1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
|
/* bam2bcf.c -- variant calling.
Copyright (C) 2010-2012 Broad Institute.
Copyright (C) 2012-2015 Genome Research Ltd.
Author: Heng Li <lh3@sanger.ac.uk>
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE. */
#include <config.h>
#include <math.h>
#include <stdint.h>
#include <assert.h>
#include <float.h>
#include <htslib/hts.h>
#include <htslib/sam.h>
#include <htslib/kstring.h>
#include <htslib/kfunc.h>
#include "bam2bcf.h"
extern void ks_introsort_uint32_t(size_t n, uint32_t a[]);
#define CALL_DEFTHETA 0.83
#define DEF_MAPQ 20
#define CAP_DIST 25
bcf_callaux_t *bcf_call_init(double theta, int min_baseQ)
{
bcf_callaux_t *bca;
if (theta <= 0.) theta = CALL_DEFTHETA;
bca = calloc(1, sizeof(bcf_callaux_t));
bca->capQ = 60;
bca->openQ = 40; bca->extQ = 20; bca->tandemQ = 100;
bca->min_baseQ = min_baseQ;
bca->e = errmod_init(1. - theta);
bca->min_frac = 0.002;
bca->min_support = 1;
bca->per_sample_flt = 0;
bca->npos = 100;
bca->ref_pos = malloc(bca->npos*sizeof(int));
bca->alt_pos = malloc(bca->npos*sizeof(int));
bca->nqual = 60;
bca->ref_mq = malloc(bca->nqual*sizeof(int));
bca->alt_mq = malloc(bca->nqual*sizeof(int));
bca->ref_bq = malloc(bca->nqual*sizeof(int));
bca->alt_bq = malloc(bca->nqual*sizeof(int));
bca->fwd_mqs = malloc(bca->nqual*sizeof(int));
bca->rev_mqs = malloc(bca->nqual*sizeof(int));
return bca;
}
void bcf_call_destroy(bcf_callaux_t *bca)
{
if (bca == 0) return;
errmod_destroy(bca->e);
if (bca->npos) { free(bca->ref_pos); free(bca->alt_pos); bca->npos = 0; }
free(bca->ref_mq); free(bca->alt_mq); free(bca->ref_bq); free(bca->alt_bq);
free(bca->fwd_mqs); free(bca->rev_mqs);
bca->nqual = 0;
free(bca->bases); free(bca->inscns); free(bca);
}
// position in the sequence with respect to the aligned part of the read
static int get_position(const bam_pileup1_t *p, int *len)
{
int icig, n_tot_bases = 0, iread = 0, edist = p->qpos + 1;
for (icig=0; icig<p->b->core.n_cigar; icig++)
{
int cig = bam_get_cigar(p->b)[icig] & BAM_CIGAR_MASK;
int ncig = bam_get_cigar(p->b)[icig] >> BAM_CIGAR_SHIFT;
if ( cig==BAM_CMATCH || cig==BAM_CEQUAL || cig==BAM_CDIFF )
{
n_tot_bases += ncig;
iread += ncig;
continue;
}
if ( cig==BAM_CINS )
{
n_tot_bases += ncig;
iread += ncig;
continue;
}
if ( cig==BAM_CSOFT_CLIP )
{
iread += ncig;
if ( iread<=p->qpos ) edist -= ncig;
continue;
}
if ( cig==BAM_CDEL ) continue;
if ( cig==BAM_CHARD_CLIP ) continue;
if ( cig==BAM_CPAD ) continue;
if ( cig==BAM_CREF_SKIP ) continue;
fprintf(stderr,"todo: cigar %d\n", cig);
assert(0);
}
*len = n_tot_bases;
return edist;
}
void bcf_callaux_clean(bcf_callaux_t *bca, bcf_call_t *call)
{
memset(bca->ref_pos,0,sizeof(int)*bca->npos);
memset(bca->alt_pos,0,sizeof(int)*bca->npos);
memset(bca->ref_mq,0,sizeof(int)*bca->nqual);
memset(bca->alt_mq,0,sizeof(int)*bca->nqual);
memset(bca->ref_bq,0,sizeof(int)*bca->nqual);
memset(bca->alt_bq,0,sizeof(int)*bca->nqual);
memset(bca->fwd_mqs,0,sizeof(int)*bca->nqual);
memset(bca->rev_mqs,0,sizeof(int)*bca->nqual);
if ( call->ADF ) memset(call->ADF,0,sizeof(int32_t)*(call->n+1)*B2B_MAX_ALLELES);
if ( call->ADR ) memset(call->ADR,0,sizeof(int32_t)*(call->n+1)*B2B_MAX_ALLELES);
}
/*
Notes:
- Called from bam_plcmd.c by mpileup. Amongst other things, sets the bcf_callret1_t.qsum frequencies
which are carried over via bcf_call_combine and bcf_call2bcf to the output BCF as the QS annotation.
