transcript
// sbeg .. position of the variant within the query transcript
// rbeg .. position on the reference transcript (if there are no indels, then rbeg=send)
// rpos .. VCF position
#define node2soff(i) (hap->stack[i].slen - (hap->stack[i].node->rlen + hap->stack[i].node->dlen))
#define node2sbeg(i) (hap->sbeg + node2soff(i))
#define node2send(i) (hap->sbeg + hap->stack[i].slen)
#define node2rbeg(i) (hap->stack[i].node->sbeg)
#define node2rend(i) (hap->stack[i].node->sbeg + hap->stack[i].node->rlen)
#define node2rpos(i) (hap->stack[i].node->rec->pos)
void kput_vcsq(args_t *args, vcsq_t *csq, kstring_t *str)
{
// Remove start/stop from incomplete CDS, but only if there is another
// consequence as something must be reported
if ( csq->type & CSQ_INCOMPLETE_CDS && (csq->type & ~(CSQ_START_STOP|CSQ_INCOMPLETE_CDS|CSQ_UPSTREAM_STOP)) ) csq->type &= ~(CSQ_START_STOP|CSQ_INCOMPLETE_CDS);
// Remove missense from start/stops
if ( csq->type & CSQ_START_STOP && csq->type & CSQ_MISSENSE_VARIANT ) csq->type &= ~CSQ_MISSENSE_VARIANT;
if ( csq->type & CSQ_PRINTED_UPSTREAM && csq->ref )
{
kputc_('@',str);
kputw(csq->ref->pos+1, str);
return;
}
if ( csq->type & CSQ_UPSTREAM_STOP )
kputc_('*',str);
int i, n = sizeof(csq_strings)/sizeof(char*);
for (i=1; i<n; i++)
if ( csq_strings[i] && csq->type&(1<<i) ) { kputs(csq_strings[i],str); break; }
i++;
for (; i<n; i++)
if ( csq_strings[i] && csq->type&(1<<i) ) { kputc_('&',str); kputs(csq_strings[i],str); }
kputc_('|', str);
if ( csq->gene ) kputs(csq->gene , str);
kputc_('|', str);
if ( csq->type & CSQ_PRN_TSCRIPT ) kputs(args->tscript_ids.str[csq->trid], str);
kputc_('|', str);
kputs(gf_type2gff_string(csq->biotype), str);
if ( CSQ_PRN_STRAND(csq->type) || csq->vstr.l )
kputs(csq->strand==STRAND_FWD ? "|+" : "|-", str);
if ( csq->vstr.l )
kputs(csq->vstr.s, str);
}
void hap_add_csq(args_t *args, hap_t *hap, hap_node_t *node, int tlen, int ibeg, int iend, int dlen, int indel)
{
int i;
tscript_t *tr = hap->tr;
int ref_node = tr->strand==STRAND_FWD ? ibeg : iend;
int icsq = node->ncsq_list++;
hts_expand0(csq_t,node->ncsq_list,node->mcsq_list,node->csq_list);
csq_t *csq = &node->csq_list[icsq];
csq->pos = hap->stack[ref_node].node->rec->pos;
csq->type.trid = tr->id;
csq->type.gene = tr->gene->name;
csq->type.strand = tr->strand;
csq->type.biotype = tr->type;
// only now we see the translated sequence and can determine if the stop/start changes are real
int rm_csq = 0;
csq->type.type = 0;
for (i=ibeg; i<=iend; i++)
csq->type.type |= hap->stack[i].node->csq & CSQ_COMPOUND;
if ( dlen==0 && indel ) csq->type.type |= CSQ_INFRAME_ALTERING;
int has_upstream_stop = hap->upstream_stop;
if ( hap->stack[ibeg].node->type != HAP_SSS )
{
// check for truncating stops
for (i=0; i<hap->tref.l; i++)
if ( hap->tref.s[i]=='*' ) break;
if ( i!=hap->tref.l )
{
hap->tref.l = i+1;
hap->tref.s[i+1] = 0;
}
for (i=0; i<hap->tseq.l; i++)
if ( hap->tseq.s[i]=='*' ) break;
if ( i!=hap->tseq.l )
{
hap->tseq.l = i+1;
hap->tseq.s[i+1] = 0;
hap->upstream_stop = 1;
}
if ( csq->type.type & CSQ_STOP_LOST )
{
if ( hap->tref.s[hap->tref.l-1]=='*' && hap->tref.s[hap->tref.l-1] == hap->tseq.s[hap->tseq.l-1] )
{
rm_csq |= CSQ_STOP_LOST;
csq->type.type |= CSQ_STOP_RETAINED;
}
else if ( hap->tref.s[hap->tref.l-1]!='*' )
{
// This is CDS 3' incomplete ENSG00000173376/synon.vcf, can also be missense
// We observe in real data a change to a stop, ENST00000528237/retained-stop-incomplete-cds.vcf
if ( hap->tseq.s[hap->tseq.l-1] == '*' )
{
rm_csq |= CSQ_STOP_GAINED;
csq->type.type |= CSQ_STOP_RETAINED;
}
else
csq->type.type |= CSQ_INCOMPLETE_CDS;
}
}
if ( csq->type.type & CSQ_START_LOST && hap->tref.s[0]!='M' )
{
rm_csq |= CSQ_START_LOST;
csq->type.type &= ~CSQ_START_LOST;
}
if ( dlen!=0 )
{
if ( dlen%3 )
csq->type.type |= CSQ_FRAMESHIFT_VARIANT;
else if ( dlen<0 )
csq->type.type |= CSQ_INFRAME_DELETION;
else
csq->type.type |= CSQ_INFRAME_INSERTION;
}
else
{
for (i=0; i<hap->tref.l; i++)
if ( hap->tref.s[i] != hap->tseq.s[i] ) break;
if ( i==hap->tref.l )
csq->type.type |= CSQ_SYNONYMOUS_VARIANT;
else if ( hap->tref.s[i] == '*' )
csq->type.type |= CSQ_STOP_LOST;
else if ( hap->tseq.s[i] == '*' )
csq->type.type |= CSQ_STOP_GAINED;
else
csq->type.type |= CSQ_MISSENSE_VARIANT;
}
}
if ( has_upstream_stop ) csq->type.type |= CSQ_UPSTREAM_STOP;
