1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538
|
#include "samtools.pysam.h"
/* stats.c -- This is the former bamcheck integrated into samtools/htslib.
Copyright (C) 2012-2019 Genome Research Ltd.
Author: Petr Danecek <pd3@sanger.ac.uk>
Author: Sam Nicholls <sam@samnicholls.net>
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE. */
/* Assumptions, approximations and other issues:
- GC-depth graph does not split reads, the starting position determines which bin is incremented.
There are small overlaps between bins (max readlen-1). However, the bins are big (20k).
- coverage distribution ignores softclips and deletions
- some stats require sorted BAMs
- GC content graph can have an untidy, step-like pattern when BAM contains multiple read lengths.
- 'bases mapped' (stats->nbases_mapped) is calculated from read lengths given by BAM (core.l_qseq)
- With the -t option, the whole reads are used. Except for the number of mapped bases (cigar)
counts, no splicing is done, no indels or soft clips are considered, even small overlap is
good enough to include the read in the stats.
- GC content of reads not calculated for "=" sequences
*/
#include <config.h>
#include <unistd.h> // for isatty()
#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <string.h>
#include <math.h>
#include <ctype.h>
#include <inttypes.h>
#include <getopt.h>
#include <errno.h>
#include <assert.h>
#include <zlib.h> // for crc32
#include <htslib/faidx.h>
#include <htslib/sam.h>
#include <htslib/hts.h>
#include <htslib/hts_defs.h>
#include <htslib/khash_str2int.h>
#include "samtools.h"
#include <htslib/khash.h>
#include <htslib/kstring.h>
#include "stats_isize.h"
#include "sam_opts.h"
#include "bedidx.h"
#define BWA_MIN_RDLEN 35
#define DEFAULT_CHUNK_NO 8
#define DEFAULT_PAIR_MAX 10000
#define ERROR_LIMIT 200
// From the spec
// If 0x4 is set, no assumptions can be made about RNAME, POS, CIGAR, MAPQ, bits 0x2, 0x10, 0x100 and 0x800, and the bit 0x20 of the previous read in the template.
#define IS_PAIRED(bam) ((bam)->core.flag&BAM_FPAIRED)
#define IS_PAIRED_AND_MAPPED(bam) (((bam)->core.flag&BAM_FPAIRED) && !((bam)->core.flag&BAM_FUNMAP) && !((bam)->core.flag&BAM_FMUNMAP))
#define IS_PROPERLYPAIRED(bam) (((bam)->core.flag&(BAM_FPAIRED|BAM_FPROPER_PAIR)) == (BAM_FPAIRED|BAM_FPROPER_PAIR) && !((bam)->core.flag&BAM_FUNMAP))
#define IS_UNMAPPED(bam) ((bam)->core.flag&BAM_FUNMAP)
#define IS_REVERSE(bam) ((bam)->core.flag&BAM_FREVERSE)
#define IS_MATE_REVERSE(bam) ((bam)->core.flag&BAM_FMREVERSE)
#define IS_READ1(bam) ((bam)->core.flag&BAM_FREAD1)
#define IS_READ2(bam) ((bam)->core.flag&BAM_FREAD2)
#define IS_DUP(bam) ((bam)->core.flag&BAM_FDUP)
#define IS_ORIGINAL(bam) (((bam)->core.flag&(BAM_FSECONDARY|BAM_FSUPPLEMENTARY)) == 0)
#define READ_ORDER_NONE 0
#define READ_ORDER_FIRST 1
#define READ_ORDER_LAST 2
#define READ_ORDER_MIDDLE 3
#define REG_INC 100
#define POS_INC 1000
// The GC-depth graph works as follows: split the reference sequence into
// segments and calculate GC content and depth in each bin. Then sort
// these segments by their GC and plot the depth distribution by means
// of 10th, 25th, etc. depth percentiles.
typedef struct
{
float gc;
uint32_t depth;
}
gc_depth_t;
// For coverage distribution, a simple pileup
typedef struct
{
hts_pos_t pos;
int size, start;
int *buffer;
}
round_buffer_t;
typedef struct
{
int npos, mpos, cpos;
hts_pair_pos_t *pos;
}
regions_t;
typedef struct
{
uint64_t a;
uint64_t c;
uint64_t g;
uint64_t t;
uint64_t n;
uint64_t other;
}
acgtno_count_t;
typedef struct
{
char tag_name[3];
char qual_name[3];
uint32_t nbases;
int32_t tag_sep; // Index of the separator (if present)
int32_t max_qual;
uint32_t offset; // Where the tag stats info is located in the allocated memory
}
barcode_info_t;
typedef struct
{
// Auxiliary data
int flag_require, flag_filter;
faidx_t *fai; // Reference sequence for GC-depth graph
int argc; // Command line arguments to be printed on the output
char **argv;
int gcd_bin_size; // The size of GC-depth bin
int nisize; // The maximum insert size that the allocated array can hold - 0 indicates no limit
int trim_qual; // bwa trim quality
float isize_main_bulk; // There are always some unrealistically big insert sizes, report only the main part
int cov_min,cov_max,cov_step; // Minimum, maximum coverage and size of the coverage bins
samFile* sam;
sam_hdr_t* sam_header;
// Filters
int filter_readlen;
// Misc
char *split_tag; // Tag on which to perform stats splitting
char *split_prefix; // Path or string prefix for filenames created when splitting
int remove_overlaps;
int cov_threshold;
}
stats_info_t;
typedef struct
{
// Dimensions of the quality histogram holder (quals_1st,quals_2nd), GC content holder (gc_1st,gc_2nd),
// insert size histogram holder
int nquals; // The number of quality bins
int nbases; // The maximum sequence length the allocated array can hold
int ngc; // The size of gc_1st and gc_2nd
int nindels; // The maximum indel length for indel distribution
// Arrays for the histogram data
uint64_t *quals_1st, *quals_2nd;
uint64_t *gc_1st, *gc_2nd;
acgtno_count_t *acgtno_cycles_1st;
acgtno_count_t *acgtno_cycles_2nd;
uint64_t *read_lengths, *read_lengths_1st, *read_lengths_2nd;
uint64_t *insertions, *deletions;
uint64_t *ins_cycles_1st, *ins_cycles_2nd, *del_cycles_1st, *del_cycles_2nd;
isize_t *isize;
// The extremes encountered
int max_len; // Maximum read length
int max_len_1st; // Maximum read length for forward reads
int max_len_2nd; // Maximum read length for reverse reads
int max_qual; // Maximum quality
int is_sorted;
// Summary numbers
uint64_t total_len;
uint64_t total_len_1st;
uint64_t total_len_2nd;
uint64_t total_len_dup;
uint64_t nreads_1st;
uint64_t nreads_2nd;
uint64_t nreads_other;
uint64_t nreads_filtered;
uint64_t nreads_dup;
uint64_t nreads_unmapped;
uint64_t nreads_single_mapped;
uint64_t nreads_paired_and_mapped;
uint64_t nreads_properly_paired;
uint64_t nreads_paired_tech;
uint64_t nreads_anomalous;
uint64_t nreads_mq0;
uint64_t nbases_mapped;
uint64_t nbases_mapped_cigar;
uint64_t nbases_trimmed; // bwa trimmed bases
uint64_t nmismatches;
uint64_t nreads_QCfailed, nreads_secondary;
struct {
uint32_t names, reads, quals;
} checksum;
// GC-depth related data
uint32_t ngcd, igcd; // The maximum number of GC depth bins and index of the current bin
gc_depth_t *gcd; // The GC-depth bins holder
int32_t tid; // Position of the current bin
hts_pos_t gcd_pos, pos; // Position of the last read
// Coverage distribution related data
int ncov; // The number of coverage bins
uint64_t *cov; // The coverage frequencies
round_buffer_t cov_rbuf; // Pileup round buffer
// Mismatches by read cycle
uint8_t *rseq_buf; // A buffer for reference sequence to check the mismatches against
int mrseq_buf; // The size of the buffer
hts_pos_t rseq_pos; // The coordinate of the first base in the buffer
int64_t nrseq_buf; // The used part of the buffer
uint64_t *mpc_buf; // Mismatches per cycle
// Target regions
int nregions;
hts_pos_t reg_from, reg_to;
regions_t *regions;
// Auxiliary data
double sum_qual; // For calculating average quality value
void *rg_hash; // Read groups to include, the array is null-terminated
// Split
char* split_name;
stats_info_t* info; // Pointer to options and settings struct
hts_pair_pos_t *chunks;
uint32_t nchunks;
uint32_t pair_count; // Number of active pairs in the pairing hash table
uint32_t target_count; // Number of bases covered by the target file
uint32_t last_pair_tid;
uint32_t last_read_flush;
// Barcode statistics
acgtno_count_t *acgtno_barcode;
uint64_t *quals_barcode;
barcode_info_t *tags_barcode;
uint32_t ntags;
uint32_t error_number;
}
stats_t;
KHASH_MAP_INIT_STR(c2stats, stats_t*)
typedef struct {
uint32_t first; // 1 - first read, 2 - second read
uint32_t n, m; // number of chunks, allocated chunks
hts_pair_pos_t *chunks; // chunk array of size m
} pair_t;
KHASH_MAP_INIT_STR(qn2pair, pair_t*)
static void HTS_NORETURN error(const char *format, ...);
int is_in_regions(bam1_t *bam_line, stats_t *stats);
void realloc_buffers(stats_t *stats, int seq_len);
static int regions_lt(const void *r1, const void *r2) {
int64_t from_diff = ((hts_pair_pos_t *)r1)->beg - ((hts_pair_pos_t *)r2)->beg;
int64_t to_diff = ((hts_pair_pos_t *)r1)->end - ((hts_pair_pos_t *)r2)->end;
return from_diff > 0 ? 1 : from_diff < 0 ? -1 : to_diff > 0 ? 1 : to_diff < 0 ? -1 : 0;
}
// Coverage distribution methods
static inline int coverage_idx(int min, int max, int n, int step, int depth)
{
if ( depth < min )
return 0;
if ( depth > max )
return n-1;
return 1 + (depth - min) / step;
}
static inline int round_buffer_lidx2ridx(int offset, int size, hts_pos_t refpos, hts_pos_t pos)
{
return (offset + (pos-refpos) % size) % size;
}
void round_buffer_flush(stats_t *stats, hts_pos_t pos)
{
int ibuf,idp;
if ( pos==stats->cov_rbuf.pos )
return;
hts_pos_t new_pos = pos;
if ( pos==-1 || pos - stats->cov_rbuf.pos >= stats->cov_rbuf.size )
{
// Flush the whole buffer, but in sequential order,
pos = stats->cov_rbuf.pos + stats->cov_rbuf.size - 1;
}
if ( pos < stats->cov_rbuf.pos )
error("Expected coordinates in ascending order, got %"PRIhts_pos" after %"PRIhts_pos"\n", pos, stats->cov_rbuf.pos);
int ifrom = stats->cov_rbuf.start;
int ito = round_buffer_lidx2ridx(stats->cov_rbuf.start, stats->cov_rbuf.size, stats->cov_rbuf.pos, pos-1);
if ( ifrom>ito )
{
for (ibuf=ifrom; ibuf<stats->cov_rbuf.size; ibuf++)
{
if ( !stats->cov_rbuf.buffer[ibuf] )
continue;
idp = coverage_idx(stats->info->cov_min,stats->info->cov_max,stats->ncov,stats->info->cov_step,stats->cov_rbuf.buffer[ibuf]);
stats->cov[idp]++;
stats->cov_rbuf.buffer[ibuf] = 0;
}
ifrom = 0;
}
for (ibuf=ifrom; ibuf<=ito; ibuf++)
{
if ( !stats->cov_rbuf.buffer[ibuf] )
continue;
idp = coverage_idx(stats->info->cov_min,stats->info->cov_max,stats->ncov,stats->info->cov_step,stats->cov_rbuf.buffer[ibuf]);
stats->cov[idp]++;
stats->cov_rbuf.buffer[ibuf] = 0;
}
stats->cov_rbuf.start = (new_pos==-1) ? 0 : round_buffer_lidx2ridx(stats->cov_rbuf.start, stats->cov_rbuf.size, stats->cov_rbuf.pos, pos);
stats->cov_rbuf.pos = new_pos;
}
/**
* [from, to) - 0 based half-open
*/
static void round_buffer_insert_read(round_buffer_t *rbuf, hts_pos_t from, hts_pos_t to)
{
if ( to-from > rbuf->size )
error("The read length too big (%"PRIhts_pos"), please increase the buffer length (currently %d)\n", to-from, rbuf->size);
if ( from < rbuf->pos )
error("The reads are not sorted (%"PRIhts_pos" comes after %"PRIhts_pos").\n", from, rbuf->pos);
int ifrom, ito, ibuf;
ifrom = round_buffer_lidx2ridx(rbuf->start, rbuf->size, rbuf->pos, from);
ito = round_buffer_lidx2ridx(rbuf->start, rbuf->size, rbuf->pos, to);
if ( ifrom>ito )
{
for (ibuf=ifrom; ibuf<rbuf->size; ibuf++)
rbuf->buffer[ibuf]++;
ifrom = 0;
}
for (ibuf=ifrom; ibuf<ito; ibuf++)
rbuf->buffer[ibuf]++;
}
// Calculate the number of bases in the read trimmed by BWA
int bwa_trim_read(int trim_qual, uint8_t *quals, int len, int reverse)
{
if ( len<BWA_MIN_RDLEN ) return 0;
// Although the name implies that the read cannot be trimmed to more than BWA_MIN_RDLEN,
// the calculation can in fact trim it to (BWA_MIN_RDLEN-1). (bwa_trim_read in bwa/bwaseqio.c).