Later it's used for multiallelic calling by bcftools -m
- ref_base is the 4-bit representation of the reference base. It is negative if we are looking at an indel.
*/
/*
* This function is called once for each sample.
* _n is number of pilesups pl contributing reads to this sample
* pl is pointer to array of _n pileups (one pileup per read)
* ref_base is the 4-bit representation of the reference base. It is negative if we are looking at an indel.
* bca is the settings to perform calls across all samples
* r is the returned value of the call
*/
int bcf_call_glfgen(int _n, const bam_pileup1_t *pl, int ref_base, bcf_callaux_t *bca, bcf_callret1_t *r)
{
int i, n, ref4, is_indel, ori_depth = 0;
// clean from previous run
r->ori_depth = 0;
r->mq0 = 0;
memset(r->qsum,0,sizeof(float)*4);
memset(r->anno,0,sizeof(double)*16);
memset(r->p,0,sizeof(float)*25);
if (ref_base >= 0) {
ref4 = seq_nt16_int[ref_base];
is_indel = 0;
} else ref4 = 4, is_indel = 1;
if (_n == 0) return -1;
// enlarge the bases array if necessary
if (bca->max_bases < _n) {
bca->max_bases = _n;
kroundup32(bca->max_bases);
bca->bases = (uint16_t*)realloc(bca->bases, 2 * bca->max_bases);
}
// fill the bases array
for (i = n = 0; i < _n; ++i) {
const bam_pileup1_t *p = pl + i;
int q, b, mapQ, baseQ, is_diff, min_dist, seqQ;
// set base
if (p->is_del || p->is_refskip || (p->b->core.flag&BAM_FUNMAP)) continue;
++ori_depth;
mapQ = p->b->core.qual < 255? p->b->core.qual : DEF_MAPQ; // special case for mapQ==255
if ( !mapQ ) r->mq0++;
baseQ = q = is_indel? p->aux&0xff : (int)bam_get_qual(p->b)[p->qpos]; // base/indel quality
seqQ = is_indel? (p->aux>>8&0xff) : 99;
if (q < bca->min_baseQ) continue;
if (q > seqQ) q = seqQ;
mapQ = mapQ < bca->capQ? mapQ : bca->capQ;
if (q > mapQ) q = mapQ;
if (q > 63) q = 63;
if (q < 4) q = 4; // MQ=0 reads count as BQ=4
if (!is_indel) {
b = bam_seqi(bam_get_seq(p->b), p->qpos); // base
b = seq_nt16_int[b? b : ref_base]; // b is the 2-bit base
is_diff = (ref4 < 4 && b == ref4)? 0 : 1;
} else {
b = p->aux>>16&0x3f;
is_diff = (b != 0);
}
bca->bases[n++] = q<<5 | (int)bam_is_rev(p->b)<<4 | b;
// collect annotations
if (b < 4)
{
r->qsum[b] += q;
if ( r->ADF )
{
if ( bam_is_rev(p->b) )
r->ADR[b]++;
else
r->ADF[b]++;
}
}
++r->anno[0<<2|is_diff<<1|bam_is_rev(p->b)];
min_dist = p->b->core.l_qseq - 1 - p->qpos;
if (min_dist > p->qpos) min_dist = p->qpos;
if (min_dist > CAP_DIST) min_dist = CAP_DIST;
r->anno[1<<2|is_diff<<1|0] += baseQ;
r->anno[1<<2|is_diff<<1|1] += baseQ * baseQ;
r->anno[2<<2|is_diff<<1|0] += mapQ;
r->anno[2<<2|is_diff<<1|1] += mapQ * mapQ;
r->anno[3<<2|is_diff<<1|0] += min_dist;
r->anno[3<<2|is_diff<<1|1] += min_dist * min_dist;
// collect for bias tests
if ( baseQ > 59 ) baseQ = 59;
if ( mapQ > 59 ) mapQ = 59;
int len, pos = get_position(p, &len);
int epos = (double)pos/(len+1) * bca->npos;
int ibq = baseQ/60. * bca->nqual;
int imq = mapQ/60. * bca->nqual;
if ( bam_is_rev(p->b) ) bca->rev_mqs[imq]++;
else bca->fwd_mqs[imq]++;
if ( bam_seqi(bam_get_seq(p->b),p->qpos) == ref_base )
{
bca->ref_pos[epos]++;
bca->ref_bq[ibq]++;
bca->ref_mq[imq]++;
}
else
{
bca->alt_pos[epos]++;
bca->alt_bq[ibq]++;
bca->alt_mq[imq]++;
}
}
r->ori_depth = ori_depth;
// glfgen
errmod_cal(bca->e, n, 5, bca->bases, r->p); // calculate PL of each genotype
return n;
}
/*
* calc_vdb() - returns value between zero (most biased) and one (no bias)
* on success, or HUGE_VAL when VDB cannot be calculated because
* of insufficient depth (<2x)
*
* Variant Distance Bias tests if the variant bases are positioned within the
* reads with sufficient randomness. Unlike other tests, it looks only at
* variant reads and therefore gives different kind of information than Read
* Position Bias for instance. VDB was developed for detecting artefacts in
* RNA-seq calls where reads from spliced transcripts span splice site
* boundaries. The current implementation differs somewhat from the original
* version described in supplementary material of PMID:22524474, but the idea
* remains the same. (Here the random variable tested is the average distance
* from the averaged position, not the average pairwise distance.)