csq->type.type &= ~rm_csq;
if ( hap->stack[ibeg].node->type == HAP_SSS )
{
node->csq_list[icsq].type.type |= hap->stack[ibeg].node->csq & ~rm_csq;
node->csq_list[icsq].type.ref = hap->stack[ibeg].node->rec;
node->csq_list[icsq].type.biotype = tr->type;
csq_push(args, node->csq_list+icsq, hap->stack[ibeg].node->rec);
return;
}
kstring_t str = node->csq_list[icsq].type.vstr;
str.l = 0;
// create the aa variant string
int aa_rbeg = tr->strand==STRAND_FWD ? node2rbeg(ibeg)/3+1 : (hap->tr->nsref - 2*N_REF_PAD - node2rend(iend))/3+1;
int aa_sbeg = tr->strand==STRAND_FWD ? node2sbeg(ibeg)/3+1 : (tlen - node2send(iend))/3+1;
kputc_('|', &str);
kputw(aa_rbeg, &str);
kputs(hap->tref.s, &str);
if ( !(csq->type.type & CSQ_SYNONYMOUS_VARIANT) )
{
kputc_('>', &str);
kputw(aa_sbeg, &str);
kputs(hap->tseq.s, &str);
}
kputc_('|', &str);
// create the dna variant string and, in case of combined variants,
// insert silent CSQ_PRINTED_UPSTREAM variants
for (i=ibeg; i<=iend; i++)
{
if ( i>ibeg ) kputc_('+', &str);
kputw(node2rpos(i)+1, &str);
kputs(hap->stack[i].node->var, &str);
}
node->csq_list[icsq].type.vstr = str;
csq_push(args, node->csq_list+icsq, hap->stack[ref_node].node->rec);
for (i=ibeg; i<=iend; i++)
{
// csq are printed at one position only for combined variants, the rest is
// silent and references the first
if ( hap->stack[i].node->csq & ~CSQ_COMPOUND )
{
node->ncsq_list++;
hts_expand0(csq_t,node->ncsq_list,node->mcsq_list,node->csq_list);
csq_t *tmp_csq = &node->csq_list[node->ncsq_list - 1];
tmp_csq->pos = hap->stack[i].node->rec->pos;
tmp_csq->type.trid = tr->id;
tmp_csq->type.gene = tr->gene->name;
tmp_csq->type.strand = tr->strand;
tmp_csq->type.type = hap->stack[i].node->csq & ~CSQ_COMPOUND & ~rm_csq;
tmp_csq->type.biotype = tr->type;
tmp_csq->type.vstr.l = 0;
kputs(str.s,&tmp_csq->type.vstr);
csq_push(args, tmp_csq, hap->stack[i].node->rec);
}
if ( i!=ref_node && (node->csq_list[icsq].type.type & CSQ_COMPOUND || !(hap->stack[i].node->csq & ~CSQ_COMPOUND)) )
{
node->ncsq_list++;
hts_expand0(csq_t,node->ncsq_list,node->mcsq_list,node->csq_list);
csq_t *tmp_csq = &node->csq_list[node->ncsq_list - 1];
tmp_csq->pos = hap->stack[i].node->rec->pos;
tmp_csq->type.trid = tr->id;
tmp_csq->type.gene = tr->gene->name;
tmp_csq->type.strand = tr->strand;
tmp_csq->type.type = CSQ_PRINTED_UPSTREAM | hap->stack[i].node->csq;
tmp_csq->type.biotype = tr->type;
tmp_csq->type.ref = hap->stack[ref_node].node->rec;
tmp_csq->type.vstr.l = 0;
csq_push(args, tmp_csq, hap->stack[i].node->rec);
}
}
}
void hap_finalize(args_t *args, hap_t *hap)
{
tscript_t *tr = hap->tr;
if ( !tr->sref )
tscript_splice_ref(tr);
kstring_t sref;
sref.s = tr->sref;
sref.l = tr->nsref;
sref.m = sref.l;
int istack = 0;
hts_expand(hstack_t,1,hap->mstack,hap->stack);
hap->sseq.l = 0;
hap->tseq.l = 0;
hap->stack[0].node = tr->root;
hap->stack[0].ichild = -1;
hap->stack[0].slen = 0;
hap->stack[0].dlen = 0;
while ( istack>=0 )
{
hstack_t *stack = &hap->stack[istack];
hap_node_t *node = hap->stack[istack].node;
while ( ++hap->stack[istack].ichild < node->nchild )
{
if ( node->child[stack->ichild] ) break;
}
if ( stack->ichild == node->nchild ) { istack--; continue; }
node = node->child[stack->ichild];
istack++;
hts_expand(hstack_t,istack+1,hap->mstack,hap->stack);
stack = &hap->stack[istack-1];
hap->stack[istack].node = node;
hap->stack[istack].ichild = -1;
hap->sseq.l = stack->slen;
if ( node->type==HAP_CDS ) kputs(node->seq, &hap->sseq);
hap->stack[istack].slen = hap->sseq.l;
hap->stack[istack].dlen = hap->stack[istack-1].dlen + node->dlen;
if ( !node->nend ) continue; // not a leaf node
// The spliced sequence has been built for the current haplotype and stored
// in hap->sseq. Now we break it and output as independent parts
kstring_t sseq;
sseq.m = sref.m - 2*N_REF_PAD + hap->stack[istack].dlen; // total length of the spliced query transcript
hap->upstream_stop = 0;
int i = 1, dlen = 0, ibeg, indel = 0;
hap->sbeg = hap->stack[i].node->sbeg;
assert( hap->stack[istack].node->type != HAP_SSS );
if ( tr->strand==STRAND_FWD )
{
i = 0, ibeg = -1;
while ( ++i <= istack )
{
assert( hap->stack[i].node->type != HAP_SSS );
dlen += hap->stack[i].node->dlen;
if ( hap->stack[i].node->dlen ) indel = 1;
// This condition extends compound variants.