int max_trimmed = len - BWA_MIN_RDLEN + 1;
int l, sum=0, max_sum=0, max_l=0;
for (l=0; l<max_trimmed; l++)
{
sum += trim_qual - quals[ reverse ? l : len-1-l ];
if ( sum<0 ) break;
if ( sum>max_sum )
{
max_sum = sum;
// This is the correct way, but bwa clips from some reason one base less
// max_l = l+1;
max_l = l;
}
}
return max_l;
}
void count_indels(stats_t *stats,bam1_t *bam_line)
{
int is_fwd = IS_REVERSE(bam_line) ? 0 : 1;
uint32_t order = IS_PAIRED(bam_line) ? (IS_READ1(bam_line) ? READ_ORDER_FIRST : 0) + (IS_READ2(bam_line) ? READ_ORDER_LAST : 0) : READ_ORDER_FIRST;
int icig;
int icycle = 0;
int read_len = bam_line->core.l_qseq;
for (icig=0; icig<bam_line->core.n_cigar; icig++)
{
int cig = bam_cigar_op(bam_get_cigar(bam_line)[icig]);
int ncig = bam_cigar_oplen(bam_get_cigar(bam_line)[icig]);
if ( !ncig ) continue; // curiously, this can happen: 0D
if ( cig==BAM_CINS )
{
int idx = is_fwd ? icycle : read_len-icycle-ncig;
if ( idx<0 )
error("FIXME: read_len=%d vs icycle=%d\n", read_len,icycle);
if ( idx >= stats->nbases || idx<0 ) error("FIXME: %d vs %d, %s:%"PRIhts_pos" %s\n", idx, stats->nbases, sam_hdr_tid2name(stats->info->sam_header, bam_line->core.tid), bam_line->core.pos+1, bam_get_qname(bam_line));
if ( order == READ_ORDER_FIRST )
stats->ins_cycles_1st[idx]++;
if ( order == READ_ORDER_LAST )
stats->ins_cycles_2nd[idx]++;
icycle += ncig;
if ( ncig<=stats->nindels )
stats->insertions[ncig-1]++;
continue;
}
if ( cig==BAM_CDEL )
{
int idx = is_fwd ? icycle-1 : read_len-icycle-1;
if ( idx<0 ) continue; // discard meaningless deletions
if ( idx >= stats->nbases ) error("FIXME: %d vs %d\n", idx,stats->nbases);
if ( order == READ_ORDER_FIRST )
stats->del_cycles_1st[idx]++;
if ( order == READ_ORDER_LAST )
stats->del_cycles_2nd[idx]++;
if ( ncig<=stats->nindels )
stats->deletions[ncig-1]++;
continue;
}
if ( cig!=BAM_CREF_SKIP && cig!=BAM_CHARD_CLIP && cig!=BAM_CPAD )
icycle += ncig;
}
}
int unclipped_length(bam1_t *bam_line)
{
int icig, read_len = bam_line->core.l_qseq;
for (icig=0; icig<bam_line->core.n_cigar; icig++)
{
int cig = bam_cigar_op(bam_get_cigar(bam_line)[icig]);
if ( cig==BAM_CHARD_CLIP )
read_len += bam_cigar_oplen(bam_get_cigar(bam_line)[icig]);
}
return read_len;
}
void count_mismatches_per_cycle(stats_t *stats, bam1_t *bam_line, int read_len)
{
int is_fwd = IS_REVERSE(bam_line) ? 0 : 1;
int icig, iread=0, icycle=0;
hts_pos_t iref = bam_line->core.pos - stats->rseq_pos;
uint8_t *read = bam_get_seq(bam_line);
uint8_t *quals = bam_get_qual(bam_line);
uint64_t *mpc_buf = stats->mpc_buf;
for (icig=0; icig<bam_line->core.n_cigar; icig++)
{
int cig = bam_cigar_op(bam_get_cigar(bam_line)[icig]);
int ncig = bam_cigar_oplen(bam_get_cigar(bam_line)[icig]);
if ( cig==BAM_CINS )
{
iread += ncig;
icycle += ncig;
continue;
}
if ( cig==BAM_CDEL )
{
iref += ncig;
continue;
}
if ( cig==BAM_CSOFT_CLIP )
{
icycle += ncig;
// Soft-clips are present in the sequence, but the position of the read marks a start of the sequence after clipping
// iref += ncig;
iread += ncig;
continue;
}
if ( cig==BAM_CHARD_CLIP )
{
icycle += ncig;
continue;
}
// Ignore H and N CIGARs. The letter are inserted e.g. by TopHat and often require very large
// chunk of refseq in memory. Not very frequent and not noticeable in the stats.
if ( cig==BAM_CREF_SKIP || cig==BAM_CHARD_CLIP || cig==BAM_CPAD ) continue;
if ( cig!=BAM_CMATCH && cig!=BAM_CEQUAL && cig!=BAM_CDIFF ) // not relying on precalculated diffs
error("TODO: cigar %d, %s:%"PRIhts_pos" %s\n", cig, sam_hdr_tid2name(stats->info->sam_header, bam_line->core.tid), bam_line->core.pos+1, bam_get_qname(bam_line));
if ( ncig+iref > stats->nrseq_buf )
error("FIXME: %d+%"PRIhts_pos" > %"PRId64", %s, %s:%"PRIhts_pos"\n", ncig, iref, stats->nrseq_buf, bam_get_qname(bam_line), sam_hdr_tid2name(stats->info->sam_header, bam_line->core.tid), bam_line->core.pos+1);
int im;
for (im=0; im<ncig; im++)
{
uint8_t cread = bam_seqi(read,iread);
uint8_t cref = stats->rseq_buf[iref];
// ---------------15
// =ACMGRSVTWYHKDBN
if ( cread==15 )
{
int idx = is_fwd ? icycle : read_len-icycle-1;
if ( idx>stats->max_len )
error("mpc: %d>%d\n",idx,stats->max_len);
idx = idx*stats->nquals;
if ( idx>=stats->nquals*stats->nbases )
error("FIXME: mpc_buf overflow\n");
mpc_buf[idx]++;
}
else if ( cref && cread && cref!=cread )
{
uint8_t qual = quals[iread] + 1;
if ( qual>=stats->nquals )
error("TODO: quality too high %d>=%d (%s %"PRIhts_pos" %s)\n", qual, stats->nquals, sam_hdr_tid2name(stats->info->sam_header, bam_line->core.tid), bam_line->core.pos+1, bam_get_qname(bam_line));
int idx = is_fwd ? icycle : read_len-icycle-1;
if ( idx>stats->max_len )
error("mpc: %d>%d (%s %"PRIhts_pos" %s)\n", idx, stats->max_len, sam_hdr_tid2name(stats->info->sam_header, bam_line->core.tid), bam_line->core.pos+1, bam_get_qname(bam_line));
idx = idx*stats->nquals + qual;
if ( idx>=stats->nquals*stats->nbases )
error("FIXME: mpc_buf overflow\n");
mpc_buf[idx]++;
}
iref++;
iread++;
icycle++;
}
}
}
void read_ref_seq(stats_t *stats, int32_t tid, hts_pos_t pos)
{
int i;
hts_pos_t fai_ref_len;
char *fai_ref = faidx_fetch_seq64(stats->info->fai, sam_hdr_tid2name(stats->info->sam_header, tid), pos, pos+stats->mrseq_buf-1, &fai_ref_len);
if ( fai_ref_len < 0 ) error("Failed to fetch the sequence \"%s\"\n", sam_hdr_tid2name(stats->info->sam_header, tid));
uint8_t *ptr = stats->rseq_buf;
for (i=0; i<fai_ref_len; i++)
{
// Conversion between uint8_t coding and ACGT
// -12-4---8-------
// =ACMGRSVTWYHKDBN
switch (fai_ref[i])
{
case 'A':
case 'a': *ptr = 1; break;
case 'C':
case 'c': *ptr = 2; break;
case 'G':
case 'g': *ptr = 4; break;
case 'T':
case 't': *ptr = 8; break;
default: *ptr = 0; break;
}
ptr++;
}
free(fai_ref);
if ( fai_ref_len < stats->mrseq_buf ) memset(ptr,0, stats->mrseq_buf - fai_ref_len);
stats->nrseq_buf = fai_ref_len;
stats->rseq_pos = pos;
stats->tid = tid;
}
float fai_gc_content(stats_t *stats, hts_pos_t pos, int len)
{
uint32_t gc,count,c;
hts_pos_t i = pos - stats->rseq_pos, ito = i + len;
assert( i>=0 );
if ( ito > stats->nrseq_buf ) ito = stats->nrseq_buf;
// Count GC content
gc = count = 0;
for (; i<ito; i++)
{
c = stats->rseq_buf[i];
if ( c==2 || c==4 )
{
gc++;
count++;
}
else if ( c==1 || c==8 )
count++;
}
return count ? (float)gc/count : 0;
}
void realloc_rseq_buffer(stats_t *stats)
{
int n = stats->nbases*10;
if ( stats->info->gcd_bin_size > n ) n = stats->info->gcd_bin_size;
if ( stats->mrseq_buf<n )
{
stats->rseq_buf = realloc(stats->rseq_buf,sizeof(uint8_t)*n);
if (!stats->rseq_buf) {
error("Could not reallocate reference sequence buffer");
}
stats->mrseq_buf = n;
}
}
void realloc_gcd_buffer(stats_t *stats, int seq_len)
{
hts_expand0(gc_depth_t,stats->igcd+1,stats->ngcd,stats->gcd);
realloc_rseq_buffer(stats);
}
void realloc_buffers(stats_t *stats, int seq_len)
{
int n = 2*(1 + seq_len - stats->nbases) + stats->nbases;
stats->quals_1st = realloc(stats->quals_1st, n*stats->nquals*sizeof(uint64_t));
if ( !stats->quals_1st )
error("Could not realloc buffers, the sequence too long: %d (%ld)\n", seq_len,n*stats->nquals*sizeof(uint64_t));
memset(stats->quals_1st + stats->nbases*stats->nquals, 0, (n-stats->nbases)*stats->nquals*sizeof(uint64_t));
stats->quals_2nd = realloc(stats->quals_2nd, n*stats->nquals*sizeof(uint64_t));
if ( !stats->quals_2nd )
error("Could not realloc buffers, the sequence too long: %d (2x%ld)\n", seq_len,n*stats->nquals*sizeof(uint64_t));
memset(stats->quals_2nd + stats->nbases*stats->nquals, 0, (n-stats->nbases)*stats->nquals*sizeof(uint64_t));
if ( stats->mpc_buf )
{
stats->mpc_buf = realloc(stats->mpc_buf, n*stats->nquals*sizeof(uint64_t));
if ( !stats->mpc_buf )
error("Could not realloc buffers, the sequence too long: %d (%ld)\n", seq_len,n*stats->nquals*sizeof(uint64_t));
memset(stats->mpc_buf + stats->nbases*stats->nquals, 0, (n-stats->nbases)*stats->nquals*sizeof(uint64_t));
}
stats->acgtno_cycles_1st = realloc(stats->acgtno_cycles_1st, n*sizeof(acgtno_count_t));
if ( !stats->acgtno_cycles_1st )
error("Could not realloc buffers, the sequence too long: %d (%ld)\n", seq_len, n*sizeof(acgtno_count_t));
memset(stats->acgtno_cycles_1st + stats->nbases, 0, (n-stats->nbases)*sizeof(acgtno_count_t));
stats->acgtno_cycles_2nd = realloc(stats->acgtno_cycles_2nd, n*sizeof(acgtno_count_t));
if ( !stats->acgtno_cycles_2nd )
error("Could not realloc buffers, the sequence too long: %d (%ld)\n", seq_len, n*sizeof(acgtno_count_t));
memset(stats->acgtno_cycles_2nd + stats->nbases, 0, (n-stats->nbases)*sizeof(acgtno_count_t));
stats->read_lengths = realloc(stats->read_lengths, n*sizeof(uint64_t));
if ( !stats->read_lengths )
error("Could not realloc buffers, the sequence too long: %d (%ld)\n", seq_len,n*sizeof(uint64_t));
memset(stats->read_lengths + stats->nbases, 0, (n-stats->nbases)*sizeof(uint64_t));
stats->read_lengths_1st = realloc(stats->read_lengths_1st, n*sizeof(uint64_t));
if ( !stats->read_lengths_1st )