*
* For coverage of 2x, the calculation is exact but is approximated for the
* rest. The result is most accurate between 4-200x. For 3x or >200x, the
* reported values are slightly more favourable than those of a true random
* distribution.
*/
double calc_vdb(int *pos, int npos)
{
// Note well: the parameters were obtained by fitting to simulated data of
// 100bp reads. This assumes rescaling to 100bp in bcf_call_glfgen().
const int readlen = 100;
assert( npos==readlen );
#define nparam 15
const float param[nparam][3] = { {3,0.079,18}, {4,0.09,19.8}, {5,0.1,20.5}, {6,0.11,21.5},
{7,0.125,21.6}, {8,0.135,22}, {9,0.14,22.2}, {10,0.153,22.3}, {15,0.19,22.8},
{20,0.22,23.2}, {30,0.26,23.4}, {40,0.29,23.5}, {50,0.35,23.65}, {100,0.5,23.7},
{200,0.7,23.7} };
int i, dp = 0;
float mean_pos = 0, mean_diff = 0;
for (i=0; i<npos; i++)
{
if ( !pos[i] ) continue;
dp += pos[i];
mean_pos += pos[i]*i;
}
if ( dp<2 ) return HUGE_VAL; // one or zero reads can be placed anywhere
mean_pos /= dp;
for (i=0; i<npos; i++)
{
if ( !pos[i] ) continue;
mean_diff += pos[i] * fabs(i - mean_pos);
}
mean_diff /= dp;
int ipos = mean_diff; // tuned for float-to-int implicit conversion
if ( dp==2 )
return (2*readlen-2*(ipos+1)-1)*(ipos+1)/(readlen-1)/(readlen*0.5);
if ( dp>=200 )
i = nparam; // shortcut for big depths
else
{
for (i=0; i<nparam; i++)
if ( param[i][0]>=dp ) break;
}
float pshift, pscale;
if ( i==nparam )
{
// the depth is too high, go with 200x
pscale = param[nparam-1][1];
pshift = param[nparam-1][2];
}
else if ( i>0 && param[i][0]!=dp )
{
// linear interpolation of parameters
pscale = (param[i-1][1] + param[i][1])*0.5;
pshift = (param[i-1][2] + param[i][2])*0.5;
}
else
{
pscale = param[i][1];
pshift = param[i][2];
}
return 0.5*kf_erfc(-(mean_diff-pshift)*pscale);
}
double calc_chisq_bias(int *a, int *b, int n)
{
int na = 0, nb = 0, i, ndf = n;
for (i=0; i<n; i++) na += a[i];
for (i=0; i<n; i++) nb += b[i];
if ( !na || !nb ) return HUGE_VAL;
double chisq = 0;
for (i=0; i<n; i++)
{
if ( !a[i] && !b[i] ) ndf--;
else
{
double tmp = a[i] - b[i];
chisq += tmp*tmp/(a[i]+b[i]);
}
}
/*
kf_gammq: incomplete gamma function Q(a,x) = 1 - P(a,x) = Gamma(a,x)/Gamma(a)
1 if the distributions are identical, 0 if very different
*/
double prob = kf_gammaq(0.5*ndf, 0.5*chisq);
return prob;
}
double mann_whitney_1947(int n, int m, int U)
{
if (U<0) return 0;
if (n==0||m==0) return U==0 ? 1 : 0;
return (double)n/(n+m)*mann_whitney_1947(n-1,m,U-m) + (double)m/(n+m)*mann_whitney_1947(n,m-1,U);
}
double mann_whitney_1947_cdf(int n, int m, int U)
{
int i;
double sum = 0;
for (i=0; i<=U; i++)
sum += mann_whitney_1947(n,m,i);
return sum;
}
double calc_mwu_bias_cdf(int *a, int *b, int n)
{
int na = 0, nb = 0, i;
double U = 0, ties = 0;
for (i=0; i<n; i++)
{
na += a[i];
U += a[i] * (nb + b[i]*0.5);
nb += b[i];
if ( a[i] && b[i] )
{
double tie = a[i] + b[i];
ties += (tie*tie-1)*tie;
}
}
if ( !na || !nb ) return HUGE_VAL;
// Always work with the smaller U
double U_min = ((double)na * nb) - U;
if ( U < U_min ) U_min = U;
if ( na==1 ) return 2.0 * (floor(U_min)+1) / (nb+1);
if ( nb==1 ) return 2.0 * (floor(U_min)+1) / (na+1);
// Normal approximation, very good for na>=8 && nb>=8 and reasonable if na<8 or nb<8
if ( na>=8 || nb>=8 )
{
double mean = ((double)na*nb)*0.5;
// Correction for ties:
// double N = na+nb;