if ( i<istack )
{
if ( dlen%3 ) // frameshift
{
if ( ibeg==-1 ) ibeg = i;
continue;
}
int icur = node2sbeg(i);
int inext = node2sbeg(i+1);
if ( icur/3 == inext/3 ) // in the same codon, can't be flushed yet
{
if ( ibeg==-1 ) ibeg = i;
continue;
}
}
if ( ibeg<0 ) ibeg = i;
int ioff = node2soff(ibeg);
int icur = node2sbeg(ibeg);
int rbeg = node2rbeg(ibeg);
int rend = node2rend(i);
int fill = dlen%3;
// alt
if ( hap->sseq.l )
{
sseq.l = hap->stack[i].slen - ioff;
sseq.s = hap->sseq.s + ioff;
}
else // splice site overlap, see #1475227917
sseq.l = fill = 0;
cds_translate(&sref, &sseq, icur,rbeg,rend, tr->strand, &hap->tseq, fill);
// ref
sseq.l = node2rend(i) - rbeg;
sseq.s = sref.s + N_REF_PAD + rbeg;
sseq.m = sref.m - 2*N_REF_PAD;
cds_translate(&sref, &sseq, rbeg,rbeg,rend, tr->strand, &hap->tref, fill);
sseq.m = sref.m - 2*N_REF_PAD + hap->stack[istack].dlen;
hap_add_csq(args,hap,node,0, ibeg,i,dlen,indel);
ibeg = -1;
dlen = 0;
indel = 0;
}
}
else
{
i = istack + 1, ibeg = -1;
while ( --i > 0 )
{
assert ( hap->stack[i].node->type != HAP_SSS );
dlen += hap->stack[i].node->dlen;
if ( hap->stack[i].node->dlen ) indel = 1;
if ( i>1 )
{
if ( dlen%3 )
{
if ( ibeg==-1 ) ibeg = i;
continue;
}
int icur = sseq.m - 1 - node2sbeg(i);
int inext = sseq.m - 1 - node2sbeg(i-1);
if ( icur/3 == inext/3 )
{
if ( ibeg==-1 ) ibeg = i;
continue;
}
}
if ( ibeg<0 ) ibeg = i;
int ioff = node2soff(i);
int icur = node2sbeg(i);
int rbeg = node2rbeg(i);
int rend = node2rend(ibeg);
int fill = dlen%3;
// alt
if ( hap->sseq.l )
{
sseq.l = hap->stack[ibeg].slen - ioff;
sseq.s = hap->sseq.s + ioff;
}
else // splice site overlap, see #1475227917
sseq.l = fill = 0;
cds_translate(&sref, &sseq, icur,rbeg,rend, tr->strand, &hap->tseq, fill);
// ref
sseq.l = node2rend(ibeg) - rbeg;
sseq.s = sref.s + N_REF_PAD + rbeg;
sseq.m = sref.m - 2*N_REF_PAD;
cds_translate(&sref, &sseq, rbeg,rbeg,rend, tr->strand, &hap->tref, fill);
sseq.m = sref.m - 2*N_REF_PAD + hap->stack[istack].dlen;
hap_add_csq(args,hap,node,sseq.m, i,ibeg,dlen,indel);
ibeg = -1;
dlen = 0;
indel = 0;
}
}
}
}
static inline void csq_print_text(args_t *args, csq_t *csq, int ismpl, int ihap)
{
if ( csq->type.type & CSQ_PRINTED_UPSTREAM ) return;
char *smpl = ismpl >= 0 ? args->hdr->samples[ismpl] : "-";
const char *chr = bcf_hdr_id2name(args->hdr,args->rid);
fprintf(args->out,"CSQ\t%s\t", smpl);
if ( ihap>0 )
fprintf(args->out,"%d", ihap);
else
fprintf(args->out,"-");
args->str.l = 0;
kput_vcsq(args, &csq->type, &args->str);
fprintf(args->out,"\t%s\t%d\t%s\n",chr,csq->pos+1,args->str.s);
}
static inline void hap_print_text(args_t *args, tscript_t *tr, int ismpl, int ihap, hap_node_t *node)
{
if ( !node || !node->ncsq_list ) return;
char *smpl = ismpl >= 0 ? args->hdr->samples[ismpl] : "-";
const char *chr = bcf_hdr_id2name(args->hdr,args->rid);
int i;
for (i=0; i<node->ncsq_list; i++)
{
csq_t *csq = node->csq_list + i;
if ( csq->type.type & CSQ_PRINTED_UPSTREAM ) continue;
assert( csq->type.vstr.l );
fprintf(args->out,"CSQ\t%s\t", smpl);
if ( ihap>0 )
fprintf(args->out,"%d", ihap);
else
fprintf(args->out,"-");
args->str.l = 0;
kput_vcsq(args, &csq->type, &args->str);
fprintf(args->out,"\t%s\t%d\t%s\n",chr,csq->pos+1,args->str.s);
}
}
static inline void hap_stage_vcf(args_t *args, tscript_t *tr, int ismpl, int ihap, hap_node_t *node)
{
if ( !node || !node->ncsq_list || ismpl<0 ) return;
int i;
for (i=0; i<node->ncsq_list; i++)
{
csq_t *csq = node->csq_list + i;
vrec_t *vrec = csq->vrec;
int icsq = 2*csq->idx + ihap;
if ( icsq >= args->ncsq_max ) // more than ncsq_max consequences, so can't fit it in FMT
{
int print_warning = 1;
if ( args->quiet )
{
if ( args->quiet > 1 || args->ncsq_small_warned ) print_warning = 0;
args->ncsq_small_warned = 1;
}
if ( print_warning )
{
fprintf(stderr,"Warning: --ncsq %d is too small to annotate %s at %s:%d with %d-th csq\n",
args->ncsq_max/2,args->hdr->samples[ismpl],bcf_hdr_id2name(args->hdr,args->rid),vrec->line->pos+1,csq->idx+1);
if ( args->quiet ) fprintf(stderr,"(This warning is printed only once)\n");
}
break;
}
if ( vrec->nfmt < 1 + icsq/32 ) vrec->nfmt = 1 + icsq/32;
vrec->smpl[ismpl*args->nfmt_bcsq + icsq/32] |= 1 << (icsq % 32);
}
}
void hap_flush(args_t *args, uint32_t pos)
{
int i,j;
tr_heap_t *heap = args->active_tr;
while ( heap->ndat && heap->dat[0]->end<=pos )
{
tscript_t *tr = heap->dat[0];
khp_delete(trhp, heap);
args->hap->tr = tr;
if ( tr->root && tr->root->nchild ) // normal, non-localized calling
{
hap_finalize(args, args->hap);
if ( args->output_type==FT_TAB_TEXT ) // plain text output, not a vcf
{
if ( args->phase==PHASE_DROP_GT )
hap_print_text(args, tr, -1,0, tr->hap[0]);
else
{
for (i=0; i<args->smpl->n; i++)
{
for (j=0; j<2; j++)
hap_print_text(args, tr, args->smpl->idx[i],j+1, tr->hap[i*2+j]);
}
}
}
