1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
|
/* vcfsom.c -- SOM (Self-Organizing Map) filtering.
Copyright (C) 2013-2014 Genome Research Ltd.
Author: Petr Danecek <pd3@sanger.ac.uk>
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE. */
#include <stdio.h>
#include <unistd.h>
#include <getopt.h>
#include <ctype.h>
#include <string.h>
#include <errno.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <math.h>
#include <time.h>
#include <htslib/vcf.h>
#include <htslib/synced_bcf_reader.h>
#include <htslib/vcfutils.h>
#include <inttypes.h>
#include "bcftools.h"
#define SOM_TRAIN 1
#define SOM_CLASSIFY 2
typedef struct
{
int ndim; // dimension of the map (2D, 3D, ...)
int nbin; // number of bins in th map
int size; // pow(nbin,ndim)
int kdim; // dimension of the input vectors
int nt, t; // total number of learning cycles and the current cycle
double *w, *c; // weights and counts (sum of learning influence)
double learn; // learning rate
double bmu_th; // best-matching unit threshold
int *a_idx, *b_idx; // temp arrays for traversing variable number of nested loops
double *div; // dtto
}
som_t;
typedef struct
{
// SOM parameters
double bmu_th, learn;
int ndim, nbin, ntrain, t;
int nfold; // n-fold cross validation = the number of SOMs
som_t **som;
// annots reader's data
htsFile *file; // reader
kstring_t str; // temporary string for the reader
int dclass, mvals;
double *vals;
// training data
double *train_dat;
int *train_class, mtrain_class, mtrain_dat;
int rand_seed, good_class, bad_class;
char **argv, *fname, *prefix;
int argc, action, train_bad, merge;
}
args_t;
static void usage(void);
FILE *open_file(char **fname, const char *mode, const char *fmt, ...);
void mkdir_p(const char *fmt, ...);
char *msprintf(const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
int n = vsnprintf(NULL, 0, fmt, ap) + 2;
va_end(ap);
char *str = (char*)malloc(n);
va_start(ap, fmt);
vsnprintf(str, n, fmt, ap);
va_end(ap);
return str;
}
/*
* char *t, *p = str;
* t = column_next(p, '\t');
* if ( strlen("<something>")==t-p && !strncmp(p,"<something>",t-p) ) printf("found!\n");
*
* char *t;
* t = column_next(str, '\t'); if ( !*t ) error("expected field\n", str);
* t = column_next(t+1, '\t'); if ( !*t ) error("expected field\n", str);
*/
static inline char *column_next(char *start, char delim)
{
char *end = start;
while (*end && *end!=delim) end++;
return end;
}
/**
* annots_reader_next() - reads next line from annots.tab.gz and sets: class, vals
* Returns 1 on successful read or 0 if no further record could be read.
*/
int annots_reader_next(args_t *args)
{
args->str.l = 0;
if ( hts_getline(args->file,'\n',&args->str)<=0 ) return 0;
char *t, *line = args->str.s;
if ( !args->mvals )
{
t = line;
while ( *t )
{
if ( *t=='\t' ) args->mvals++;
t++;
}
args->vals = (double*) malloc(args->mvals*sizeof(double));
}
// class
args->dclass = atoi(line);
t = column_next(line, '\t');
// values
int i;
for (i=0; i<args->mvals; i++)
{
if ( !*t ) error("Could not parse %d-th data field: is the line truncated?\nThe line was: [%s]\n",i+2,line);
args->vals[i] = atof(++t);
t = column_next(t,'\t');
}
return 1;
}
void annots_reader_reset(args_t *args)
{