error("Could not realloc buffers, the sequence too long: %d (%ld)\n", seq_len,n*sizeof(uint64_t));
memset(stats->read_lengths_1st + stats->nbases, 0, (n-stats->nbases)*sizeof(uint64_t));
stats->read_lengths_2nd = realloc(stats->read_lengths_2nd, n*sizeof(uint64_t));
if ( !stats->read_lengths_2nd )
error("Could not realloc buffers, the sequence too long: %d (%ld)\n", seq_len,n*sizeof(uint64_t));
memset(stats->read_lengths_2nd + stats->nbases, 0, (n-stats->nbases)*sizeof(uint64_t));
stats->insertions = realloc(stats->insertions, n*sizeof(uint64_t));
if ( !stats->insertions )
error("Could not realloc buffers, the sequence too long: %d (%ld)\n", seq_len,n*sizeof(uint64_t));
memset(stats->insertions + stats->nbases, 0, (n-stats->nbases)*sizeof(uint64_t));
stats->deletions = realloc(stats->deletions, n*sizeof(uint64_t));
if ( !stats->deletions )
error("Could not realloc buffers, the sequence too long: %d (%ld)\n", seq_len,n*sizeof(uint64_t));
memset(stats->deletions + stats->nbases, 0, (n-stats->nbases)*sizeof(uint64_t));
stats->ins_cycles_1st = realloc(stats->ins_cycles_1st, (n+1)*sizeof(uint64_t));
if ( !stats->ins_cycles_1st )
error("Could not realloc buffers, the sequence too long: %d (%ld)\n", seq_len,(n+1)*sizeof(uint64_t));
memset(stats->ins_cycles_1st + stats->nbases + 1, 0, (n-stats->nbases)*sizeof(uint64_t));
stats->ins_cycles_2nd = realloc(stats->ins_cycles_2nd, (n+1)*sizeof(uint64_t));
if ( !stats->ins_cycles_2nd )
error("Could not realloc buffers, the sequence too long: %d (%ld)\n", seq_len,(n+1)*sizeof(uint64_t));
memset(stats->ins_cycles_2nd + stats->nbases + 1, 0, (n-stats->nbases)*sizeof(uint64_t));
stats->del_cycles_1st = realloc(stats->del_cycles_1st, (n+1)*sizeof(uint64_t));
if ( !stats->del_cycles_1st )
error("Could not realloc buffers, the sequence too long: %d (%ld)\n", seq_len,(n+1)*sizeof(uint64_t));
memset(stats->del_cycles_1st + stats->nbases + 1, 0, (n-stats->nbases)*sizeof(uint64_t));
stats->del_cycles_2nd = realloc(stats->del_cycles_2nd, (n+1)*sizeof(uint64_t));
if ( !stats->del_cycles_2nd )
error("Could not realloc buffers, the sequence too long: %d (%ld)\n", seq_len,(n+1)*sizeof(uint64_t));
memset(stats->del_cycles_2nd + stats->nbases + 1, 0, (n-stats->nbases)*sizeof(uint64_t));
stats->nbases = n;
// Realloc the coverage distribution buffer
int *rbuffer = calloc(sizeof(int),seq_len*5);
if (!rbuffer) {
error("Could not allocate coverage distribution buffer");
}
n = stats->cov_rbuf.size-stats->cov_rbuf.start;
memcpy(rbuffer,stats->cov_rbuf.buffer+stats->cov_rbuf.start,n);
if ( stats->cov_rbuf.start>1 )
memcpy(rbuffer+n,stats->cov_rbuf.buffer,stats->cov_rbuf.start);
stats->cov_rbuf.start = 0;
free(stats->cov_rbuf.buffer);
stats->cov_rbuf.buffer = rbuffer;
stats->cov_rbuf.size = seq_len*5;
realloc_rseq_buffer(stats);
}
void update_checksum(bam1_t *bam_line, stats_t *stats)
{
uint8_t *name = (uint8_t*) bam_get_qname(bam_line);
int len = 0;
while ( name[len] ) len++;
stats->checksum.names += crc32(0L, name, len);
int seq_len = bam_line->core.l_qseq;
if ( !seq_len ) return;
uint8_t *seq = bam_get_seq(bam_line);
stats->checksum.reads += crc32(0L, seq, (seq_len+1)/2);
uint8_t *qual = bam_get_qual(bam_line);
stats->checksum.quals += crc32(0L, qual, (seq_len+1)/2);
}
// Collect statistics about the barcode tags specified by init_barcode_tags method
static void collect_barcode_stats(bam1_t* bam_line, stats_t* stats) {
uint32_t nbases, tag, i;
acgtno_count_t *acgtno;
uint64_t *quals;
int32_t *separator, *maxqual;
for (tag = 0; tag < stats->ntags; tag++) {
const char *barcode_tag = stats->tags_barcode[tag].tag_name, *qual_tag = stats->tags_barcode[tag].qual_name;
uint8_t* bc = bam_aux_get(bam_line, barcode_tag);
if (!bc)
continue;
char* barcode = bam_aux2Z(bc);
if (!barcode)
continue;
uint32_t barcode_len = strlen(barcode);
if (!stats->tags_barcode[tag].nbases) { // tag seen for the first time
uint32_t offset = 0;
for (i = 0; i < stats->ntags; i++)
offset += stats->tags_barcode[i].nbases;
stats->tags_barcode[tag].offset = offset;
stats->tags_barcode[tag].nbases = barcode_len;
stats->acgtno_barcode = realloc(stats->acgtno_barcode, (offset + barcode_len) * sizeof(acgtno_count_t));
stats->quals_barcode = realloc(stats->quals_barcode, (offset + barcode_len) * stats->nquals * sizeof(uint64_t));
if (!stats->acgtno_barcode || !stats->quals_barcode)
error("Error allocating memory. Aborting!\n");
memset(stats->acgtno_barcode + offset, 0, barcode_len*sizeof(acgtno_count_t));
memset(stats->quals_barcode + offset*stats->nquals, 0, barcode_len*stats->nquals*sizeof(uint64_t));
}
nbases = stats->tags_barcode[tag].nbases;
if (barcode_len > nbases) {
fprintf(samtools_stderr, "Barcodes with tag %s differ in length at sequence '%s'\n", barcode_tag, bam_get_qname(bam_line));
continue;
}
acgtno = stats->acgtno_barcode + stats->tags_barcode[tag].offset;
quals = stats->quals_barcode + stats->tags_barcode[tag].offset*stats->nquals;
maxqual = &stats->tags_barcode[tag].max_qual;
separator = &stats->tags_barcode[tag].tag_sep;
int error_flag = 0;
for (i = 0; i < barcode_len; i++) {
switch (barcode[i]) {
case 'A':
acgtno[i].a++;
break;
case 'C':
acgtno[i].c++;
break;
case 'G':
acgtno[i].g++;
break;
case 'T':
acgtno[i].t++;
break;
case 'N':
acgtno[i].n++;
break;
default:
if (*separator >= 0) {
if (*separator != i) {
if (stats->error_number < ERROR_LIMIT) {
fprintf(samtools_stderr, "Barcode separator for tag %s is in a different position or wrong barcode content('%s') at sequence '%s'\n", barcode_tag, barcode, bam_get_qname(bam_line));
stats->error_number++;
}
error_flag = 1;
}
} else {
*separator = i;
}
}
/* don't process the rest of the tag bases */
if (error_flag)
break;
}
/* skip to the next tag */
if (error_flag)
continue;
uint8_t* qt = bam_aux_get(bam_line, qual_tag);
if (!qt)
continue;
char* barqual = bam_aux2Z(qt);
if (!barqual)
continue;
uint32_t barqual_len = strlen(barqual);
if (barqual_len == barcode_len) {
for (i = 0; i < barcode_len; i++) {
int32_t qual = (int32_t)barqual[i] - '!'; // Phred + 33
if (qual >= 0 && qual < stats->nquals) {
quals[i * stats->nquals + qual]++;
if (qual > *maxqual)
*maxqual = qual;
}
}
} else {
if (stats->error_number++ < ERROR_LIMIT) {
fprintf(samtools_stderr, "%s length and %s length don't match for sequence '%s'\n", barcode_tag, qual_tag, bam_get_qname(bam_line));
}
}
}
}
// These stats should only be calculated for the original reads ignoring
// supplementary artificial reads otherwise we'll accidentally double count
void collect_orig_read_stats(bam1_t *bam_line, stats_t *stats, int* gc_count_out)
{
int seq_len = bam_line->core.l_qseq;
stats->total_len += seq_len; // This ignores clipping so only count primary
if ( bam_line->core.flag & BAM_FQCFAIL ) stats->nreads_QCfailed++;
if ( bam_line->core.flag & BAM_FPAIRED ) stats->nreads_paired_tech++;
uint32_t order = IS_PAIRED(bam_line) ? (IS_READ1(bam_line) ? READ_ORDER_FIRST : 0) + (IS_READ2(bam_line) ? READ_ORDER_LAST : 0) : READ_ORDER_FIRST;
// Count GC and ACGT per cycle. Note that cycle is approximate, clipping is ignored
uint8_t *seq = bam_get_seq(bam_line);
int i, read_cycle, gc_count = 0, reverse = IS_REVERSE(bam_line);
acgtno_count_t *acgtno_cycles = (order == READ_ORDER_FIRST) ? stats->acgtno_cycles_1st : (order == READ_ORDER_LAST) ? stats->acgtno_cycles_2nd : NULL ;
if (acgtno_cycles) {
for (i=0; i<seq_len; i++)
{
// Read cycle for current index
read_cycle = (reverse ? seq_len-i-1 : i);
// Conversion from uint8_t coding:
// -12-4---8------5
// =ACMGRSVTWYHKDBN
switch (bam_seqi(seq, i)) {
case 1:
acgtno_cycles[ read_cycle ].a++;
break;
case 2:
acgtno_cycles[ read_cycle ].c++;
gc_count++;
break;
case 4:
acgtno_cycles[ read_cycle ].g++;
gc_count++;
break;
case 8:
acgtno_cycles[ read_cycle ].t++;
break;
case 15:
acgtno_cycles[ read_cycle ].n++;
break;
default:
/*
* count "=" sequences in "other" along
* with MRSVWYHKDB ambiguity codes
*/
acgtno_cycles[ read_cycle ].other++;
break;
}
}
}
int gc_idx_min = gc_count*(stats->ngc-1)/seq_len;
int gc_idx_max = (gc_count+1)*(stats->ngc-1)/seq_len;
if ( gc_idx_max >= stats->ngc ) gc_idx_max = stats->ngc - 1;
// Determine which array (1st or 2nd read) will these stats go to,
// trim low quality bases from end the same way BWA does,
// fill GC histogram
uint64_t *quals = NULL;
uint8_t *bam_quals = bam_get_qual(bam_line);
switch (order) {
case READ_ORDER_FIRST:
quals = stats->quals_1st;
stats->nreads_1st++;
stats->total_len_1st += seq_len;
for (i=gc_idx_min; i<gc_idx_max; i++)
stats->gc_1st[i]++;
break;
case READ_ORDER_LAST:
quals = stats->quals_2nd;
stats->nreads_2nd++;
stats->total_len_2nd += seq_len;
for (i=gc_idx_min; i<gc_idx_max; i++)
stats->gc_2nd[i]++;
break;
default:
stats->nreads_other++;
}
if ( stats->info->trim_qual>0 )
stats->nbases_trimmed += bwa_trim_read(stats->info->trim_qual, bam_quals, seq_len, reverse);
// Quality histogram and average quality. Clipping is neglected.