else if ( args->phase!=PHASE_DROP_GT )
{
for (i=0; i<args->smpl->n; i++)
{
for (j=0; j<2; j++)
hap_stage_vcf(args, tr, args->smpl->idx[i],j, tr->hap[i*2+j]);
}
}
}
// mark the transcript for deletion. Cannot delete it immediately because
// by-position VCF output will need them when flushed by vcf_buf_push
args->nrm_tr++;
hts_expand(tscript_t*,args->nrm_tr,args->mrm_tr,args->rm_tr);
args->rm_tr[args->nrm_tr-1] = tr;
}
}
#define SWAP(type_t, a, b) { type_t t = a; a = b; b = t; }
void vbuf_push(args_t *args, bcf1_t **rec_ptr)
{
int i;
assert(rec_ptr);
bcf1_t *rec = *rec_ptr;
// check for duplicate records
i = args->vcf_rbuf.n ? rbuf_last(&args->vcf_rbuf) : -1;
if ( i<0 || args->vcf_buf[i]->vrec[0]->line->pos!=rec->pos )
{
// vcf record with a new pos
rbuf_expand0(&args->vcf_rbuf, vbuf_t*, args->vcf_rbuf.n+1, args->vcf_buf);
i = rbuf_append(&args->vcf_rbuf);
if ( !args->vcf_buf[i] ) args->vcf_buf[i] = (vbuf_t*) calloc(1,sizeof(vbuf_t));
args->vcf_buf[i]->n = 0;
}
vbuf_t *vbuf = args->vcf_buf[i];
vbuf->n++;
hts_expand0(vrec_t*, vbuf->n, vbuf->m, vbuf->vrec);
if ( !vbuf->vrec[vbuf->n - 1] )
vbuf->vrec[vbuf->n - 1] = (vrec_t*) calloc(1,sizeof(vrec_t));
vrec_t *vrec = vbuf->vrec[vbuf->n - 1];
if ( args->phase!=PHASE_DROP_GT && args->smpl->n )
{
if ( !vrec->smpl ) vrec->smpl = (uint32_t*) calloc(args->hdr_nsmpl,sizeof(*vrec->smpl) * args->nfmt_bcsq);
else memset(vrec->smpl,0,args->hdr_nsmpl*sizeof(*vrec->smpl) * args->nfmt_bcsq);
}
if ( !vrec->line ) vrec->line = bcf_init1();
SWAP(bcf1_t*, (*rec_ptr), vrec->line);
int ret;
khint_t k = kh_put(pos2vbuf, args->pos2vbuf, (int)rec->pos, &ret);
kh_val(args->pos2vbuf,k) = vbuf;
}
void vbuf_flush(args_t *args)
{
if ( args->active_tr->ndat ) return; // cannot output buffered VCF lines (args.vbuf) until all active transcripts are gone
int i,j;
while ( (i=rbuf_shift(&args->vcf_rbuf))>=0 )
{
vbuf_t *vbuf = args->vcf_buf[i];
for (i=0; i<vbuf->n; i++)
{
vrec_t *vrec = vbuf->vrec[i];
if ( !args->out_fh ) // not a VCF output
{
vrec->nvcsq = 0;
continue;
}
if ( !vrec->nvcsq )
{
bcf_write(args->out_fh, args->hdr, vrec->line);
continue;
}
args->str.l = 0;
kput_vcsq(args, &vrec->vcsq[0], &args->str);
for (j=1; j<vrec->nvcsq; j++)
{
kputc_(',', &args->str);
kput_vcsq(args, &vrec->vcsq[j], &args->str);
}
bcf_update_info_string(args->hdr, vrec->line, args->bcsq_tag, args->str.s);
if ( args->hdr_nsmpl )
{
if ( vrec->nfmt < args->nfmt_bcsq )
for (j=1; j<args->hdr_nsmpl; j++) memcpy(vrec->smpl+j*vrec->nfmt, vrec->smpl+j*args->nfmt_bcsq, vrec->nfmt*sizeof(*vrec->smpl));
bcf_update_format_int32(args->hdr, vrec->line, args->bcsq_tag, vrec->smpl, args->hdr_nsmpl*vrec->nfmt);
}
vrec->nvcsq = 0;
bcf_write(args->out_fh, args->hdr, vrec->line);
}
if ( vbuf->n )
{
khint_t k = kh_get(pos2vbuf, args->pos2vbuf, vbuf->vrec[0]->line->pos);
if ( k != kh_end(args->pos2vbuf) ) kh_del(pos2vbuf, args->pos2vbuf, k);
}
vbuf->n = 0;
}
for (i=0; i<args->nrm_tr; i++)
{
tscript_t *tr = args->rm_tr[i];
if ( tr->root ) hap_destroy(tr->root);
tr->root = NULL;
free(tr->hap);
free(tr->ref);
free(tr->sref);
}
args->nrm_tr = 0;
args->ncsq_buf = 0;
}
void tscript_init_ref(args_t *args, tscript_t *tr, const char *chr)
{
int i, len;
int pad_beg = tr->beg >= N_REF_PAD ? N_REF_PAD : tr->beg;
tr->ref = faidx_fetch_seq(args->fai, chr, tr->beg - pad_beg, tr->end + N_REF_PAD, &len);
if ( !tr->ref )
error("faidx_fetch_seq failed %s:%d-%d\n", chr,tr->beg+1,tr->end+1);
int pad_end = len - (tr->end - tr->beg + 1 + pad_beg);
if ( pad_beg + pad_end != 2*N_REF_PAD )
{
char *ref = (char*) malloc(tr->end - tr->beg + 1 + 2*N_REF_PAD);
for (i=0; i < N_REF_PAD - pad_beg; i++) ref[i] = 'N';
memcpy(ref+i, tr->ref, len);
for (i=0; i < N_REF_PAD - pad_end; i++) ref[i+len] = 'N';
free(tr->ref);
tr->ref = ref;
}
}
static void sanity_check_ref(args_t *args, tscript_t *tr, bcf1_t *rec)
{
char *ref = tr->ref + (rec->pos + N_REF_PAD >= tr->beg ? rec->pos - tr->beg + N_REF_PAD : 0);
char *vcf = rec->d.allele[0] + (rec->pos + N_REF_PAD >= tr->beg ? 0 : tr->beg - N_REF_PAD - rec->pos);
assert( vcf - rec->d.allele[0] < strlen(rec->d.allele[0]) );
while ( *ref && *vcf )
{
if ( *ref!=*vcf && toupper(*ref)!=toupper(*vcf) )
error("Error: the fasta reference does not match the VCF REF allele at %s:%d .. %s\n", bcf_seqname(args->hdr,rec),rec->pos+1,rec->d.allele[0]);
ref++;
vcf++;
}
}
int test_cds_local(args_t *args, bcf1_t *rec)
{
int i,j, ret = 0;
const char *chr = bcf_seqname(args->hdr,rec);
// note that the off-by-one extension of rlen is deliberate to account for insertions
if ( !regidx_overlap(args->idx_cds,chr,rec->pos,rec->pos+rec->rlen, args->itr) ) return 0;
// structures to fake the normal test_cds machinery
hap_node_t root, node;
root.type = HAP_ROOT;
kstring_t *tref = &args->hap->tref, *tseq = &args->hap->tseq;