if ( args->file ) hts_close(args->file);
if ( !args->fname ) error("annots_reader_reset: no fname\n");
args->file = hts_open(args->fname, "r");
}
void annots_reader_close(args_t *args)
{
hts_close(args->file);
}
static void som_write_map(char *prefix, som_t **som, int nsom)
{
FILE *fp = open_file(NULL,"w","%s.som",prefix);
fwrite("SOMv1",5,1,fp);
fwrite(&nsom,sizeof(int),1,fp);
int i;
for (i=0; i<nsom; i++)
{
fwrite(&som[i]->size,sizeof(int),1,fp);
fwrite(&som[i]->kdim,sizeof(int),1,fp);
fwrite(som[i]->w,sizeof(double),som[i]->size*som[i]->kdim,fp);
fwrite(som[i]->c,sizeof(double),som[i]->size,fp);
}
if ( fclose(fp) ) error("%s.som: fclose failed\n",prefix);
}
static som_t** som_load_map(char *prefix, int *nsom)
{
FILE *fp = open_file(NULL,"r","%s.som",prefix);
char buf[5];
if ( fread(buf,5,1,fp)!=1 || strncmp(buf,"SOMv1",5) ) error("Could not parse %s.som\n", prefix);
if ( fread(nsom,sizeof(int),1,fp)!=1 ) error("Could not read %s.som\n", prefix);
som_t **som = (som_t**)malloc(*nsom*sizeof(som_t*));
int i;
for (i=0; i<*nsom; i++)
{
som[i] = (som_t*) calloc(1,sizeof(som_t));
if ( fread(&som[i]->size,sizeof(int),1,fp) != 1 ) error("Could not read %s.som\n", prefix);
if ( fread(&som[i]->kdim,sizeof(int),1,fp) != 1 ) error("Could not read %s.som\n", prefix);
som[i]->w = (double*) malloc(sizeof(double)*som[i]->size*som[i]->kdim);
som[i]->c = (double*) malloc(sizeof(double)*som[i]->size);
if ( fread(som[i]->w,sizeof(double),som[i]->size*som[i]->kdim,fp) != som[i]->size*som[i]->kdim ) error("Could not read from %s.som\n", prefix);
if ( fread(som[i]->c,sizeof(double),som[i]->size,fp) != som[i]->size ) error("Could not read from %s.som\n", prefix);
}
if ( fclose(fp) ) error("%s.som: fclose failed\n",prefix);
return som;
}
static void som_create_plot(som_t *som, char *prefix)
{
if ( som->ndim!=2 ) return;
char *fname;
FILE *fp = open_file(&fname,"w","%s.py",prefix);
fprintf(fp,
"import matplotlib as mpl\n"
"mpl.use('Agg')\n"
"import matplotlib.pyplot as plt\n"
"\n"
"dat = [\n"
);
int i,j;
double *val = som->c;
for (i=0; i<som->nbin; i++)
{
fprintf(fp,"[");
for (j=0; j<som->nbin; j++)
{
if ( j>0 ) fprintf(fp,",");
fprintf(fp,"%e", *val);
val++;
}
fprintf(fp,"],\n");
}
fprintf(fp,
"]\n"
"fig = plt.figure()\n"
"ax1 = plt.subplot(111)\n"
"im1 = ax1.imshow(dat)\n"
"fig.colorbar(im1)\n"
"plt.savefig('%s.png')\n"
"plt.close()\n"
"\n", prefix
);
fclose(fp);
free(fname);
}
// Find the best matching unit: the node with minimum distance from the input vector
static inline int som_find_bmu(som_t *som, double *vec, double *dist)
{
double *ptr = som->w;
double min_dist = HUGE_VAL;
int min_idx = 0;
int i, k;
for (i=0; i<som->size; i++)
{
double dist = 0;
for (k=0; k<som->kdim; k++)
dist += (vec[k] - ptr[k]) * (vec[k] - ptr[k]);
if ( dist < min_dist )
{
min_dist = dist;
min_idx = i;
}
ptr += som->kdim;
}
if ( dist ) *dist = min_dist;
return min_idx;
}
static inline double som_get_score(som_t *som, double *vec, double bmu_th)
{
double *ptr = som->w;
double min_dist = HUGE_VAL;
int i, k;
for (i=0; i<som->size; i++)
{
if ( som->c[i] >= bmu_th )
{
double dist = 0;
for (k=0; k<som->kdim; k++)
dist += (vec[k] - ptr[k]) * (vec[k] - ptr[k]);