if (quals) {
for (i=0; i<seq_len; i++)
{
uint8_t qual = bam_quals[ reverse ? seq_len-i-1 : i];
if ( qual>=stats->nquals )
error("TODO: quality too high %d>=%d (%s %"PRIhts_pos" %s)\n", qual, stats->nquals, sam_hdr_tid2name(stats->info->sam_header, bam_line->core.tid), bam_line->core.pos+1, bam_get_qname(bam_line));
if ( qual>stats->max_qual )
stats->max_qual = qual;
quals[ i*stats->nquals+qual ]++;
stats->sum_qual += qual;
}
}
// Barcode statistics
if (order == READ_ORDER_FIRST) {
collect_barcode_stats(bam_line, stats);
}
// Look at the flags and increment appropriate counters (mapped, paired, etc)
if ( IS_UNMAPPED(bam_line) )
{
stats->nreads_unmapped++;
}
else
{
stats->nbases_mapped += seq_len; // This ignores clipping so only count primary
if ( !bam_line->core.qual )
stats->nreads_mq0++;
if ( !IS_PAIRED_AND_MAPPED(bam_line) )
stats->nreads_single_mapped++;
else
{
stats->nreads_paired_and_mapped++;
if (IS_PROPERLYPAIRED(bam_line)) stats->nreads_properly_paired++;
if ( bam_line->core.tid!=bam_line->core.mtid )
stats->nreads_anomalous++;
}
}
*gc_count_out = gc_count;
}
static int cleanup_overlaps(khash_t(qn2pair) *read_pairs, hts_pos_t max) {
if ( !read_pairs )
return 0;
int count = 0;
khint_t k;
for (k = kh_begin(read_pairs); k < kh_end(read_pairs); k++) {
if ( kh_exist(read_pairs, k) ) {
char *key = (char *)kh_key(read_pairs, k);
pair_t *val = kh_val(read_pairs, k);
if ( val && val->chunks ) {
if ( val->chunks[val->n-1].end < max ) {
free(val->chunks);
free(val);
free(key);
kh_del(qn2pair, read_pairs, k);
count++;
}
} else {
free(key);
kh_del(qn2pair, read_pairs, k);
count++;
}
}
}
if ( max == INT64_MAX )
kh_destroy(qn2pair, read_pairs);
return count;
}
/**
* [pmin, pmax) - 0 based half-open
*/
static void remove_overlaps(bam1_t *bam_line, khash_t(qn2pair) *read_pairs, stats_t *stats, hts_pos_t pmin, hts_pos_t pmax) {
if ( !bam_line || !read_pairs || !stats )
return;
uint32_t order = (IS_READ1(bam_line) ? READ_ORDER_FIRST : 0) + (IS_READ2(bam_line) ? READ_ORDER_LAST : 0);
if ( !(bam_line->core.flag & BAM_FPAIRED) ||
(bam_line->core.flag & BAM_FMUNMAP) ||
(llabs(bam_line->core.isize) >= 2*bam_line->core.l_qseq) ||
(order != READ_ORDER_FIRST && order != READ_ORDER_LAST) ) {
if ( pmin >= 0 )
round_buffer_insert_read(&(stats->cov_rbuf), pmin, pmax);
return;
}
char *qname = bam_get_qname(bam_line);
if ( !qname ) {
fprintf(samtools_stderr, "Error retrieving qname for line starting at pos %"PRIhts_pos"\n", bam_line->core.pos);
return;
}
khint_t k = kh_get(qn2pair, read_pairs, qname);
if ( k == kh_end(read_pairs) ) { //first chunk from this template
if ( pmin == -1 )
return;
int ret;
char *s = strdup(qname);
if ( !s ) {
fprintf(samtools_stderr, "Error allocating memory\n");
return;
}
k = kh_put(qn2pair, read_pairs, s, &ret);
if ( -1 == ret ) {
error("Error inserting read '%s' in pair hash table\n", qname);
}
pair_t *pc = calloc(1, sizeof(pair_t));
if ( !pc ) {
fprintf(samtools_stderr, "Error allocating memory\n");
return;
}
pc->m = DEFAULT_CHUNK_NO;
pc->chunks = calloc(pc->m, sizeof(hts_pair_pos_t));
if ( !pc->chunks ) {
fprintf(samtools_stderr, "Error allocating memory\n");
return;
}
pc->chunks[0].beg = pmin;
pc->chunks[0].end = pmax;
pc->n = 1;
pc->first = order;
kh_val(read_pairs, k) = pc;
stats->pair_count++;
} else { //template already present
pair_t *pc = kh_val(read_pairs, k);
if ( !pc ) {
fprintf(samtools_stderr, "Invalid hash table entry\n");
return;
}
if ( order == pc->first ) { //chunk from an existing line
if ( pmin == -1 )
return;
if ( pc->n == pc->m ) {
hts_pair_pos_t *tmp = realloc(pc->chunks, (pc->m<<1)*sizeof(hts_pair_pos_t));
if ( !tmp ) {
fprintf(samtools_stderr, "Error allocating memory\n");
return;
}
pc->chunks = tmp;
pc->m<<=1;
}
pc->chunks[pc->n].beg = pmin;
pc->chunks[pc->n].end = pmax;
pc->n++;
} else { //the other line, check for overlapping
if ( pmin == -1 && kh_exist(read_pairs, k) ) { //job done, delete entry
char *key = (char *)kh_key(read_pairs, k);
pair_t *val = kh_val(read_pairs, k);
if ( val) {
free(val->chunks);
free(val);
}
free(key);
kh_del(qn2pair, read_pairs, k);
stats->pair_count--;
return;
}
int i;
for (i=0; i<pc->n; i++) {
if ( pmin >= pc->chunks[i].end )
continue;
if ( pmax <= pc->chunks[i].beg ) //no overlap
break;
if ( pmin < pc->chunks[i].beg ) { //overlap at the beginning
round_buffer_insert_read(&(stats->cov_rbuf), pmin, pc->chunks[i].beg);
pmin = pc->chunks[i].beg;
}
if ( pmax <= pc->chunks[i].end ) { //completely contained
stats->nbases_mapped_cigar -= (pmax - pmin);
return;
} else { //overlap at the end
stats->nbases_mapped_cigar -= (pc->chunks[i].end - pmin);
pmin = pc->chunks[i].end;
}
}
}
}
round_buffer_insert_read(&(stats->cov_rbuf), pmin, pmax);
}
void collect_stats(bam1_t *bam_line, stats_t *stats, khash_t(qn2pair) *read_pairs)
{
if ( stats->rg_hash )
{
const uint8_t *rg = bam_aux_get(bam_line, "RG");
if ( !rg ) return; // certain read groups were requested but this record has none
if ( !khash_str2int_has_key(stats->rg_hash, (const char*)(rg + 1)) ) return;
}
if ( stats->info->flag_require && (bam_line->core.flag & stats->info->flag_require)!=stats->info->flag_require )
{
stats->nreads_filtered++;
return;
}
if ( stats->info->flag_filter && (bam_line->core.flag & stats->info->flag_filter) )
{
stats->nreads_filtered++;
return;
}
if ( !is_in_regions(bam_line,stats) )
return;
if ( stats->info->filter_readlen!=-1 && bam_line->core.l_qseq!=stats->info->filter_readlen )
return;
update_checksum(bam_line, stats);
// Secondary reads don't count for most stats purposes
if ( bam_line->core.flag & BAM_FSECONDARY )
{
stats->nreads_secondary++;
return;
}
// If line has no sequence cannot continue
int seq_len = bam_line->core.l_qseq;
if ( !seq_len ) return;
if ( IS_DUP(bam_line) )
{
stats->total_len_dup += seq_len;
stats->nreads_dup++;
}
uint32_t order = IS_PAIRED(bam_line) ? (IS_READ1(bam_line) ? READ_ORDER_FIRST : 0) + (IS_READ2(bam_line) ? READ_ORDER_LAST : 0) : READ_ORDER_FIRST;
int read_len = unclipped_length(bam_line);
if ( read_len >= stats->nbases )
realloc_buffers(stats,read_len);
// Update max_len observed
if ( stats->max_len<read_len )
stats->max_len = read_len;
if ( order == READ_ORDER_FIRST && stats->max_len_1st < read_len )
stats->max_len_1st = read_len;
if ( order == READ_ORDER_LAST && stats->max_len_2nd < read_len )
stats->max_len_2nd = read_len;
int i;
int gc_count = 0;
// These stats should only be calculated for the original reads ignoring supplementary artificial reads
// otherwise we'll accidentally double count
if ( IS_ORIGINAL(bam_line) )
{
stats->read_lengths[read_len]++;
if ( order == READ_ORDER_FIRST ) stats->read_lengths_1st[read_len]++;
if ( order == READ_ORDER_LAST ) stats->read_lengths_2nd[read_len]++;
collect_orig_read_stats(bam_line, stats, &gc_count);
}
// Look at the flags and increment appropriate counters (mapped, paired, etc)
if ( IS_UNMAPPED(bam_line) ) return;
count_indels(stats, bam_line);
if ( IS_PAIRED_AND_MAPPED(bam_line) )
{
// The insert size is tricky, because for long inserts the libraries are
// prepared differently and the pairs point in other direction. BWA does
// not set the paired flag for them. Similar thing is true also for 454
// reads. Mates mapped to different chromosomes have isize==0.