// double var2 = (N*N-1)*N-ties;
// if ( var2==0 ) return 1.0;
// var2 *= ((double)na*nb)/N/(N-1)/12.0;
// No correction for ties:
double var2 = ((double)na*nb)*(na+nb+1)/12.0;
double z = (U_min - mean)/sqrt(2*var2); // z is N(0,1)
return 2.0 - kf_erfc(z); // which is 1 + erf(z)
}
// Exact calculation
double pval = 2*mann_whitney_1947_cdf(na,nb,U_min);
return pval>1 ? 1 : pval;
}
double calc_mwu_bias(int *a, int *b, int n)
{
int na = 0, nb = 0, i;
double U = 0, ties = 0;
for (i=0; i<n; i++)
{
na += a[i];
U += a[i] * (nb + b[i]*0.5);
nb += b[i];
if ( a[i] && b[i] )
{
double tie = a[i] + b[i];
ties += (tie*tie-1)*tie;
}
}
if ( !na || !nb ) return HUGE_VAL;
if ( na==1 || nb==1 ) return 1.0; // Flat probability, all U values are equally likely
double mean = ((double)na*nb)*0.5;
if ( na==2 || nb==2 )
{
// Linear approximation
return U>mean ? (2.0*mean-U)/mean : U/mean;
}
// Correction for ties:
// double N = na+nb;
// double var2 = (N*N-1)*N-ties;
// if ( var2==0 ) return 1.0;
// var2 *= ((double)na*nb)/N/(N-1)/12.0;
// No correction for ties:
double var2 = ((double)na*nb)*(na+nb+1)/12.0;
if ( na>=8 || nb>=8 )
{
// Normal approximation, very good for na>=8 && nb>=8 and reasonable if na<8 or nb<8
return exp(-0.5*(U-mean)*(U-mean)/var2);
}
// Exact calculation
return mann_whitney_1947(na,nb,U) * sqrt(2*M_PI*var2);
}
static inline double logsumexp2(double a, double b)
{
if ( a>b )
return log(1 + exp(b-a)) + a;
else
return log(1 + exp(a-b)) + b;
}
void calc_SegBias(const bcf_callret1_t *bcr, bcf_call_t *call)
{
call->seg_bias = HUGE_VAL;
if ( !bcr ) return;
int nr = call->anno[2] + call->anno[3]; // number of observed non-reference reads
if ( !nr ) return;
int avg_dp = (call->anno[0] + call->anno[1] + nr) / call->n; // average depth
double M = floor((double)nr / avg_dp + 0.5); // an approximate number of variants samples in the population
if ( M>call->n ) M = call->n; // clamp M at the number of samples
else if ( M==0 ) M = 1;
double f = M / 2. / call->n; // allele frequency
double p = (double) nr / call->n; // number of variant reads per sample expected if variant not real (poisson)
double q = (double) nr / M; // number of variant reads per sample expected if variant is real (poisson)
double sum = 0;
const double log2 = log(2.0);
// fprintf(stderr,"M=%.1f p=%e q=%e f=%f dp=%d\n",M,p,q,f,avg_dp);
int i;
for (i=0; i<call->n; i++)
{
int oi = bcr[i].anno[2] + bcr[i].anno[3]; // observed number of non-ref reads
double tmp;
if ( oi )
{
// tmp = log(f) + oi*log(q/p) - q + log(2*(1-f) + f*pow(2,oi)*exp(-q)) + p; // this can under/overflow
tmp = logsumexp2(log(2*(1-f)), log(f) + oi*log2 - q);
tmp += log(f) + oi*log(q/p) - q + p;
}
else
tmp = log(2*f*(1-f)*exp(-q) + f*f*exp(-2*q) + (1-f)*(1-f)) + p;
sum += tmp;
// fprintf(stderr,"oi=%d %e\n", oi,tmp);
}
call->seg_bias = sum;
}
/**
* bcf_call_combine() - sets the PL array and VDB, RPB annotations, finds the top two alleles
* @n: number of samples
* @calls: each sample's calls
* @bca: auxiliary data structure for holding temporary values
* @ref_base: the reference base
* @call: filled with the annotations
*
* Combines calls across the various samples being studied
* 1. For each allele at each base across all samples the quality is summed so
* you end up with a set of quality sums for each allele present 2. The quality
* sums are sorted.