while ( regitr_overlap(args->itr) )
{
gf_cds_t *cds = regitr_payload(args->itr,gf_cds_t*);
tscript_t *tr = cds->tr;
if ( !GF_is_coding(tr->type) ) continue;
ret = 1;
if ( !tr->ref )
{
tscript_init_ref(args, tr, chr);
tscript_splice_ref(tr);
khp_insert(trhp, args->active_tr, &tr); // only to clean the reference afterwards
}
sanity_check_ref(args, tr, rec);
kstring_t sref;
sref.s = tr->sref;
sref.l = tr->nsref;
sref.m = sref.l;
for (i=1; i<rec->n_allele; i++)
{
if ( hap_init(args, &root, &node, cds, rec, i)!=0 ) continue;
csq_t csq;
memset(&csq, 0, sizeof(csq_t));
csq.pos = rec->pos;
csq.type.biotype = tr->type;
csq.type.strand = tr->strand;
csq.type.trid = tr->id;
csq.type.gene = tr->gene->name;
int csq_type = node.csq;
// code repetition: it would be nice to reuse the code from hap_add_csq, needs have refactoring though
if ( node.type == HAP_SSS )
{
csq.type.type = csq_type;
csq_stage(args, &csq, rec);
}
else
{
kstring_t sseq;
sseq.m = sref.m - 2*N_REF_PAD + node.dlen;
sseq.s = node.seq;
int alen = sseq.l = strlen(sseq.s);
int fill = node.dlen%3 && alen ? 1 : 0; // see #1475227917
cds_translate(&sref, &sseq, node.sbeg,node.sbeg,node.sbeg+node.rlen, tr->strand, tseq, fill);
sseq.m = sref.m - 2*N_REF_PAD;
sseq.s = sref.s + N_REF_PAD + node.sbeg;
sseq.l = node.rlen;
cds_translate(&sref, &sseq, node.sbeg,node.sbeg,node.sbeg+node.rlen, tr->strand, tref, fill);
// check for truncating stops
for (j=0; j<tref->l; j++)
if ( tref->s[j]=='*' ) break;
if ( j!=tref->l )
{
tref->l = j+1;
tref->s[j+1] = 0;
}
for (j=0; j<tseq->l; j++)
if ( tseq->s[j]=='*' ) break;
if ( j!=tseq->l )
{
tseq->l = j+1;
tseq->s[j+1] = 0;
}
if ( csq_type & CSQ_STOP_LOST )
{
if ( tref->s[tref->l-1]=='*' && tref->s[tref->l-1] == tseq->s[tseq->l-1] )
{
csq_type &= ~CSQ_STOP_LOST;
csq_type |= CSQ_STOP_RETAINED;
}
else if (tref->s[tref->l-1]!='*' )
{
// This is CDS 3' incomplete ENSG00000173376/synon.vcf, can also be missense
// We observe in real data a change to a stop, ENST00000528237/retained-stop-incomplete-cds.vcf
if ( tseq->s[tseq->l-1] == '*' )
{
csq_type &= ~CSQ_STOP_GAINED;
csq_type |= CSQ_STOP_RETAINED;
}
else
csq_type |= CSQ_INCOMPLETE_CDS;
}
}
if ( csq_type & CSQ_START_LOST && tref->s[0]!='M' )
csq_type &= ~CSQ_START_LOST;
if ( node.dlen!=0 )
{
if ( node.dlen%3 )
csq_type |= CSQ_FRAMESHIFT_VARIANT;
else if ( node.dlen<0 )
csq_type |= CSQ_INFRAME_DELETION;
else
csq_type |= CSQ_INFRAME_INSERTION;
}
else
{
for (j=0; j<tref->l; j++)
if ( tref->s[j] != tseq->s[j] ) break;
if ( j==tref->l )
csq_type |= CSQ_SYNONYMOUS_VARIANT;
else if ( tref->s[j] == '*' )
csq_type |= CSQ_STOP_LOST;
else if ( tseq->s[j] == '*' )
csq_type |= CSQ_STOP_GAINED;
else
csq_type |= CSQ_MISSENSE_VARIANT;
}
if ( csq_type & CSQ_COMPOUND )
{
// create the aa variant string
kstring_t str = {0,0,0};
int aa_rbeg = tr->strand==STRAND_FWD ? node.sbeg/3+1 : (tr->nsref - 2*N_REF_PAD - node.sbeg - node.rlen)/3+1;
int aa_sbeg = tr->strand==STRAND_FWD ? node.sbeg/3+1 : (tr->nsref - 2*N_REF_PAD + node.dlen - node.sbeg - alen)/3+1;
kputc_('|', &str);
kputw(aa_rbeg, &str);
kputs(tref->s, &str);
if ( !(csq_type & CSQ_SYNONYMOUS_VARIANT) )
{
kputc_('>', &str);
kputw(aa_sbeg, &str);
kputs(tseq->s, &str);
}
kputc_('|', &str);
kputw(rec->pos+1, &str);
kputs(node.var, &str);
csq.type.vstr = str;
csq.type.type = csq_type & CSQ_COMPOUND;
csq_stage(args, &csq, rec);
// all this only to clean vstr when vrec is flushed
if ( !tr->root )
tr->root = (hap_node_t*) calloc(1,sizeof(hap_node_t));
tr->root->ncsq_list++;
hts_expand0(csq_t,tr->root->ncsq_list,tr->root->mcsq_list,tr->root->csq_list);
csq_t *rm_csq = tr->root->csq_list + tr->root->ncsq_list - 1;
rm_csq->type.vstr = str;
}
if ( csq_type & ~CSQ_COMPOUND )
{
csq.type.type = csq_type & ~CSQ_COMPOUND;
csq.type.vstr.l = 0;
csq_stage(args, &csq, rec);
}
}
free(node.seq);
free(node.var);
}
}
return ret;
}
int test_cds(args_t *args, bcf1_t *rec)
{
int i, ret = 0, hap_ret;
const char *chr = bcf_seqname(args->hdr,rec);
// note that the off-by-one extension of rlen is deliberate to account for insertions
if ( !regidx_overlap(args->idx_cds,chr,rec->pos,rec->pos+rec->rlen, args->itr) ) return 0;
while ( regitr_overlap(args->itr) )
{
gf_cds_t *cds = regitr_payload(args->itr,gf_cds_t*);
tscript_t *tr = cds->tr;
if ( !GF_is_coding(tr->type) ) continue;
ret = 1;
if ( !tr->root )
{
// initialize the transcript and its haplotype tree, fetch the reference sequence
tscript_init_ref(args, tr, chr);
tr->root = (hap_node_t*) calloc(1,sizeof(hap_node_t));
tr->nhap = args->phase==PHASE_DROP_GT ? 1 : 2*args->smpl->n; // maximum ploidy = diploid
tr->hap = (hap_node_t**) malloc(tr->nhap*sizeof(hap_node_t*));
for (i=0; i<tr->nhap; i++) tr->hap[i] = NULL;
tr->root->nend = tr->nhap;
tr->root->type = HAP_ROOT;
khp_insert(trhp, args->active_tr, &tr);
}