int32_t isize = bam_line->core.isize;
if ( isize<0 ) isize = -isize;
if ( stats->info->nisize > 0 && isize > stats->info->nisize )
isize = stats->info->nisize;
if ( isize>0 || bam_line->core.tid==bam_line->core.mtid )
{
hts_pos_t pos_fst = bam_line->core.mpos - bam_line->core.pos;
int is_fst = IS_READ1(bam_line) ? 1 : -1;
int is_fwd = IS_REVERSE(bam_line) ? -1 : 1;
int is_mfwd = IS_MATE_REVERSE(bam_line) ? -1 : 1;
if ( is_fwd*is_mfwd>0 )
stats->isize->inc_other(stats->isize->data, isize);
else if ( is_fst*pos_fst>=0 )
{
if ( is_fst*is_fwd>0 )
stats->isize->inc_inward(stats->isize->data, isize);
else
stats->isize->inc_outward(stats->isize->data, isize);
}
else if ( is_fst*pos_fst<0 )
{
if ( is_fst*is_fwd>0 )
stats->isize->inc_outward(stats->isize->data, isize);
else
stats->isize->inc_inward(stats->isize->data, isize);
}
}
}
// Number of mismatches
uint8_t *nm = bam_aux_get(bam_line,"NM");
if (nm)
stats->nmismatches += bam_aux2i(nm);
// Number of mapped bases from cigar
if ( bam_line->core.n_cigar == 0)
error("FIXME: mapped read with no cigar?\n");
int readlen=seq_len;
if ( stats->regions )
{
// Count only on-target bases
hts_pos_t iref = bam_line->core.pos + 1;
for (i=0; i<bam_line->core.n_cigar; i++)
{
int cig = bam_cigar_op(bam_get_cigar(bam_line)[i]);
int ncig = bam_cigar_oplen(bam_get_cigar(bam_line)[i]);
if ( !ncig ) continue; // curiously, this can happen: 0D
if ( cig==BAM_CDEL ) readlen += ncig;
else if ( cig==BAM_CMATCH || cig==BAM_CEQUAL || cig==BAM_CDIFF )
{
if ( iref < stats->reg_from ) ncig -= stats->reg_from-iref;
else if ( iref+ncig-1 > stats->reg_to ) ncig -= iref+ncig-1 - stats->reg_to;
if ( ncig<0 ) ncig = 0;
stats->nbases_mapped_cigar += ncig;
iref += bam_cigar_oplen(bam_get_cigar(bam_line)[i]);
}
else if ( cig==BAM_CINS )
{
iref += ncig;
if ( iref>=stats->reg_from && iref<=stats->reg_to )
stats->nbases_mapped_cigar += ncig;
}
}
}
else
{
// Count the whole read
for (i=0; i<bam_line->core.n_cigar; i++)
{
int cig = bam_cigar_op(bam_get_cigar(bam_line)[i]);
if ( cig==BAM_CMATCH || cig==BAM_CINS || cig==BAM_CEQUAL || cig==BAM_CDIFF )
stats->nbases_mapped_cigar += bam_cigar_oplen(bam_get_cigar(bam_line)[i]);
if ( cig==BAM_CDEL )
readlen += bam_cigar_oplen(bam_get_cigar(bam_line)[i]);
}
}
if ( stats->tid==bam_line->core.tid && bam_line->core.pos<stats->pos )
stats->is_sorted = 0;
stats->pos = bam_line->core.pos;
if ( stats->is_sorted )
{
if ( stats->tid==-1 || stats->tid!=bam_line->core.tid ) {
round_buffer_flush(stats, -1);
}
//cleanup the pair hash table to free memory
stats->last_read_flush++;
if ( stats->pair_count > DEFAULT_PAIR_MAX && stats->last_read_flush > DEFAULT_PAIR_MAX) {
stats->pair_count -= cleanup_overlaps(read_pairs, bam_line->core.pos);
stats->last_read_flush = 0;
}
if ( stats->last_pair_tid != bam_line->core.tid) {
stats->pair_count -= cleanup_overlaps(read_pairs, INT64_MAX-1);
stats->last_pair_tid = bam_line->core.tid;
stats->last_read_flush = 0;
}
// Mismatches per cycle and GC-depth graph. For simplicity, reads overlapping GCD bins
// are not splitted which results in up to seq_len-1 overlaps. The default bin size is
// 20kbp, so the effect is negligible.
if ( stats->info->fai )
{
int inc_ref = 0, inc_gcd = 0;
// First pass or new chromosome
if ( stats->rseq_pos==-1 || stats->tid != bam_line->core.tid ) { inc_ref=1; inc_gcd=1; }
// Read goes beyond the end of the rseq buffer
else if ( stats->rseq_pos+stats->nrseq_buf < bam_line->core.pos+readlen ) { inc_ref=1; inc_gcd=1; }
// Read overlaps the next gcd bin
else if ( stats->gcd_pos+stats->info->gcd_bin_size < bam_line->core.pos+readlen )
{
inc_gcd = 1;
if ( stats->rseq_pos+stats->nrseq_buf < bam_line->core.pos+stats->info->gcd_bin_size ) inc_ref = 1;
}
if ( inc_gcd )
{
stats->igcd++;
if ( stats->igcd >= stats->ngcd )
realloc_gcd_buffer(stats, readlen);
if ( inc_ref )
read_ref_seq(stats,bam_line->core.tid,bam_line->core.pos);
stats->gcd_pos = bam_line->core.pos;
stats->gcd[ stats->igcd ].gc = fai_gc_content(stats, stats->gcd_pos, stats->info->gcd_bin_size);
}
count_mismatches_per_cycle(stats,bam_line,read_len);
}
// No reference and first pass, new chromosome or sequence going beyond the end of the gcd bin
else if ( stats->gcd_pos==-1 || stats->tid != bam_line->core.tid || bam_line->core.pos - stats->gcd_pos > stats->info->gcd_bin_size )
{
// First pass or a new chromosome
stats->tid = bam_line->core.tid;
stats->gcd_pos = bam_line->core.pos;
stats->igcd++;
if ( stats->igcd >= stats->ngcd )
realloc_gcd_buffer(stats, readlen);
}
stats->gcd[ stats->igcd ].depth++;
// When no reference sequence is given, approximate the GC from the read (much shorter window, but otherwise OK)
if ( !stats->info->fai )
stats->gcd[ stats->igcd ].gc += (float) gc_count / seq_len;
// Coverage distribution graph
round_buffer_flush(stats,bam_line->core.pos);
if ( stats->regions ) {
hts_pos_t p = bam_line->core.pos, pnew, pmin = 0, pmax = 0;
uint32_t j = 0;
i = 0;
while ( j < bam_line->core.n_cigar && i < stats->nchunks ) {
int op = bam_cigar_op(bam_get_cigar(bam_line)[j]);
int oplen = bam_cigar_oplen(bam_get_cigar(bam_line)[j]);
switch(op) {
case BAM_CMATCH:
case BAM_CEQUAL:
case BAM_CDIFF:
pmin = MAX(p, stats->chunks[i].beg-1); // 0 based
pmax = MIN(p+oplen, stats->chunks[i].end); // 1 based
if ( pmax > pmin ) {
if ( stats->info->remove_overlaps )
remove_overlaps(bam_line, read_pairs, stats, pmin, pmax);
else
round_buffer_insert_read(&(stats->cov_rbuf), pmin, pmax);
}
break;
case BAM_CDEL:
break;
}
pnew = p + (bam_cigar_type(op)&2 ? oplen : 0); // consumes reference
if ( pnew >= stats->chunks[i].end ) {
// go to the next chunk
i++;
} else {
// go to the next CIGAR op
j++;
p = pnew;
}
}
} else {
hts_pos_t p = bam_line->core.pos;
uint32_t j;
for (j = 0; j < bam_line->core.n_cigar; j++) {
int op = bam_cigar_op(bam_get_cigar(bam_line)[j]);
int oplen = bam_cigar_oplen(bam_get_cigar(bam_line)[j]);
switch(op) {
case BAM_CMATCH:
case BAM_CEQUAL:
case BAM_CDIFF:
if ( stats->info->remove_overlaps )
remove_overlaps(bam_line, read_pairs, stats, p, p+oplen);
else
round_buffer_insert_read(&(stats->cov_rbuf), p, p+oplen);
break;
case BAM_CDEL:
break;
}
p += bam_cigar_type(op)&2 ? oplen : 0; // consumes reference
}
}
if ( stats->info->remove_overlaps )
remove_overlaps(bam_line, read_pairs, stats, -1LL, -1LL); //remove the line from the hash table
}
}
// Sort by GC and depth
#define GCD_t(x) ((gc_depth_t *)x)
static int gcd_cmp(const void *a, const void *b)
{
if ( GCD_t(a)->gc < GCD_t(b)->gc ) return -1;
if ( GCD_t(a)->gc > GCD_t(b)->gc ) return 1;
if ( GCD_t(a)->depth < GCD_t(b)->depth ) return -1;
if ( GCD_t(a)->depth > GCD_t(b)->depth ) return 1;
return 0;
}
#undef GCD_t
float gcd_percentile(gc_depth_t *gcd, int N, int p)
{
float n,d;
int k;
n = (float)p*(N+1)/100;
k = n;
if ( k<=0 )
return gcd[0].depth;
if ( k>=N )
return gcd[N-1].depth;
d = n - k;
return gcd[k-1].depth + d*(gcd[k].depth - gcd[k-1].depth);
}
void output_stats(FILE *to, stats_t *stats, int sparse)
{
// Calculate average insert size and standard deviation (from the main bulk data only)
int isize, ibulk=0, icov;
uint64_t nisize=0, nisize_inward=0, nisize_outward=0, nisize_other=0, cov_sum=0;
double bulk=0, avg_isize=0, sd_isize=0;
for (isize=0; isize<stats->isize->nitems(stats->isize->data); isize++)
{
// Each pair was counted twice
stats->isize->set_inward(stats->isize->data, isize, stats->isize->inward(stats->isize->data, isize) * 0.5);
stats->isize->set_outward(stats->isize->data, isize, stats->isize->outward(stats->isize->data, isize) * 0.5);
stats->isize->set_other(stats->isize->data, isize, stats->isize->other(stats->isize->data, isize) * 0.5);
nisize_inward += stats->isize->inward(stats->isize->data, isize);
nisize_outward += stats->isize->outward(stats->isize->data, isize);
nisize_other += stats->isize->other(stats->isize->data, isize);
nisize += stats->isize->inward(stats->isize->data, isize) + stats->isize->outward(stats->isize->data, isize) + stats->isize->other(stats->isize->data, isize);
}
for (isize=0; isize<stats->isize->nitems(stats->isize->data); isize++)
{
uint64_t num = stats->isize->inward(stats->isize->data, isize) + stats->isize->outward(stats->isize->data, isize) + stats->isize->other(stats->isize->data, isize);
if (num > 0) ibulk = isize + 1;
bulk += num;
avg_isize += isize * (stats->isize->inward(stats->isize->data, isize) + stats->isize->outward(stats->isize->data, isize) + stats->isize->other(stats->isize->data, isize));
if ( bulk/nisize > stats->info->isize_main_bulk )
{
ibulk = isize+1;
nisize = bulk;
break;
}
}
avg_isize /= nisize ? nisize : 1;
for (isize=1; isize<ibulk; isize++)
sd_isize += (stats->isize->inward(stats->isize->data, isize) + stats->isize->outward(stats->isize->data, isize) +stats->isize->other(stats->isize->data, isize)) * (isize-avg_isize)*(isize-avg_isize) / (nisize ? nisize : 1);
sd_isize = sqrt(sd_isize);
fprintf(to, "# This file was produced by samtools stats (%s+htslib-%s) and can be plotted using plot-bamstats\n", samtools_version(), hts_version());
if( stats->split_name != NULL ){