* 3. Using the sorted quality sums we now create the allele ordering array
* A\subN. This is done by doing the following:
* a) If the reference allele is known it always comes first, otherwise N
* comes first.
* b) Then the rest of the alleles are output in descending order of quality
* sum (which we already know the qsum array was sorted). Any allelles with
* qsum 0 will be excluded.
* 4. Using the allele ordering array we create the genotype ordering array.
* In the worst case with an unknown reference this will be: A0/A0 A1/A0 A1/A1
* A2/A0 A2/A1 A2/A2 A3/A0 A3/A1 A3/A2 A3/A3 A4/A0 A4/A1 A4/A2 A4/A3 A4/A4
* 5. The genotype ordering array is then used to extract data from the error
* model 5*5 matrix and is used to produce a Phread likelihood array for each
* sample.
*/
int bcf_call_combine(int n, const bcf_callret1_t *calls, bcf_callaux_t *bca, int ref_base /*4-bit*/, bcf_call_t *call)
{
int ref4, i, j;
float qsum[5] = {0,0,0,0,0};
if (ref_base >= 0) {
call->ori_ref = ref4 = seq_nt16_int[ref_base];
if (ref4 > 4) ref4 = 4;
} else call->ori_ref = -1, ref4 = 0;
// calculate qsum, this is done by summing normalized qsum across all samples,
// to account for differences in coverage
for (i = 0; i < n; ++i)
{
float sum = 0;
for (j = 0; j < 4; ++j) sum += calls[i].qsum[j];
if ( sum )
for (j = 0; j < 4; j++) qsum[j] += calls[i].qsum[j] / sum;
}
// sort qsum in ascending order (insertion sort)
float *ptr[5], *tmp;
for (i=0; i<5; i++) ptr[i] = &qsum[i];
for (i=1; i<4; i++)
for (j=i; j>0 && *ptr[j] < *ptr[j-1]; j--)
tmp = ptr[j], ptr[j] = ptr[j-1], ptr[j-1] = tmp;
// Set the reference allele and alternative allele(s)
for (i=0; i<5; i++) call->a[i] = -1;
for (i=0; i<5; i++) call->qsum[i] = 0;
call->unseen = -1;
call->a[0] = ref4;
for (i=3, j=1; i>=0; i--) // i: alleles sorted by QS; j, a[j]: output allele ordering
{
int ipos = ptr[i] - qsum; // position in sorted qsum array
if ( ipos==ref4 )
call->qsum[0] = qsum[ipos]; // REF's qsum
else
{
if ( !qsum[ipos] ) break; // qsum is 0, this and consequent alleles are not seen in the pileup
call->qsum[j] = qsum[ipos];
call->a[j++] = ipos;
}
}
if (ref_base >= 0)
{
// for SNPs, find the "unseen" base
if (((ref4 < 4 && j < 4) || (ref4 == 4 && j < 5)) && i >= 0)
call->unseen = j, call->a[j++] = ptr[i] - qsum;
call->n_alleles = j;
}
else
{
call->n_alleles = j;
if (call->n_alleles == 1) return -1; // no reliable supporting read. stop doing anything
}
/*
* Set the phread likelihood array (call->PL) This array is 15 entries long
* for each sample because that is size of an upper or lower triangle of a
* worst case 5x5 matrix of possible genotypes. This worst case matrix will
* occur when all 4 possible alleles are present and the reference allele
* is unknown. The sides of the matrix will correspond to the reference
* allele (if known) followed by the alleles present in descending order of