if ( dist < min_dist ) min_dist = dist;
}
ptr += som->kdim;
}
return sqrt(min_dist);
}
// Convert flat index to that of a k-dimensional cube
static inline void som_idx_to_ndim(som_t *som, int idx, int *ndim)
{
int i;
double sub = 0;
ndim[0] = idx/som->div[0];
for (i=1; i<som->ndim; i++)
{
sub += ndim[i-1] * som->div[i-1];
ndim[i] = (idx - sub)/som->div[i];
}
}
static void som_train_site(som_t *som, double *vec, int update_counts)
{
// update learning rate and learning radius
som->t++;
double dt = exp(-som->t/som->nt);
double learning_rate = som->learn * dt;
double radius = som->nbin * dt; radius *= radius;
// find the best matching unit and its indexes
int min_idx = som_find_bmu(som, vec, NULL);
som_idx_to_ndim(som, min_idx, som->a_idx);
// update the weights: traverse the map and make all nodes within the
// radius more similar to the input vector
double *ptr = som->w;
double *cnt = som->c;
int i, j, k;
for (i=0; i<som->size; i++)
{
som_idx_to_ndim(som, i, som->b_idx);
double dist = 0;
for (j=0; j<som->ndim; j++)
dist += (som->a_idx[j] - som->b_idx[j]) * (som->a_idx[j] - som->b_idx[j]);
if ( dist <= radius )
{
double influence = exp(-dist*dist*0.5/radius) * learning_rate;
for (k=0; k<som->kdim; k++)
ptr[k] += influence * (vec[k] - ptr[k]);
// Bad sites may help to shape the map, but only nodes with big enough
// influence will be used for classification.
if ( update_counts ) *cnt += influence;
}
ptr += som->kdim;
cnt++;
}
}
static void som_norm_counts(som_t *som)
{
int i;
double max = 0;
for (i=0; i<som->size; i++)
if ( max < som->c[i] ) max = som->c[i];
for (i=0; i<som->size; i++)
som->c[i] /= max;
}
static som_t *som_init(args_t *args)
{
som_t *som = (som_t*) calloc(1,sizeof(som_t));
som->ndim = args->ndim;
som->nbin = args->nbin;
som->kdim = args->mvals;
som->nt = args->ntrain;
som->learn = args->learn;
som->bmu_th = args->bmu_th;
som->size = pow(som->nbin,som->ndim);
som->w = (double*) malloc(sizeof(double)*som->size*som->kdim);
if ( !som->w ) error("Could not alloc %"PRIu64" bytes [nbin=%d ndim=%d kdim=%d]\n", (uint64_t)(sizeof(double)*som->size*som->kdim),som->nbin,som->ndim,som->kdim);
som->c = (double*) calloc(som->size,sizeof(double));
if ( !som->w ) error("Could not alloc %"PRIu64" bytes [nbin=%d ndim=%d]\n", (uint64_t)(sizeof(double)*som->size),som->nbin,som->ndim);
int i;
for (i=0; i<som->size*som->kdim; i++)
som->w[i] = (double)random()/RAND_MAX;
som->a_idx = (int*) malloc(sizeof(int)*som->ndim);
som->b_idx = (int*) malloc(sizeof(int)*som->ndim);
som->div = (double*) malloc(sizeof(double)*som->ndim);
for (i=0; i<som->ndim; i++)
som->div[i] = pow(som->nbin,som->ndim-i-1);
return som;
}
static void som_destroy(som_t *som)
{
free(som->a_idx); free(som->b_idx); free(som->div);
free(som->w); free(som->c);
free(som);
}
static void init_data(args_t *args)
{
// Get first line to learn the vector size
annots_reader_reset(args);
annots_reader_next(args);
if ( args->action==SOM_CLASSIFY )
args->som = som_load_map(args->prefix,&args->nfold);
}
static void destroy_data(args_t *args)
{
int i;
if ( args->som )
{
for (i=0; i<args->nfold; i++) som_destroy(args->som[i]);
}
free(args->train_dat);
free(args->train_class);
free(args->som);