sanity_check_ref(args, tr, rec);
if ( args->phase==PHASE_DROP_GT )
{
if ( rec->d.allele[1][0]=='<' || rec->d.allele[1][0]=='*' ) { continue; }
hap_node_t *parent = tr->hap[0] ? tr->hap[0] : tr->root;
hap_node_t *child = (hap_node_t*)calloc(1,sizeof(hap_node_t));
hap_ret = hap_init(args, parent, child, cds, rec, 1);
if ( hap_ret!=0 )
{
// overlapping or intron variant, cannot apply
if ( hap_ret==1 )
{
if ( !args->quiet )
fprintf(stderr,"Warning: Skipping overlapping variants at %s:%d\t%s>%s\n", chr,rec->pos+1,rec->d.allele[0],rec->d.allele[1]);
if ( args->out )
fprintf(args->out,"LOG\tWarning: Skipping overlapping variants at %s:%d\t%s>%s\n", chr,rec->pos+1,rec->d.allele[0],rec->d.allele[1]);
}
else ret = 1; // prevent reporting as intron in test_tscript
hap_destroy(child);
continue;
}
if ( child->type==HAP_SSS )
{
csq_t csq;
memset(&csq, 0, sizeof(csq_t));
csq.pos = rec->pos;
csq.type.biotype = tr->type;
csq.type.strand = tr->strand;
csq.type.trid = tr->id;
csq.type.gene = tr->gene->name;
csq.type.type = child->csq;
csq_stage(args, &csq, rec);
hap_destroy(child);
ret = 1;
continue;
}
parent->nend--;
parent->nchild = 1;
parent->mchild = 1;
parent->child = (hap_node_t**) malloc(sizeof(hap_node_t*));
parent->child[0] = child;
tr->hap[0] = child;
tr->hap[0]->nend = 1;
continue;
}
// apply the VCF variants and extend the haplotype tree
int j, ismpl, ihap, ngts = bcf_get_genotypes(args->hdr, rec, &args->gt_arr, &args->mgt_arr);
ngts /= bcf_hdr_nsamples(args->hdr);
if ( ngts!=1 && ngts!=2 )
{
if ( !args->quiet )
fprintf(stderr,"Warning: Skipping site with non-diploid/non-haploid genotypes at %s:%d\t%s>%s\n", chr,rec->pos+1,rec->d.allele[0],rec->d.allele[1]);
if ( args->out )
fprintf(args->out,"LOG\tWarning: Skipping site with non-diploid/non-haploid genotypes at %s:%d\t%s>%s\n", chr,rec->pos+1,rec->d.allele[0],rec->d.allele[1]);
continue;
}
for (ismpl=0; ismpl<args->smpl->n; ismpl++)
{
int32_t *gt = args->gt_arr + args->smpl->idx[ismpl]*ngts;
if ( gt[0]==bcf_gt_missing ) continue;
if ( ngts>1 && gt[1]!=bcf_gt_missing && gt[1]!=bcf_int32_vector_end && bcf_gt_allele(gt[0])!=bcf_gt_allele(gt[1]) )
{
if ( args->phase==PHASE_MERGE )
{
if ( !bcf_gt_allele(gt[0]) ) gt[0] = gt[1];
}
if ( !bcf_gt_is_phased(gt[0]) && !bcf_gt_is_phased(gt[1]) )
{
if ( args->phase==PHASE_REQUIRE )
error("Unphased heterozygous genotype at %s:%d, sample %s. See the --phase option.\n", chr,rec->pos+1,args->hdr->samples[args->smpl->idx[ismpl]]);
if ( args->phase==PHASE_SKIP )
continue;
if ( args->phase==PHASE_NON_REF )
{
if ( !bcf_gt_allele(gt[0]) ) gt[0] = gt[1];
else if ( !bcf_gt_allele(gt[1]) ) gt[1] = gt[0];
}
}
}
for (ihap=0; ihap<ngts; ihap++)
{
if ( gt[ihap]==bcf_gt_missing || gt[ihap]==bcf_int32_vector_end ) continue;
i = 2*ismpl + ihap;
int ial = bcf_gt_allele(gt[ihap]);
if ( !ial ) continue;
assert( ial < rec->n_allele );
if ( rec->d.allele[ial][0]=='<' || rec->d.allele[ial][0]=='*' ) { continue; }
hap_node_t *parent = tr->hap[i] ? tr->hap[i] : tr->root;
if ( parent->cur_rec==rec && parent->cur_child[ial]>=0 )
{
// this haplotype has been seen in another sample
tr->hap[i] = parent->child[ parent->cur_child[ial] ];
tr->hap[i]->nend++;
parent->nend--;
continue;
}
hap_node_t *child = (hap_node_t*)calloc(1,sizeof(hap_node_t));
hap_ret = hap_init(args, parent, child, cds, rec, ial);
if ( hap_ret!=0 )
{
// overlapping or intron variant, cannot apply
if ( hap_ret==1 )
{
if ( !args->quiet )
fprintf(stderr,"Warning: Skipping overlapping variants at %s:%d, sample %s\t%s>%s\n",
chr,rec->pos+1,args->hdr->samples[args->smpl->idx[ismpl]],rec->d.allele[0],rec->d.allele[ial]);
if ( args->out )
fprintf(args->out,"LOG\tWarning: Skipping overlapping variants at %s:%d, sample %s\t%s>%s\n",
chr,rec->pos+1,args->hdr->samples[args->smpl->idx[ismpl]],rec->d.allele[0],rec->d.allele[ial]);
}
hap_destroy(child);
continue;
}
if ( child->type==HAP_SSS )
{
csq_t csq;
memset(&csq, 0, sizeof(csq_t));
csq.pos = rec->pos;
csq.type.biotype = tr->type;
csq.type.strand = tr->strand;
csq.type.trid = tr->id;
csq.type.gene = tr->gene->name;
csq.type.type = child->csq;
csq_stage(args, &csq, rec);
hap_destroy(child);
continue;
}
if ( parent->cur_rec!=rec )
{
hts_expand(int,rec->n_allele,parent->mcur_child,parent->cur_child);
for (j=0; j<rec->n_allele; j++) parent->cur_child[j] = -1;
parent->cur_rec = rec;
}
j = parent->nchild++;
hts_expand0(hap_node_t*,parent->nchild,parent->mchild,parent->child);
parent->cur_child[ial] = j;
parent->child[j] = child;
tr->hap[i] = child;
tr->hap[i]->nend++;
parent->nend--;
}
}
}
return ret;
}
void csq_stage(args_t *args, csq_t *csq, bcf1_t *rec)
{
// known issues: tab output leads to unsorted output. This is because
// coding haplotypes are printed in one go and buffering is not used
// with tab output. VCF output is OK though.