* quality sum
*/
{
int x, g[15], z;
double sum_min = 0.;
x = call->n_alleles * (call->n_alleles + 1) / 2;
// get the possible genotypes
// this is done by creating an ordered list of locations g for call (allele a, allele b) in the genotype likelihood matrix
for (i = z = 0; i < call->n_alleles; ++i) {
for (j = 0; j <= i; ++j) {
g[z++] = call->a[j] * 5 + call->a[i];
}
}
// for each sample calculate the PL
for (i = 0; i < n; ++i)
{
int32_t *PL = call->PL + x * i;
const bcf_callret1_t *r = calls + i;
float min = FLT_MAX;
for (j = 0; j < x; ++j) {
if (min > r->p[g[j]]) min = r->p[g[j]];
}
sum_min += min;
for (j = 0; j < x; ++j) {
int y;
y = (int)(r->p[g[j]] - min + .499);
if (y > 255) y = 255;
PL[j] = y;
}
}
if ( call->DP4 )
{
for (i=0; i<n; i++)
{
call->DP4[4*i] = calls[i].anno[0];
call->DP4[4*i+1] = calls[i].anno[1];
call->DP4[4*i+2] = calls[i].anno[2];
call->DP4[4*i+3] = calls[i].anno[3];
}
}
if ( call->ADF )
{
assert( call->n_alleles<=B2B_MAX_ALLELES ); // this is always true for SNPs and so far for indels as well
// reorder ADR,ADF to match the allele ordering at this site
int32_t tmp[B2B_MAX_ALLELES];
int32_t *adr = call->ADR + B2B_MAX_ALLELES, *adr_out = call->ADR + B2B_MAX_ALLELES;
int32_t *adf = call->ADF + B2B_MAX_ALLELES, *adf_out = call->ADF + B2B_MAX_ALLELES;
int32_t *adr_tot = call->ADR; // the first bin stores total counts per site
int32_t *adf_tot = call->ADF;
for (i=0; i<n; i++)
{
for (j=0; j<call->n_alleles; j++)
{
tmp[j] = adr[ call->a[j] ];
adr_tot[j] += tmp[j];
}
for (j=0; j<call->n_alleles; j++) adr_out[j] = tmp[j];
for (j=0; j<call->n_alleles; j++)
{
tmp[j] = adf[ call->a[j] ];
adf_tot[j] += tmp[j];
}
for (j=0; j<call->n_alleles; j++) adf_out[j] = tmp[j];
adf_out += call->n_alleles;
adr_out += call->n_alleles;
adr += B2B_MAX_ALLELES;
adf += B2B_MAX_ALLELES;
}
}
// if (ref_base < 0) fprintf(stderr, "%d,%d,%f,%d\n", call->n_alleles, x, sum_min, call->unseen);
call->shift = (int)(sum_min + .499);
}
// combine annotations
memset(call->anno, 0, 16 * sizeof(double));
call->ori_depth = 0;
call->depth = 0;
call->mq0 = 0;
for (i = 0; i < n; ++i) {
call->depth += calls[i].anno[0] + calls[i].anno[1] + calls[i].anno[2] + calls[i].anno[3];
call->ori_depth += calls[i].ori_depth;
call->mq0 += calls[i].mq0;
for (j = 0; j < 16; ++j) call->anno[j] += calls[i].anno[j];
}
calc_SegBias(calls, call);
// calc_chisq_bias("XPOS", call->bcf_hdr->id[BCF_DT_CTG][call->tid].key, call->pos, bca->ref_pos, bca->alt_pos, bca->npos);
// calc_chisq_bias("XMQ", call->bcf_hdr->id[BCF_DT_CTG][call->tid].key, call->pos, bca->ref_mq, bca->alt_mq, bca->nqual);
// calc_chisq_bias("XBQ", call->bcf_hdr->id[BCF_DT_CTG][call->tid].key, call->pos, bca->ref_bq, bca->alt_bq, bca->nqual);
call->mwu_pos = calc_mwu_bias(bca->ref_pos, bca->alt_pos, bca->npos);
call->mwu_mq = calc_mwu_bias(bca->ref_mq, bca->alt_mq, bca->nqual);