free(args->vals);
free(args->str.s);
}
#define MERGE_MIN 0
#define MERGE_MAX 1
#define MERGE_AVG 2
static double get_min_score(args_t *args, int iskip)
{
int i;
double score, min_score = HUGE_VAL;
for (i=0; i<args->nfold; i++)
{
if ( i==iskip ) continue;
score = som_get_score(args->som[i], args->vals, args->bmu_th);
if ( i==0 || score < min_score ) min_score = score;
}
return min_score;
}
static double get_max_score(args_t *args, int iskip)
{
int i;
double score, max_score = -HUGE_VAL;
for (i=0; i<args->nfold; i++)
{
if ( i==iskip ) continue;
score = som_get_score(args->som[i], args->vals, args->bmu_th);
if ( i==0 || max_score < score ) max_score = score;
}
return max_score;
}
static double get_avg_score(args_t *args, int iskip)
{
int i, n = 0;
double score = 0;
for (i=0; i<args->nfold; i++)
{
if ( i==iskip ) continue;
score += som_get_score(args->som[i], args->vals, args->bmu_th);
n++;
}
return score/n;
}
static int cmpfloat_desc(const void *a, const void *b)
{
float fa = *((float*)a);
float fb = *((float*)b);
if ( fa<fb ) return 1;
if ( fa>fb ) return -1;
return 0;
}
static void create_eval_plot(args_t *args)
{
FILE *fp = open_file(NULL,"w","%s.eval.py", args->prefix);
fprintf(fp,
"import matplotlib as mpl\n"
"mpl.use('Agg')\n"
"import matplotlib.pyplot as plt\n"
"\n"
"import csv\n"
"csv.register_dialect('tab', delimiter='\\t', quoting=csv.QUOTE_NONE)\n"
"dat = []\n"
"with open('%s.eval', 'r') as f:\n"
"\treader = csv.reader(f, 'tab')\n"
"\tfor row in reader:\n"
"\t\tif row[0][0]!='#': dat.append(row)\n"
"\n"
"fig = plt.figure()\n"
"ax1 = plt.subplot(111)\n"
"ax1.plot([x[0] for x in dat],[x[1] for x in dat],'g',label='Good')\n"
"ax1.plot([x[0] for x in dat],[x[2] for x in dat],'r',label='Bad')\n"
"ax1.set_xlabel('SOM score')\n"
"ax1.set_ylabel('Number of training sites')\n"
"ax1.legend(loc='best',prop={'size':8},frameon=False)\n"
"plt.savefig('%s.eval.png')\n"
"plt.close()\n"
"\n", args->prefix,args->prefix
);
fclose(fp);
}
static void do_train(args_t *args)
{
// read training sites
int i, igood = 0, ibad = 0, ngood = 0, nbad = 0, ntrain = 0;
annots_reader_reset(args);
while ( annots_reader_next(args) )
{
// determine which of the nfold's SOMs to train
int isom = 0;
if ( args->dclass == args->good_class )
{
if ( ++igood >= args->nfold ) igood = 0;
isom = igood;
ngood++;
}
else if ( args->dclass == args->bad_class )
{
if ( ++ibad >= args->nfold ) ibad = 0;
isom = ibad;
nbad++;
}
else
error("Could not determine the class: %d (vs %d and %d)\n", args->dclass,args->good_class,args->bad_class);
// save the values for evaluation
ntrain++;
hts_expand(double, ntrain*args->mvals, args->mtrain_dat, args->train_dat);
hts_expand(int, ntrain, args->mtrain_class, args->train_class);
memcpy(args->train_dat+(ntrain-1)*args->mvals, args->vals, args->mvals*sizeof(double));
args->train_class[ntrain-1] = (args->dclass==args->good_class ? 1 : 0) | isom<<1; // store class + chunk used for training
}
annots_reader_close(args);
// init maps
if ( !args->ntrain ) args->ntrain = ngood/args->nfold;
srandom(args->rand_seed);
args->som = (som_t**) malloc(sizeof(som_t*)*args->nfold);
for (i=0; i<args->nfold; i++) args->som[i] = som_init(args);
// train