if ( csq_push(args, csq, rec)!=0 ) return; // the consequence already exists
int i,j,ngt = 0;
if ( args->phase!=PHASE_DROP_GT )
{
ngt = bcf_get_genotypes(args->hdr, rec, &args->gt_arr, &args->mgt_arr);
if ( ngt>0 ) ngt /= bcf_hdr_nsamples(args->hdr);
}
if ( ngt<=0 )
{
if ( args->output_type==FT_TAB_TEXT )
csq_print_text(args, csq, -1,0);
return;
}
assert( ngt<=2 );
if ( args->output_type==FT_TAB_TEXT )
{
for (i=0; i<args->smpl->n; i++)
{
int32_t *gt = args->gt_arr + args->smpl->idx[i]*ngt;
for (j=0; j<ngt; j++)
{
if ( gt[j]==bcf_gt_missing || gt[j]==bcf_int32_vector_end || !bcf_gt_allele(gt[j]) ) continue;
csq_print_text(args, csq, args->smpl->idx[i],j+1);
}
}
return;
}
vrec_t *vrec = csq->vrec;
for (i=0; i<args->smpl->n; i++)
{
int32_t *gt = args->gt_arr + args->smpl->idx[i]*ngt;
for (j=0; j<ngt; j++)
{
if ( gt[j]==bcf_gt_missing || gt[j]==bcf_int32_vector_end || !bcf_gt_allele(gt[j]) ) continue;
int icsq = 2*csq->idx + j;
if ( icsq >= args->ncsq_max ) // more than ncsq_max consequences, so can't fit it in FMT
{
int ismpl = args->smpl->idx[i];
int print_warning = 1;
if ( args->quiet )
{
if ( args->quiet > 1 || args->ncsq_small_warned ) print_warning = 0;
args->ncsq_small_warned = 1;
}
if ( print_warning )
{
fprintf(stderr,"Warning: --ncsq %d is too small to annotate %s at %s:%d with %d-th csq\n",
args->ncsq_max/2,args->hdr->samples[ismpl],bcf_hdr_id2name(args->hdr,args->rid),vrec->line->pos+1,csq->idx+1);
if ( args->quiet ) fprintf(stderr,"(This warning is printed only once)\n");
}
break;
}
if ( vrec->nfmt < 1 + icsq/32 ) vrec->nfmt = 1 + icsq/32;
vrec->smpl[i*args->nfmt_bcsq + icsq/32] |= 1 << (icsq % 32);
}
}
}
int test_utr(args_t *args, bcf1_t *rec)
{
const char *chr = bcf_seqname(args->hdr,rec);
// note that the off-by-one extension of rlen is deliberate to account for insertions
if ( !regidx_overlap(args->idx_utr,chr,rec->pos,rec->pos+rec->rlen, args->itr) ) return 0;
splice_t splice;
splice_init(&splice, rec);
int i, ret = 0;
while ( regitr_overlap(args->itr) )
{
gf_utr_t *utr = regitr_payload(args->itr, gf_utr_t*);
tscript_t *tr = splice.tr = utr->tr;
for (i=1; i<rec->n_allele; i++)
{
if ( rec->d.allele[1][0]=='<' || rec->d.allele[1][0]=='*' ) { continue; }
splice.vcf.alt = rec->d.allele[i];
int splice_ret = splice_csq(args, &splice, utr->beg, utr->end);
if ( splice_ret!=SPLICE_INSIDE && splice_ret!=SPLICE_OVERLAP ) continue;
csq_t csq;
memset(&csq, 0, sizeof(csq_t));
csq.pos = rec->pos;
csq.type.type = utr->which==prime5 ? CSQ_UTR5 : CSQ_UTR3;
csq.type.biotype = tr->type;
csq.type.strand = tr->strand;
csq.type.trid = tr->id;
csq.type.gene = tr->gene->name;
csq_stage(args, &csq, rec);
ret = 1;
}
}
assert(!splice.kref.s);
assert(!splice.kalt.s);
return ret;
}
int test_splice(args_t *args, bcf1_t *rec)
{
const char *chr = bcf_seqname(args->hdr,rec);
if ( !regidx_overlap(args->idx_exon,chr,rec->pos,rec->pos + rec->rlen, args->itr) ) return 0;
splice_t splice;
splice_init(&splice, rec);
splice.check_acceptor = splice.check_donor = 1;
int i, ret = 0;
while ( regitr_overlap(args->itr) )
{
gf_exon_t *exon = regitr_payload(args->itr, gf_exon_t*);
splice.tr = exon->tr;
if ( !splice.tr->ncds ) continue; // not a coding transcript, no interest in splice sites
splice.check_region_beg = splice.tr->beg==exon->beg ? 0 : 1;
splice.check_region_end = splice.tr->end==exon->end ? 0 : 1;
for (i=1; i<rec->n_allele; i++)
{
if ( rec->d.allele[1][0]=='<' || rec->d.allele[1][0]=='*' ) { continue; }
splice.vcf.alt = rec->d.allele[i];
splice_csq(args, &splice, exon->beg, exon->end);
if ( splice.csq ) ret = 1;
}
}
free(splice.kref.s);
free(splice.kalt.s);
return ret;
}
int test_tscript(args_t *args, bcf1_t *rec)
{
const char *chr = bcf_seqname(args->hdr,rec);
if ( !regidx_overlap(args->idx_tscript,chr,rec->pos,rec->pos+rec->rlen, args->itr) ) return 0;
splice_t splice;
splice_init(&splice, rec);
int i, ret = 0;
while ( regitr_overlap(args->itr) )
{
tscript_t *tr = splice.tr = regitr_payload(args->itr, tscript_t*);
for (i=1; i<rec->n_allele; i++)
{
if ( rec->d.allele[1][0]=='<' || rec->d.allele[1][0]=='*' ) { continue; }
splice.vcf.alt = rec->d.allele[i];
int splice_ret = splice_csq(args, &splice, tr->beg, tr->end);
if ( splice_ret!=SPLICE_INSIDE && splice_ret!=SPLICE_OVERLAP ) continue; // SPLICE_OUTSIDE or SPLICE_REF
csq_t csq;
memset(&csq, 0, sizeof(csq_t));
csq.pos = rec->pos;
csq.type.type = GF_is_coding(tr->type) ? CSQ_INTRON : CSQ_NON_CODING;
csq.type.biotype = tr->type;
csq.type.strand = tr->strand;
csq.type.trid = tr->id;
csq.type.gene = tr->gene->name;
csq_stage(args, &csq, rec);
ret = 1;
}
}
assert(!splice.kref.s);
assert(!splice.kalt.s);
return ret;
}
void process(args_t *args, bcf1_t **rec_ptr)
{
if ( !rec_ptr )
{
hap_flush(args, REGIDX_MAX);
vbuf_flush(args);
return;
}
bcf1_t *rec = *rec_ptr;
int call_csq = 1;
if ( !rec->n_allele ) call_csq = 0; // no alternate allele
else if ( rec->n_allele==2 && (rec->d.allele[1][0]=='<' || rec->d.allele[1][0]=='*') ) call_csq = 0; // gVCF, no alt allele
else if ( rec->d.allele[1][0]=='<' && rec->d.allele[1][0]!='*') call_csq = 0; // a symbolic allele, not ready for CNVs etc
else if ( args->filter )
{
call_csq = filter_test(args->filter, rec, NULL);
if ( args->filter_logic==FLT_EXCLUDE ) call_csq = call_csq ? 0 : 1;
}
if ( !call_csq )
{
if ( !args->out_fh ) return; // not a VCF output
vbuf_push(args, rec_ptr);
vbuf_flush(args);
return;
}
if ( args->rid != rec->rid )
{
hap_flush(args, REGIDX_MAX);
vbuf_flush(args);
}
args->rid = rec->rid;
vbuf_push(args, rec_ptr);
int hit = args->local_csq ? test_cds_local(args, rec) : test_cds(args, rec);
hit += test_utr(args, rec);
hit += test_splice(args, rec);
if ( !hit ) test_tscript(args, rec);
hap_flush(args, rec->pos-1);
vbuf_flush(args);
return;
}