call->mwu_bq = calc_mwu_bias(bca->ref_bq, bca->alt_bq, bca->nqual);
call->mwu_mqs = calc_mwu_bias(bca->fwd_mqs, bca->rev_mqs, bca->nqual);
#if CDF_MWU_TESTS
call->mwu_pos_cdf = calc_mwu_bias_cdf(bca->ref_pos, bca->alt_pos, bca->npos);
call->mwu_mq_cdf = calc_mwu_bias_cdf(bca->ref_mq, bca->alt_mq, bca->nqual);
call->mwu_bq_cdf = calc_mwu_bias_cdf(bca->ref_bq, bca->alt_bq, bca->nqual);
call->mwu_mqs_cdf = calc_mwu_bias_cdf(bca->fwd_mqs, bca->rev_mqs, bca->nqual);
#endif
call->vdb = calc_vdb(bca->alt_pos, bca->npos);
return 0;
}
int bcf_call2bcf(bcf_call_t *bc, bcf1_t *rec, bcf_callret1_t *bcr, int fmt_flag, const bcf_callaux_t *bca, const char *ref)
{
extern double kt_fisher_exact(int n11, int n12, int n21, int n22, double *_left, double *_right, double *two);
int i, j, nals = 1;
bcf_hdr_t *hdr = bc->bcf_hdr;
rec->rid = bc->tid;
rec->pos = bc->pos;
rec->qual = 0;
bc->tmp.l = 0;
if (bc->ori_ref < 0) // indel
{
// REF
kputc(ref[bc->pos], &bc->tmp);
for (j = 0; j < bca->indelreg; ++j) kputc(ref[bc->pos+1+j], &bc->tmp);
// ALT
for (i=1; i<4; i++)
{
if (bc->a[i] < 0) break;
kputc(',', &bc->tmp); kputc(ref[bc->pos], &bc->tmp);
if (bca->indel_types[bc->a[i]] < 0) { // deletion
for (j = -bca->indel_types[bc->a[i]]; j < bca->indelreg; ++j)
kputc(ref[bc->pos+1+j], &bc->tmp);
} else { // insertion; cannot be a reference unless a bug
char *inscns = &bca->inscns[bc->a[i] * bca->maxins];
for (j = 0; j < bca->indel_types[bc->a[i]]; ++j)
kputc("ACGTN"[(int)inscns[j]], &bc->tmp);
for (j = 0; j < bca->indelreg; ++j) kputc(ref[bc->pos+1+j], &bc->tmp);
}
nals++;
}
}
else // SNP
{
kputc("ACGTN"[bc->ori_ref], &bc->tmp);
for (i=1; i<5; i++)
{
if (bc->a[i] < 0) break;
kputc(',', &bc->tmp);
if ( bc->unseen==i ) kputs("<*>", &bc->tmp);
else kputc("ACGT"[bc->a[i]], &bc->tmp);
nals++;
}
}
bcf_update_alleles_str(hdr, rec, bc->tmp.s);
bc->tmp.l = 0;
// INFO
if (bc->ori_ref < 0)
{
bcf_update_info_flag(hdr, rec, "INDEL", NULL, 1);
bcf_update_info_int32(hdr, rec, "IDV", &bca->max_support, 1);
bcf_update_info_float(hdr, rec, "IMF", &bca->max_frac, 1);
}
bcf_update_info_int32(hdr, rec, "DP", &bc->ori_depth, 1);
if ( fmt_flag&B2B_INFO_ADF )
bcf_update_info_int32(hdr, rec, "ADF", bc->ADF, rec->n_allele);
if ( fmt_flag&B2B_INFO_ADR )
bcf_update_info_int32(hdr, rec, "ADR", bc->ADR, rec->n_allele);
if ( fmt_flag&(B2B_INFO_AD|B2B_INFO_DPR) )
{
for (i=0; i<rec->n_allele; i++) bc->ADF[i] += bc->ADR[i];
if ( fmt_flag&B2B_INFO_AD )
bcf_update_info_int32(hdr, rec, "AD", bc->ADF, rec->n_allele);
if ( fmt_flag&B2B_INFO_DPR )
bcf_update_info_int32(hdr, rec, "DPR", bc->ADF, rec->n_allele);
}
float tmpf[16];
for (i=0; i<16; i++) tmpf[i] = bc->anno[i];
bcf_update_info_float(hdr, rec, "I16", tmpf, 16);
bcf_update_info_float(hdr, rec, "QS", bc->qsum, nals);
if ( bc->vdb != HUGE_VAL ) bcf_update_info_float(hdr, rec, "VDB", &bc->vdb, 1);