for (i=0; i<ntrain; i++)
{
int is_good = args->train_class[i] & 1;
int isom = args->train_class[i] >> 1;
if ( is_good || args->train_bad )
som_train_site(args->som[isom], args->train_dat+i*args->mvals, is_good);
}
// norm and create plots
for (i=0; i<args->nfold; i++)
{
som_norm_counts(args->som[i]);
if ( args->prefix )
{
char *bname = msprintf("%s.som.%d", args->prefix,i);
som_create_plot(args->som[i], bname);
free(bname);
}
}
// evaluate
float *good = (float*) malloc(sizeof(float)*ngood); assert(good);
float *bad = (float*) malloc(sizeof(float)*nbad); assert(bad);
igood = ibad = 0;
double max_score = sqrt(args->som[0]->kdim);
for (i=0; i<ntrain; i++)
{
double score = 0;
int is_good = args->train_class[i] & 1;
int isom = args->train_class[i] >> 1; // this vector was used for training isom-th SOM, skip
if ( args->nfold==1 ) isom = -1;
memcpy(args->vals, args->train_dat+i*args->mvals, args->mvals*sizeof(double));
switch (args->merge)
{
case MERGE_MIN: score = get_min_score(args, isom); break;
case MERGE_MAX: score = get_max_score(args, isom); break;
case MERGE_AVG: score = get_avg_score(args, isom); break;
}
score = 1.0 - score/max_score;
if ( is_good )
good[igood++] = score;
else
bad[ibad++] = score;
}
qsort(good, ngood, sizeof(float), cmpfloat_desc);
qsort(bad, nbad, sizeof(float), cmpfloat_desc);
FILE *fp = NULL;
if ( args->prefix ) fp = open_file(NULL,"w","%s.eval", args->prefix);
igood = 0;
ibad = 0;
float prev_score = good[0]>bad[0] ? good[0] : bad[0];
int printed = 0;
while ( igood<ngood || ibad<nbad )
{
if ( igood<ngood && good[igood]==prev_score ) { igood++; continue; }
if ( ibad<nbad && bad[ibad]==prev_score ) { ibad++; continue; }
if ( fp )
fprintf(fp,"%e\t%f\t%f\n", prev_score, (float)igood/ngood, (float)ibad/nbad);
if ( !printed && (float)igood/ngood > 0.9 )
{
printf("%.2f\t%.2f\t%e\t# %% of bad [1] and good [2] sites at a cutoff [3]\n", 100.*ibad/nbad,100.*igood/ngood,prev_score);
printed = 1;
}
if ( igood<ngood && ibad<nbad ) prev_score = good[igood]>bad[ibad] ? good[igood] : bad[ibad];
else if ( igood<ngood ) prev_score = good[igood];
else prev_score = bad[ibad];
}
if ( !printed ) printf("%.2f\t%.2f\t%e\t# %% of bad [1] and good [2] sites at a cutoff [3]\n", 100.*ibad/nbad,100.*igood/ngood,prev_score);
if ( fp )
{
if ( fclose(fp) ) error("%s.eval: fclose failed: %s\n",args->prefix,strerror(errno));
create_eval_plot(args);
som_write_map(args->prefix, args->som, args->nfold);
}
free(good);
free(bad);
}
static void do_classify(args_t *args)
{
annots_reader_reset(args);
double max_score = sqrt(args->som[0]->kdim);
while ( annots_reader_next(args) )
{
double score = 0;
switch (args->merge)
{
case MERGE_MIN: score = get_min_score(args, -1); break;
case MERGE_MAX: score = get_max_score(args, -1); break;
case MERGE_AVG: score = get_avg_score(args, -1); break;
}
printf("%e\n", 1.0 - score/max_score);
}
annots_reader_close(args);
}
static void usage(void)
{
fprintf(stderr, "\n");
fprintf(stderr, "About: SOM (Self-Organizing Map) filtering.\n");
fprintf(stderr, "Usage: bcftools som --train [options] <annots.tab.gz>\n");
fprintf(stderr, " bcftools som --classify [options]\n");
fprintf(stderr, "\n");
fprintf(stderr, "Model training options:\n");