fprintf(to, "# This file contains statistics only for reads with tag: %s=%s\n", stats->info->split_tag, stats->split_name);
}
else{
fprintf(to, "# This file contains statistics for all reads.\n");
}
fprintf(to, "# The command line was: %s",stats->info->argv[0]);
int i;
for (i=1; i<stats->info->argc; i++)
fprintf(to, " %s", stats->info->argv[i]);
fprintf(to, "\n");
fprintf(to, "# CHK, Checksum\t[2]Read Names\t[3]Sequences\t[4]Qualities\n");
fprintf(to, "# CHK, CRC32 of reads which passed filtering followed by addition (32bit overflow)\n");
fprintf(to, "CHK\t%08x\t%08x\t%08x\n", stats->checksum.names,stats->checksum.reads,stats->checksum.quals);
fprintf(to, "# Summary Numbers. Use `grep ^SN | cut -f 2-` to extract this part.\n");
fprintf(to, "SN\traw total sequences:\t%ld\n", (long)(stats->nreads_filtered+stats->nreads_1st+stats->nreads_2nd+stats->nreads_other)); // not counting excluded seqs (and none of the below)
fprintf(to, "SN\tfiltered sequences:\t%ld\n", (long)stats->nreads_filtered);
fprintf(to, "SN\tsequences:\t%ld\n", (long)(stats->nreads_1st+stats->nreads_2nd+stats->nreads_other));
fprintf(to, "SN\tis sorted:\t%d\n", stats->is_sorted ? 1 : 0);
fprintf(to, "SN\t1st fragments:\t%ld\n", (long)stats->nreads_1st);
fprintf(to, "SN\tlast fragments:\t%ld\n", (long)stats->nreads_2nd);
fprintf(to, "SN\treads mapped:\t%ld\n", (long)(stats->nreads_paired_and_mapped+stats->nreads_single_mapped));
fprintf(to, "SN\treads mapped and paired:\t%ld\t# paired-end technology bit set + both mates mapped\n", (long)stats->nreads_paired_and_mapped);
fprintf(to, "SN\treads unmapped:\t%ld\n", (long)stats->nreads_unmapped);
fprintf(to, "SN\treads properly paired:\t%ld\t# proper-pair bit set\n", (long)stats->nreads_properly_paired);
fprintf(to, "SN\treads paired:\t%ld\t# paired-end technology bit set\n", (long)stats->nreads_paired_tech);
fprintf(to, "SN\treads duplicated:\t%ld\t# PCR or optical duplicate bit set\n", (long)stats->nreads_dup);
fprintf(to, "SN\treads MQ0:\t%ld\t# mapped and MQ=0\n", (long)stats->nreads_mq0);
fprintf(to, "SN\treads QC failed:\t%ld\n", (long)stats->nreads_QCfailed);
fprintf(to, "SN\tnon-primary alignments:\t%ld\n", (long)stats->nreads_secondary);
fprintf(to, "SN\ttotal length:\t%ld\t# ignores clipping\n", (long)stats->total_len);
fprintf(to, "SN\ttotal first fragment length:\t%ld\t# ignores clipping\n", (long)stats->total_len_1st);
fprintf(to, "SN\ttotal last fragment length:\t%ld\t# ignores clipping\n", (long)stats->total_len_2nd);
fprintf(to, "SN\tbases mapped:\t%ld\t# ignores clipping\n", (long)stats->nbases_mapped); // the length of the whole read goes here, including soft-clips etc.
fprintf(to, "SN\tbases mapped (cigar):\t%ld\t# more accurate\n", (long)stats->nbases_mapped_cigar); // only matched and inserted bases are counted here
fprintf(to, "SN\tbases trimmed:\t%ld\n", (long)stats->nbases_trimmed);
fprintf(to, "SN\tbases duplicated:\t%ld\n", (long)stats->total_len_dup);
fprintf(to, "SN\tmismatches:\t%ld\t# from NM fields\n", (long)stats->nmismatches);
fprintf(to, "SN\terror rate:\t%e\t# mismatches / bases mapped (cigar)\n", stats->nbases_mapped_cigar ? (float)stats->nmismatches/stats->nbases_mapped_cigar : 0);
float avg_read_length = (stats->nreads_1st+stats->nreads_2nd+stats->nreads_other)?stats->total_len/(stats->nreads_1st+stats->nreads_2nd+stats->nreads_other):0;
fprintf(to, "SN\taverage length:\t%.0f\n", avg_read_length);
fprintf(to, "SN\taverage first fragment length:\t%.0f\n", stats->nreads_1st? (float)stats->total_len_1st/stats->nreads_1st:0);
fprintf(to, "SN\taverage last fragment length:\t%.0f\n", stats->nreads_2nd? (float)stats->total_len_2nd/stats->nreads_2nd:0);
fprintf(to, "SN\tmaximum length:\t%d\n", stats->max_len);
fprintf(to, "SN\tmaximum first fragment length:\t%d\n", stats->max_len_1st);
fprintf(to, "SN\tmaximum last fragment length:\t%d\n", stats->max_len_2nd);
fprintf(to, "SN\taverage quality:\t%.1f\n", stats->total_len?stats->sum_qual/stats->total_len:0);
fprintf(to, "SN\tinsert size average:\t%.1f\n", avg_isize);
fprintf(to, "SN\tinsert size standard deviation:\t%.1f\n", sd_isize);
fprintf(to, "SN\tinward oriented pairs:\t%ld\n", (long)nisize_inward);
fprintf(to, "SN\toutward oriented pairs:\t%ld\n", (long)nisize_outward);
fprintf(to, "SN\tpairs with other orientation:\t%ld\n", (long)nisize_other);
fprintf(to, "SN\tpairs on different chromosomes:\t%ld\n", (long)stats->nreads_anomalous/2);
fprintf(to, "SN\tpercentage of properly paired reads (%%):\t%.1f\n", (stats->nreads_1st+stats->nreads_2nd+stats->nreads_other)? (float)(100*stats->nreads_properly_paired)/(stats->nreads_1st+stats->nreads_2nd+stats->nreads_other):0);
if ( stats->target_count ) {
fprintf(to, "SN\tbases inside the target:\t%u\n", stats->target_count);
for (icov=stats->info->cov_threshold+1; icov<stats->ncov; icov++)
cov_sum += stats->cov[icov];
fprintf(to, "SN\tpercentage of target genome with coverage > %d (%%):\t%.2f\n", stats->info->cov_threshold, (float)(100*cov_sum)/stats->target_count);
}
int ibase,iqual;
if ( stats->max_len<stats->nbases ) stats->max_len++;
if ( stats->max_qual+1<stats->nquals ) stats->max_qual++;
fprintf(to, "# First Fragment Qualities. Use `grep ^FFQ | cut -f 2-` to extract this part.\n");
fprintf(to, "# Columns correspond to qualities and rows to cycles. First column is the cycle number.\n");
for (ibase=0; ibase<stats->max_len_1st; ibase++)
{
fprintf(to, "FFQ\t%d",ibase+1);
for (iqual=0; iqual<=stats->max_qual; iqual++)
{
fprintf(to, "\t%ld", (long)stats->quals_1st[ibase*stats->nquals+iqual]);
}
fprintf(to, "\n");
}
fprintf(to, "# Last Fragment Qualities. Use `grep ^LFQ | cut -f 2-` to extract this part.\n");
fprintf(to, "# Columns correspond to qualities and rows to cycles. First column is the cycle number.\n");
for (ibase=0; ibase<stats->max_len_2nd; ibase++)
{
fprintf(to, "LFQ\t%d",ibase+1);
for (iqual=0; iqual<=stats->max_qual; iqual++)
{
fprintf(to, "\t%ld", (long)stats->quals_2nd[ibase*stats->nquals+iqual]);
}
fprintf(to, "\n");
}
if ( stats->mpc_buf )
{
fprintf(to, "# Mismatches per cycle and quality. Use `grep ^MPC | cut -f 2-` to extract this part.\n");
fprintf(to, "# Columns correspond to qualities, rows to cycles. First column is the cycle number, second\n");
fprintf(to, "# is the number of N's and the rest is the number of mismatches\n");
for (ibase=0; ibase<stats->max_len; ibase++)
{
fprintf(to, "MPC\t%d",ibase+1);
for (iqual=0; iqual<=stats->max_qual; iqual++)
{
fprintf(to, "\t%ld", (long)stats->mpc_buf[ibase*stats->nquals+iqual]);
}
fprintf(to, "\n");
}
}
fprintf(to, "# GC Content of first fragments. Use `grep ^GCF | cut -f 2-` to extract this part.\n");
int ibase_prev = 0;
for (ibase=0; ibase<stats->ngc; ibase++)
{
if ( stats->gc_1st[ibase]==stats->gc_1st[ibase_prev] ) continue;
fprintf(to, "GCF\t%.2f\t%ld\n", (ibase+ibase_prev)*0.5*100./(stats->ngc-1), (long)stats->gc_1st[ibase_prev]);
ibase_prev = ibase;
}
fprintf(to, "# GC Content of last fragments. Use `grep ^GCL | cut -f 2-` to extract this part.\n");
ibase_prev = 0;
for (ibase=0; ibase<stats->ngc; ibase++)
{
if ( stats->gc_2nd[ibase]==stats->gc_2nd[ibase_prev] ) continue;
fprintf(to, "GCL\t%.2f\t%ld\n", (ibase+ibase_prev)*0.5*100./(stats->ngc-1), (long)stats->gc_2nd[ibase_prev]);
ibase_prev = ibase;
}
fprintf(to, "# ACGT content per cycle. Use `grep ^GCC | cut -f 2-` to extract this part. The columns are: cycle; A,C,G,T base counts as a percentage of all A/C/G/T bases [%%]; and N and O counts as a percentage of all A/C/G/T bases [%%]\n");
for (ibase=0; ibase<stats->max_len; ibase++)
{
acgtno_count_t *acgtno_count_1st = &(stats->acgtno_cycles_1st[ibase]);
acgtno_count_t *acgtno_count_2nd = &(stats->acgtno_cycles_2nd[ibase]);
uint64_t acgt_sum = acgtno_count_1st->a + acgtno_count_1st->c + acgtno_count_1st->g + acgtno_count_1st->t +
acgtno_count_2nd->a + acgtno_count_2nd->c + acgtno_count_2nd->g + acgtno_count_2nd->t;
if ( ! acgt_sum ) continue;
fprintf(to, "GCC\t%d\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\n", ibase+1,
100.*(acgtno_count_1st->a + acgtno_count_2nd->a)/acgt_sum,
100.*(acgtno_count_1st->c + acgtno_count_2nd->c)/acgt_sum,
100.*(acgtno_count_1st->g + acgtno_count_2nd->g)/acgt_sum,
100.*(acgtno_count_1st->t + acgtno_count_2nd->t)/acgt_sum,
100.*(acgtno_count_1st->n + acgtno_count_2nd->n)/acgt_sum,
100.*(acgtno_count_1st->other + acgtno_count_2nd->other)/acgt_sum);
}
uint64_t tA=0, tC=0, tG=0, tT=0, tN=0;
fprintf(to, "# ACGT content per cycle for first fragments. Use `grep ^FBC | cut -f 2-` to extract this part. The columns are: cycle; A,C,G,T base counts as a percentage of all A/C/G/T bases [%%]; and N and O counts as a percentage of all A/C/G/T bases [%%]\n");
for (ibase=0; ibase<stats->max_len; ibase++)
{
acgtno_count_t *acgtno_count_1st = &(stats->acgtno_cycles_1st[ibase]);
uint64_t acgt_sum_1st = acgtno_count_1st->a + acgtno_count_1st->c + acgtno_count_1st->g + acgtno_count_1st->t;
tA += acgtno_count_1st->a;
tC += acgtno_count_1st->c;
tG += acgtno_count_1st->g;
tT += acgtno_count_1st->t;
tN += acgtno_count_1st->n;