if ( bc->seg_bias != HUGE_VAL ) bcf_update_info_float(hdr, rec, "SGB", &bc->seg_bias, 1);
if ( bc->mwu_pos != HUGE_VAL ) bcf_update_info_float(hdr, rec, "RPB", &bc->mwu_pos, 1);
if ( bc->mwu_mq != HUGE_VAL ) bcf_update_info_float(hdr, rec, "MQB", &bc->mwu_mq, 1);
if ( bc->mwu_mqs != HUGE_VAL ) bcf_update_info_float(hdr, rec, "MQSB", &bc->mwu_mqs, 1);
if ( bc->mwu_bq != HUGE_VAL ) bcf_update_info_float(hdr, rec, "BQB", &bc->mwu_bq, 1);
#if CDF_MWU_TESTS
if ( bc->mwu_pos_cdf != HUGE_VAL ) bcf_update_info_float(hdr, rec, "RPB2", &bc->mwu_pos_cdf, 1);
if ( bc->mwu_mq_cdf != HUGE_VAL ) bcf_update_info_float(hdr, rec, "MQB2", &bc->mwu_mq_cdf, 1);
if ( bc->mwu_mqs_cdf != HUGE_VAL ) bcf_update_info_float(hdr, rec, "MQSB2", &bc->mwu_mqs_cdf, 1);
if ( bc->mwu_bq_cdf != HUGE_VAL ) bcf_update_info_float(hdr, rec, "BQB2", &bc->mwu_bq_cdf, 1);
#endif
tmpf[0] = bc->ori_depth ? (float)bc->mq0/bc->ori_depth : 0;
bcf_update_info_float(hdr, rec, "MQ0F", tmpf, 1);
// FORMAT
rec->n_sample = bc->n;
bcf_update_format_int32(hdr, rec, "PL", bc->PL, nals*(nals+1)/2 * rec->n_sample);
if ( fmt_flag&B2B_FMT_DP )
{
int32_t *ptr = (int32_t*) bc->fmt_arr;
for (i=0; i<bc->n; i++)
ptr[i] = bc->DP4[4*i] + bc->DP4[4*i+1] + bc->DP4[4*i+2] + bc->DP4[4*i+3];
bcf_update_format_int32(hdr, rec, "DP", bc->fmt_arr, rec->n_sample);
}
if ( fmt_flag&B2B_FMT_DV )
{
int32_t *ptr = (int32_t*) bc->fmt_arr;
for (i=0; i<bc->n; i++)
ptr[i] = bc->DP4[4*i+2] + bc->DP4[4*i+3];
bcf_update_format_int32(hdr, rec, "DV", bc->fmt_arr, rec->n_sample);
}
if ( fmt_flag&B2B_FMT_SP )
{
int32_t *ptr = (int32_t*) bc->fmt_arr;
for (i=0; i<bc->n; i++)
{
int fwd_ref = bc->DP4[4*i], rev_ref = bc->DP4[4*i+1], fwd_alt = bc->DP4[4*i+2], rev_alt = bc->DP4[4*i+3];
if ( fwd_ref+rev_ref<2 || fwd_alt+rev_alt<2 || fwd_ref+fwd_alt<2 || rev_ref+rev_alt<2 )
ptr[i] = 0;
else
{
double left, right, two;
kt_fisher_exact(fwd_ref, rev_ref, fwd_alt, rev_alt, &left, &right, &two);
int32_t x = (int)(-4.343 * log(two) + .499);
if (x > 255) x = 255;
ptr[i] = x;
}
}
bcf_update_format_int32(hdr, rec, "SP", bc->fmt_arr, rec->n_sample);
}
if ( fmt_flag&B2B_FMT_DP4 )
bcf_update_format_int32(hdr, rec, "DP4", bc->DP4, rec->n_sample*4);
if ( fmt_flag&B2B_FMT_ADF )
bcf_update_format_int32(hdr, rec, "ADF", bc->ADF+B2B_MAX_ALLELES, rec->n_sample*rec->n_allele);
if ( fmt_flag&B2B_FMT_ADR )
bcf_update_format_int32(hdr, rec, "ADR", bc->ADR+B2B_MAX_ALLELES, rec->n_sample*rec->n_allele);
if ( fmt_flag&(B2B_FMT_AD|B2B_FMT_DPR) )
{
for (i=0; i<rec->n_sample*rec->n_allele; i++) bc->ADF[B2B_MAX_ALLELES+i] += bc->ADR[B2B_MAX_ALLELES+i];
if ( fmt_flag&B2B_FMT_AD )
bcf_update_format_int32(hdr, rec, "AD", bc->ADF+B2B_MAX_ALLELES, rec->n_sample*rec->n_allele);
if ( fmt_flag&B2B_FMT_DPR )
bcf_update_format_int32(hdr, rec, "DPR", bc->ADF+B2B_MAX_ALLELES, rec->n_sample*rec->n_allele);
}
return 0;
}
|