fprintf(stderr, " -f, --nfold <int> n-fold cross-validation (number of maps) [5]\n");
fprintf(stderr, " -p, --prefix <string> prefix of output files\n");
fprintf(stderr, " -s, --size <int> map size [20]\n");
fprintf(stderr, " -t, --train \n");
fprintf(stderr, "\n");
fprintf(stderr, "Classifying options:\n");
fprintf(stderr, " -c, --classify \n");
fprintf(stderr, "\n");
fprintf(stderr, "Experimental training options (no reason to change):\n");
fprintf(stderr, " -b, --bmu-threshold <float> threshold for selection of best-matching unit [0.9]\n");
fprintf(stderr, " -d, --som-dimension <int> SOM dimension [2]\n");
fprintf(stderr, " -e, --exclude-bad exclude bad sites from training, use for evaluation only\n");
fprintf(stderr, " -l, --learning-rate <float> learning rate [1.0]\n");
fprintf(stderr, " -m, --merge <min|max|avg> -f merge algorithm [avg]\n");
fprintf(stderr, " -n, --ntrain-sites <int> effective number of training sites [number of good sites]\n");
fprintf(stderr, " -r, --random-seed <int> random seed, 0 for time() [1]\n");
fprintf(stderr, "\n");
exit(1);
}
int main_vcfsom(int argc, char *argv[])
{
int c;
args_t *args = (args_t*) calloc(1,sizeof(args_t));
args->argc = argc; args->argv = argv;
args->nbin = 20;
args->learn = 1.0;
args->bmu_th = 0.9;
args->nfold = 5;
args->rand_seed = 1;
args->ndim = 2;
args->bad_class = 1;
args->good_class = 2;
args->merge = MERGE_AVG;
args->train_bad = 1;
static struct option loptions[] =
{
{"help",0,0,'h'},
{"prefix",1,0,'p'},
{"ntrain-sites",1,0,'n'},
{"random-seed",1,0,'r'},
{"bmu-threshold",1,0,'b'},
{"exclude-bad",0,0,'e'},
{"learning-rate",1,0,'l'},
{"size",1,0,'s'},
{"som-dimension",1,0,'d'},
{"nfold",1,0,'f'},
{"merge",1,0,'m'},
{"train",0,0,'t'},
{"classify",0,0,'c'},
{0,0,0,0}
};
while ((c = getopt_long(argc, argv, "htcp:n:r:b:l:s:f:d:m:e",loptions,NULL)) >= 0) {
switch (c) {
case 'e': args->train_bad = 0; break;
case 'm':
if ( !strcmp(optarg,"min") ) args->merge = MERGE_MIN;
else if ( !strcmp(optarg,"max") ) args->merge = MERGE_MAX;
else if ( !strcmp(optarg,"avg") ) args->merge = MERGE_AVG;
else error("The -m method not recognised: %s\n", optarg);
break;
case 'p': args->prefix = optarg; break;
case 'n': args->ntrain = atoi(optarg); break;
case 'r': args->rand_seed = atoi(optarg); break;
case 'b': args->bmu_th = atof(optarg); break;
case 'l': args->learn = atof(optarg); break;
case 's': args->nbin = atoi(optarg); break;
case 'f': args->nfold = atoi(optarg); break;
case 'd':
args->ndim = atoi(optarg);
if ( args->ndim<2 ) error("Expected -d >=2, got %d\n", args->ndim);
if ( args->ndim>3 ) fprintf(stderr,"Warning: This will take a long time and is not going to make the results better: -d %d\n", args->ndim);
break;
case 't': args->action = SOM_TRAIN; break;
case 'c': args->action = SOM_CLASSIFY; break;
case 'h':
case '?': usage();
default: error("Unknown argument: %s\n", optarg);
}
}
if ( !args->rand_seed ) args->rand_seed = time(NULL);
if ( argc!=optind+1 ) usage();
args->fname = argv[optind];
init_data(args);
if ( args->action == SOM_TRAIN ) do_train(args);
else if ( args->action == SOM_CLASSIFY ) do_classify(args);
destroy_data(args);
free(args);
return 0;
}
|