if ( acgt_sum_1st )
fprintf(to, "FBC\t%d\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\n", ibase+1,
100.*acgtno_count_1st->a/acgt_sum_1st,
100.*acgtno_count_1st->c/acgt_sum_1st,
100.*acgtno_count_1st->g/acgt_sum_1st,
100.*acgtno_count_1st->t/acgt_sum_1st,
100.*acgtno_count_1st->n/acgt_sum_1st,
100.*acgtno_count_1st->other/acgt_sum_1st);
}
fprintf(to, "# ACGT raw counters for first fragments. Use `grep ^FTC | cut -f 2-` to extract this part. The columns are: A,C,G,T,N base counters\n");
fprintf(to, "FTC\t%" PRId64 "\t%" PRId64 "\t%" PRId64 "\t%" PRId64 "\t%" PRId64 "\n", tA, tC, tG, tT, tN);
tA=0, tC=0, tG=0, tT=0, tN=0;
fprintf(to, "# ACGT content per cycle for last fragments. Use `grep ^LBC | cut -f 2-` to extract this part. The columns are: cycle; A,C,G,T base counts as a percentage of all A/C/G/T bases [%%]; and N and O counts as a percentage of all A/C/G/T bases [%%]\n");
for (ibase=0; ibase<stats->max_len; ibase++)
{
acgtno_count_t *acgtno_count_2nd = &(stats->acgtno_cycles_2nd[ibase]);
uint64_t acgt_sum_2nd = acgtno_count_2nd->a + acgtno_count_2nd->c + acgtno_count_2nd->g + acgtno_count_2nd->t;
tA += acgtno_count_2nd->a;
tC += acgtno_count_2nd->c;
tG += acgtno_count_2nd->g;
tT += acgtno_count_2nd->t;
tN += acgtno_count_2nd->n;
if ( acgt_sum_2nd )
fprintf(to, "LBC\t%d\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\n", ibase+1,
100.*acgtno_count_2nd->a/acgt_sum_2nd,
100.*acgtno_count_2nd->c/acgt_sum_2nd,
100.*acgtno_count_2nd->g/acgt_sum_2nd,
100.*acgtno_count_2nd->t/acgt_sum_2nd,
100.*acgtno_count_2nd->n/acgt_sum_2nd,
100.*acgtno_count_2nd->other/acgt_sum_2nd);
}
fprintf(to, "# ACGT raw counters for last fragments. Use `grep ^LTC | cut -f 2-` to extract this part. The columns are: A,C,G,T,N base counters\n");
fprintf(to, "LTC\t%" PRId64 "\t%" PRId64 "\t%" PRId64 "\t%" PRId64 "\t%" PRId64 "\n", tA, tC, tG, tT, tN);
int tag;
for (tag=0; tag<stats->ntags; tag++) {
if (stats->tags_barcode[tag].nbases) {
fprintf(to, "# ACGT content per cycle for barcodes. Use `grep ^%sC | cut -f 2-` to extract this part. The columns are: cycle; A,C,G,T base counts as a percentage of all A/C/G/T bases [%%]; and N counts as a percentage of all A/C/G/T bases [%%]\n",
stats->tags_barcode[tag].tag_name);
for (ibase=0; ibase<stats->tags_barcode[tag].nbases; ibase++)
{
if (ibase == stats->tags_barcode[tag].tag_sep)
continue;
acgtno_count_t *acgtno_count = stats->acgtno_barcode + stats->tags_barcode[tag].offset + ibase;
uint64_t acgt_sum = acgtno_count->a + acgtno_count->c + acgtno_count->g + acgtno_count->t;
if ( acgt_sum )
fprintf(to, "%sC%d\t%d\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\n", stats->tags_barcode[tag].tag_name,
stats->tags_barcode[tag].tag_sep < 0 || ibase < stats->tags_barcode[tag].tag_sep ? 1 : 2,
stats->tags_barcode[tag].tag_sep < 0 || ibase < stats->tags_barcode[tag].tag_sep ? ibase+1 : ibase-stats->tags_barcode[tag].tag_sep,
100.*acgtno_count->a/acgt_sum,
100.*acgtno_count->c/acgt_sum,
100.*acgtno_count->g/acgt_sum,
100.*acgtno_count->t/acgt_sum,
100.*acgtno_count->n/acgt_sum);
}
fprintf(to, "# Barcode Qualities. Use `grep ^%sQ | cut -f 2-` to extract this part.\n", stats->tags_barcode[tag].qual_name);
fprintf(to, "# Columns correspond to qualities and rows to barcode cycles. First column is the cycle number.\n");
for (ibase=0; ibase<stats->tags_barcode[tag].nbases; ibase++)
{
if (ibase == stats->tags_barcode[tag].tag_sep)
continue;
fprintf(to, "%sQ%d\t%d", stats->tags_barcode[tag].qual_name,
stats->tags_barcode[tag].tag_sep < 0 || ibase < stats->tags_barcode[tag].tag_sep ? 1 : 2,
stats->tags_barcode[tag].tag_sep < 0 || ibase < stats->tags_barcode[tag].tag_sep ? ibase+1 : ibase-stats->tags_barcode[tag].tag_sep);
for (iqual=0; iqual<=stats->tags_barcode[tag].max_qual; iqual++)
{
fprintf(to, "\t%ld", (long)stats->quals_barcode[(stats->tags_barcode[tag].offset + ibase)*stats->nquals+iqual]);
}
fprintf(to, "\n");
}
}
}
fprintf(to, "# Insert sizes. Use `grep ^IS | cut -f 2-` to extract this part. The columns are: insert size, pairs total, inward oriented pairs, outward oriented pairs, other pairs\n");
for (isize=0; isize<ibulk; isize++) {
long in = (long)(stats->isize->inward(stats->isize->data, isize));
long out = (long)(stats->isize->outward(stats->isize->data, isize));
long other = (long)(stats->isize->other(stats->isize->data, isize));
if (!sparse || in + out + other > 0) {
fprintf(to, "IS\t%d\t%ld\t%ld\t%ld\t%ld\n", isize, in+out+other,
in , out, other);
}
}
fprintf(to, "# Read lengths. Use `grep ^RL | cut -f 2-` to extract this part. The columns are: read length, count\n");
int ilen;
for (ilen=0; ilen<stats->max_len; ilen++)
{
if ( stats->read_lengths[ilen+1]>0 )
fprintf(to, "RL\t%d\t%ld\n", ilen+1, (long)stats->read_lengths[ilen+1]);
}
fprintf(to, "# Read lengths - first fragments. Use `grep ^FRL | cut -f 2-` to extract this part. The columns are: read length, count\n");
for (ilen=0; ilen<stats->max_len_1st; ilen++)
{
if ( stats->read_lengths_1st[ilen+1]>0 )
fprintf(to, "FRL\t%d\t%ld\n", ilen+1, (long)stats->read_lengths_1st[ilen+1]);
}
fprintf(to, "# Read lengths - last fragments. Use `grep ^LRL | cut -f 2-` to extract this part. The columns are: read length, count\n");
for (ilen=0; ilen<stats->max_len_2nd; ilen++)
{
if ( stats->read_lengths_2nd[ilen+1]>0 )
fprintf(to, "LRL\t%d\t%ld\n", ilen+1, (long)stats->read_lengths_2nd[ilen+1]);
}
fprintf(to, "# Indel distribution. Use `grep ^ID | cut -f 2-` to extract this part. The columns are: length, number of insertions, number of deletions\n");
for (ilen=0; ilen<stats->nindels; ilen++)
{
if ( stats->insertions[ilen]>0 || stats->deletions[ilen]>0 )
fprintf(to, "ID\t%d\t%ld\t%ld\n", ilen+1, (long)stats->insertions[ilen], (long)stats->deletions[ilen]);
}
fprintf(to, "# Indels per cycle. Use `grep ^IC | cut -f 2-` to extract this part. The columns are: cycle, number of insertions (fwd), .. (rev) , number of deletions (fwd), .. (rev)\n");
for (ilen=0; ilen<=stats->nbases; ilen++)
{
// For deletions we print the index of the cycle before the deleted base (1-based) and for insertions
// the index of the cycle of the first inserted base (also 1-based)
if ( stats->ins_cycles_1st[ilen]>0 || stats->ins_cycles_2nd[ilen]>0 || stats->del_cycles_1st[ilen]>0 || stats->del_cycles_2nd[ilen]>0 )
fprintf(to, "IC\t%d\t%ld\t%ld\t%ld\t%ld\n", ilen+1, (long)stats->ins_cycles_1st[ilen], (long)stats->ins_cycles_2nd[ilen], (long)stats->del_cycles_1st[ilen], (long)stats->del_cycles_2nd[ilen]);
}
fprintf(to, "# Coverage distribution. Use `grep ^COV | cut -f 2-` to extract this part.\n");
if ( stats->cov[0] )
fprintf(to, "COV\t[<%d]\t%d\t%ld\n",stats->info->cov_min,stats->info->cov_min-1, (long)stats->cov[0]);
for (icov=1; icov<stats->ncov-1; icov++)
if ( stats->cov[icov] )
fprintf(to, "COV\t[%d-%d]\t%d\t%ld\n",stats->info->cov_min + (icov-1)*stats->info->cov_step, stats->info->cov_min + icov*stats->info->cov_step-1,stats->info->cov_min + icov*stats->info->cov_step-1, (long)stats->cov[icov]);
if ( stats->cov[stats->ncov-1] )
fprintf(to, "COV\t[%d<]\t%d\t%ld\n",stats->info->cov_min + (stats->ncov-2)*stats->info->cov_step-1,stats->info->cov_min + (stats->ncov-2)*stats->info->cov_step-1, (long)stats->cov[stats->ncov-1]);
// Calculate average GC content, then sort by GC and depth
fprintf(to, "# GC-depth. Use `grep ^GCD | cut -f 2-` to extract this part. The columns are: GC%%, unique sequence percentiles, 10th, 25th, 50th, 75th and 90th depth percentile\n");
uint32_t igcd;
for (igcd=0; igcd<stats->igcd; igcd++)
{
if ( stats->info->fai )
stats->gcd[igcd].gc = rint(100. * stats->gcd[igcd].gc);
else
if ( stats->gcd[igcd].depth )
stats->gcd[igcd].gc = rint(100. * stats->gcd[igcd].gc / stats->gcd[igcd].depth);
}
qsort(stats->gcd, stats->igcd+1, sizeof(gc_depth_t), gcd_cmp);
igcd = 0;
while ( igcd < stats->igcd )
{
// Calculate percentiles (10,25,50,75,90th) for the current GC content and print
uint32_t nbins=0, itmp=igcd;
float gc = stats->gcd[igcd].gc;
while ( itmp<stats->igcd && fabs(stats->gcd[itmp].gc-gc)<0.1 )
{
nbins++;
itmp++;
}
fprintf(to, "GCD\t%.1f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\n", gc, (igcd+nbins+1)*100./(stats->igcd+1),
gcd_percentile(&(stats->gcd[igcd]),nbins,10) *avg_read_length/stats->info->gcd_bin_size,
gcd_percentile(&(stats->gcd[igcd]),nbins,25) *avg_read_length/stats->info->gcd_bin_size,
gcd_percentile(&(stats->gcd[igcd]),nbins,50) *avg_read_length/stats->info->gcd_bin_size,
gcd_percentile(&(stats->gcd[igcd]),nbins,75) *avg_read_length/stats->info->gcd_bin_size,
gcd_percentile(&(stats->gcd[igcd]),nbins,90) *avg_read_length/stats->info->gcd_bin_size
);
igcd += nbins;
}
}
static void init_regions(stats_t *stats, const char *file)
{
FILE *fp = fopen(file,"r");
if ( !fp ) error("%s: %s\n",file,strerror(errno));
kstring_t line = { 0, 0, NULL };
int warned = 0, r, p, new_p;
int prev_tid=-1;
hts_pos_t prev_pos=-1LL;
while (line.l = 0, kgetline(&line, (kgets_func *)fgets, fp) >= 0)
{
if ( line.s[0] == '#' ) continue;
int i = 0;
while ( i<line.l && !isspace(line.s[i]) ) i++;