static const char *usage(void)
{
return
"\n"
"About: Haplotype-aware consequence caller.\n"
"Usage: bcftools csq [options] in.vcf\n"
"\n"
"Required options:\n"
" -f, --fasta-ref <file> reference file in fasta format\n"
" -g, --gff-annot <file> gff3 annotation file\n"
"\n"
"CSQ options:\n"
" -c, --custom-tag <string> use this tag instead of the default BCSQ\n"
" -l, --local-csq localized predictions, consider only one VCF record at a time\n"
" -n, --ncsq <int> maximum number of consequences to consider per site [16]\n"
" -p, --phase <a|m|r|R|s> how to handle unphased heterozygous genotypes: [r]\n"
" a: take GTs as is, create haplotypes regardless of phase (0/1 -> 0|1)\n"
" m: merge *all* GTs into a single haplotype (0/1 -> 1, 1/2 -> 1)\n"
" r: require phased GTs, throw an error on unphased het GTs\n"
" R: create non-reference haplotypes if possible (0/1 -> 1|1, 1/2 -> 1|2)\n"
" s: skip unphased hets\n"
"Options:\n"
" -e, --exclude <expr> exclude sites for which the expression is true\n"
" --force run even if some sanity checks fail\n"
" -i, --include <expr> select sites for which the expression is true\n"
" -o, --output <file> write output to a file [standard output]\n"
" -O, --output-type <b|u|z|v|t> b: compressed BCF, u: uncompressed BCF, z: compressed VCF\n"
" v: uncompressed VCF, t: plain tab-delimited text output [v]\n"
" -q, --quiet suppress warning messages. Can be given two times for even less messages\n"
" -r, --regions <region> restrict to comma-separated list of regions\n"
" -R, --regions-file <file> restrict to regions listed in a file\n"
" -s, --samples <-|list> samples to include or \"-\" to apply all variants and ignore samples\n"
" -S, --samples-file <file> samples to include\n"
" -t, --targets <region> similar to -r but streams rather than index-jumps\n"
" -T, --targets-file <file> similar to -R but streams rather than index-jumps\n"
"\n"
"Example:\n"
" bcftools csq -f hs37d5.fa -g Homo_sapiens.GRCh37.82.gff3.gz in.vcf\n"
"\n"
" # GFF3 annotation files can be downloaded from Ensembl. e.g. for human:\n"
" ftp://ftp.ensembl.org/pub/current_gff3/homo_sapiens/\n"
" ftp://ftp.ensembl.org/pub/grch37/release-84/gff3/homo_sapiens/\n"
"\n";
}
int main_csq(int argc, char *argv[])
{
args_t *args = (args_t*) calloc(1,sizeof(args_t));
args->argc = argc; args->argv = argv;
args->output_type = FT_VCF;
args->bcsq_tag = "BCSQ";
args->ncsq_max = 2*16;
static struct option loptions[] =
{
{"force",0,0,1},
{"help",0,0,'h'},
{"ncsq",1,0,'n'},
{"custom-tag",1,0,'c'},
{"local-csq",0,0,'l'},
{"gff-annot",1,0,'g'},
{"fasta-ref",1,0,'f'},
{"include",1,0,'i'},
{"exclude",1,0,'e'},
{"output",1,0,'o'},
{"output-type",1,NULL,'O'},
{"phase",1,0,'p'},
{"quiet",0,0,'q'},
{"regions",1,0,'r'},
{"regions-file",1,0,'R'},
{"samples",1,0,'s'},
{"samples-file",1,0,'S'},
{"targets",1,0,'t'},
{"targets-file",1,0,'T'},
{0,0,0,0}
};
int c, targets_is_file = 0, regions_is_file = 0;
char *targets_list = NULL, *regions_list = NULL;
while ((c = getopt_long(argc, argv, "?hr:R:t:T:i:e:f:o:O:g:s:S:p:qc:ln:",loptions,NULL)) >= 0)
{
switch (c)
{
case 1 : args->force = 1; break;
case 'l': args->local_csq = 1; break;
case 'c': args->bcsq_tag = optarg; break;
case 'q': args->quiet++; break;
case 'p':
switch (optarg[0])
{
case 'a': args->phase = PHASE_AS_IS; break;
case 'm': args->phase = PHASE_MERGE; break;
case 'r': args->phase = PHASE_REQUIRE; break;
case 'R': args->phase = PHASE_NON_REF; break;
case 's': args->phase = PHASE_SKIP; break;
default: error("The -p code \"%s\" not recognised\n", optarg);
}
break;
case 'f': args->fa_fname = optarg; break;
case 'g': args->gff_fname = optarg; break;
case 'n':
args->ncsq_max = 2 * atoi(optarg);
if ( args->ncsq_max <=0 ) error("Expected positive integer with -n, got %s\n", optarg);
break;
case 'o': args->output_fname = optarg; break;
case 'O':
switch (optarg[0]) {
case 't': args->output_type = FT_TAB_TEXT; break;
case 'b': args->output_type = FT_BCF_GZ; break;
case 'u': args->output_type = FT_BCF; break;
case 'z': args->output_type = FT_VCF_GZ; break;
case 'v': args->output_type = FT_VCF; break;
default: error("The output type \"%s\" not recognised\n", optarg);
}
break;
case 'e': args->filter_str = optarg; args->filter_logic |= FLT_EXCLUDE; break;
case 'i': args->filter_str = optarg; args->filter_logic |= FLT_INCLUDE; break;
case 'r': regions_list = optarg; break;
case 'R': regions_list = optarg; regions_is_file = 1; break;
case 's': args->sample_list = optarg; break;
case 'S': args->sample_list = optarg; args->sample_is_file = 1; break;
case 't': targets_list = optarg; break;
case 'T': targets_list = optarg; targets_is_file = 1; break;
case 'h':
case '?': error("%s",usage());
default: error("The option not recognised: %s\n\n", optarg); break;
}
}
char *fname = NULL;
if ( optind==argc )
{
if ( !isatty(fileno((FILE *)stdin)) ) fname = "-"; // reading from stdin
else error("%s", usage());
}
else fname = argv[optind];
if ( argc - optind>1 ) error("%s", usage());
if ( !args->fa_fname ) error("Missing the --fa-ref option\n");
if ( !args->gff_fname ) error("Missing the --gff option\n");
args->sr = bcf_sr_init();
if ( targets_list && bcf_sr_set_targets(args->sr, targets_list, targets_is_file, 0)<0 )
error("Failed to read the targets: %s\n", targets_list);
if ( regions_list && bcf_sr_set_regions(args->sr, regions_list, regions_is_file)<0 )
error("Failed to read the regions: %s\n", regions_list);
if ( !bcf_sr_add_reader(args->sr, fname) )
error("Failed to open %s: %s\n", fname,bcf_sr_strerror(args->sr->errnum));
args->hdr = bcf_sr_get_header(args->sr,0);
init_data(args);
while ( bcf_sr_next_line(args->sr) )
{
process(args, &args->sr->readers[0].buffer[0]);
}
process(args,NULL);
destroy_data(args);
bcf_sr_destroy(args->sr);
free(args);
return 0;
}
|