if ( i>=line.l ) error("Could not parse the file: %s [%s]\n", file, line.s);
line.s[i] = '\0';
int tid = bam_name2id(stats->info->sam_header, line.s);
if ( tid < 0 )
{
if ( !warned )
fprintf(samtools_stderr,"Warning: Some sequences not present in the BAM, e.g. \"%s\". This message is printed only once.\n", line.s);
warned = 1;
continue;
}
if ( tid >= stats->nregions )
{
if(!(stats->regions = realloc(stats->regions,sizeof(regions_t)*(tid+REG_INC))))
error("Could not allocate memory for region.\n");
int j;
for (j=stats->nregions; j<tid+REG_INC; j++)
{
stats->regions[j].npos = stats->regions[j].mpos = stats->regions[j].cpos = 0;
stats->regions[j].pos = NULL;
}
stats->nregions = tid+REG_INC;
}
int npos = stats->regions[tid].npos;
if ( npos >= stats->regions[tid].mpos )
{
stats->regions[tid].mpos = npos+POS_INC;
if (!(stats->regions[tid].pos = realloc(stats->regions[tid].pos, sizeof(hts_pair_pos_t)*stats->regions[tid].mpos)))
error("Could not allocate memory for interval.\n");
}
if ( (sscanf(&line.s[i+1],"%"SCNd64" %"SCNd64, &stats->regions[tid].pos[npos].beg, &stats->regions[tid].pos[npos].end))!=2 ) error("Could not parse the region [%s]\n", &line.s[i+1]);
if ( prev_tid==-1 || prev_tid!=tid )
{
prev_tid = tid;
prev_pos = stats->regions[tid].pos[npos].beg;
}
if ( prev_pos>stats->regions[tid].pos[npos].beg )
error("The positions are not in chromosomal order (%s:%"PRIhts_pos" comes after %"PRIhts_pos")\n", line.s, stats->regions[tid].pos[npos].beg, prev_pos);
stats->regions[tid].npos++;
if ( stats->regions[tid].npos > stats->nchunks )
stats->nchunks = stats->regions[tid].npos;
}
free(line.s);
if ( !stats->regions ) error("Unable to map the -t sequences to the BAM sequences.\n");
fclose(fp);
// sort region intervals and remove duplicates
for (r = 0; r < stats->nregions; r++) {
regions_t *reg = &stats->regions[r];
if ( reg->npos > 1 ) {
qsort(reg->pos, reg->npos, sizeof(hts_pair_pos_t), regions_lt);
for (new_p = 0, p = 1; p < reg->npos; p++) {
if ( reg->pos[new_p].end < reg->pos[p].beg )
reg->pos[++new_p] = reg->pos[p];
else if ( reg->pos[new_p].end < reg->pos[p].end )
reg->pos[new_p].end = reg->pos[p].end;
}
reg->npos = ++new_p;
}
for (p = 0; p < reg->npos; p++)
stats->target_count += (reg->pos[p].end - reg->pos[p].beg + 1);
}
if (!(stats->chunks = calloc(stats->nchunks, sizeof(hts_pair_pos_t))))
error("Could not allocate memory for chunk.\n");
}
void destroy_regions(stats_t *stats)
{
int i;
for (i=0; i<stats->nregions; i++)
{
if ( !stats->regions[i].mpos ) continue;
free(stats->regions[i].pos);
}
if ( stats->regions ) free(stats->regions);
if ( stats->chunks ) free(stats->chunks);
}
void reset_regions(stats_t *stats)
{
int i;
for (i=0; i<stats->nregions; i++)
stats->regions[i].cpos = 0;
}
int is_in_regions(bam1_t *bam_line, stats_t *stats)
{
if ( !stats->regions ) return 1;
if ( bam_line->core.tid >= stats->nregions || bam_line->core.tid<0 ) return 0;
if ( !stats->is_sorted ) error("The BAM must be sorted in order for -t to work.\n");
regions_t *reg = &stats->regions[bam_line->core.tid];
if ( reg->cpos==reg->npos ) return 0; // done for this chr
// Find a matching interval or skip this read. No splicing of reads is done, no indels or soft clips considered,
// even small overlap is enough to include the read in the stats.
int i = reg->cpos;
while ( i<reg->npos && reg->pos[i].end<=bam_line->core.pos ) i++;
if ( i>=reg->npos ) { reg->cpos = reg->npos; return 0; }
int64_t endpos = bam_endpos(bam_line);
if ( endpos < reg->pos[i].beg ) return 0;
//found a read overlapping a region
reg->cpos = i;
stats->reg_from = reg->pos[i].beg;
stats->reg_to = reg->pos[i].end;
//now find all the overlapping chunks
stats->nchunks = 0;
while (i < reg->npos) {
if (bam_line->core.pos < reg->pos[i].end && endpos >= reg->pos[i].beg) {
stats->chunks[stats->nchunks].beg = MAX(bam_line->core.pos+1, reg->pos[i].beg);
stats->chunks[stats->nchunks].end = MIN(endpos, reg->pos[i].end);
stats->nchunks++;
}
i++;
}
return 1;
}
int replicate_regions(stats_t *stats, hts_itr_multi_t *iter) {
if ( !stats || !iter)
return 1;
int i, j, tid;
stats->nregions = iter->n_reg;
stats->regions = calloc(stats->nregions, sizeof(regions_t));
stats->chunks = calloc(stats->nchunks, sizeof(hts_pair_pos_t));
if ( !stats->regions || !stats->chunks )
return 1;
for (i = 0; i < iter->n_reg; i++) {
tid = iter->reg_list[i].tid;
if ( tid < 0 )
continue;
if ( tid >= stats->nregions ) {
regions_t *tmp = realloc(stats->regions, (tid+10) * sizeof(regions_t));
if ( !tmp )
return 1;
stats->regions = tmp;
memset(stats->regions + stats->nregions, 0,
(tid+10-stats->nregions) * sizeof(regions_t));
stats->nregions = tid+10;
}
stats->regions[tid].mpos = stats->regions[tid].npos = iter->reg_list[i].count;
stats->regions[tid].pos = calloc(stats->regions[tid].mpos, sizeof(hts_pair_pos_t));
if ( !stats->regions[tid].pos )
return 1;
for (j = 0; j < stats->regions[tid].npos; j++) {
stats->regions[tid].pos[j].beg = iter->reg_list[i].intervals[j].beg+1;
stats->regions[tid].pos[j].end = iter->reg_list[i].intervals[j].end;
stats->target_count += (stats->regions[tid].pos[j].end - stats->regions[tid].pos[j].beg + 1);
}
}
return 0;
}
void init_group_id(stats_t *stats, const char *id)
{
#if 0
if ( !stats->sam_header->dict )
stats->sam_header->dict = sam_header_parse2(stats->sam_header->text);
void *iter = stats->sam_header->dict;
const char *key, *val;
int n = 0;
stats->rg_hash = khash_str2int_init();
while ( (iter = sam_header2key_val(iter, "RG","ID","SM", &key, &val)) )
{
if ( !strcmp(id,key) || (val && !strcmp(id,val)) )
{
khiter_t k = kh_get(kh_rg, stats->rg_hash, key);
if ( k != kh_end(stats->rg_hash) )
fprintf(samtools_stderr, "[init_group_id] The group ID not unique: \"%s\"\n", key);
int ret;
k = kh_put(kh_rg, stats->rg_hash, key, &ret);
kh_value(stats->rg_hash, k) = val;
n++;
}
}
if ( !n )
error("The sample or read group \"%s\" not present.\n", id);
#else
fprintf(samtools_stderr, "Samtools-htslib: init_group_id() header parsing not yet implemented\n");
abort();
#endif
}
static void HTS_NORETURN error(const char *format, ...)
{
if ( !format )
{
fprintf(samtools_stdout, "About: The program collects statistics from BAM files. The output can be visualized using plot-bamstats.\n");
fprintf(samtools_stdout, "Usage: samtools stats [OPTIONS] file.bam\n");
fprintf(samtools_stdout, " samtools stats [OPTIONS] file.bam chr:from-to\n");
fprintf(samtools_stdout, "Options:\n");
fprintf(samtools_stdout, " -c, --coverage <int>,<int>,<int> Coverage distribution min,max,step [1,1000,1]\n");
fprintf(samtools_stdout, " -d, --remove-dups Exclude from statistics reads marked as duplicates\n");
fprintf(samtools_stdout, " -X, --customized-index-file Use a customized index file\n");
fprintf(samtools_stdout, " -f, --required-flag <str|int> Required flag, 0 for unset. See also `samtools flags` [0]\n");
fprintf(samtools_stdout, " -F, --filtering-flag <str|int> Filtering flag, 0 for unset. See also `samtools flags` [0]\n");
fprintf(samtools_stdout, " --GC-depth <float> the size of GC-depth bins (decreasing bin size increases memory requirement) [2e4]\n");
fprintf(samtools_stdout, " -h, --help This help message\n");
fprintf(samtools_stdout, " -i, --insert-size <int> Maximum insert size [8000]\n");
fprintf(samtools_stdout, " -I, --id <string> Include only listed read group or sample name\n");
fprintf(samtools_stdout, " -l, --read-length <int> Include in the statistics only reads with the given read length [-1]\n");
fprintf(samtools_stdout, " -m, --most-inserts <float> Report only the main part of inserts [0.99]\n");
fprintf(samtools_stdout, " -P, --split-prefix <str> Path or string prefix for filepaths output by -S (default is input filename)\n");
fprintf(samtools_stdout, " -q, --trim-quality <int> The BWA trimming parameter [0]\n");
fprintf(samtools_stdout, " -r, --ref-seq <file> Reference sequence (required for GC-depth and mismatches-per-cycle calculation).\n");
fprintf(samtools_stdout, " -s, --sam Ignored (input format is auto-detected).\n");
fprintf(samtools_stdout, " -S, --split <tag> Also write statistics to separate files split by tagged field.\n");
fprintf(samtools_stdout, " -t, --target-regions <file> Do stats in these regions only. Tab-delimited file chr,from,to, 1-based, inclusive.\n");
fprintf(samtools_stdout, " -x, --sparse Suppress outputting IS rows where there are no insertions.\n");
fprintf(samtools_stdout, " -p, --remove-overlaps Remove overlaps of paired-end reads from coverage and base count computations.\n");
fprintf(samtools_stdout, " -g, --cov-threshold <int> Only bases with coverage above this value will be included in the target percentage computation [0]\n");
sam_global_opt_help(samtools_stdout, "-.--.@-.");
fprintf(samtools_stdout, "\n");
}
else
{
va_list ap;
va_start(ap, format);
vfprintf(samtools_stderr, format, ap);
va_end(ap);
}
exit(1);
}
void cleanup_stats_info(stats_info_t* info){
if (info->fai) fai_destroy(info->fai);
sam_close(info->sam);
free(info);
}
void cleanup_stats(stats_t* stats)
{
free(stats->cov_rbuf.buffer); free(stats->cov);
free(stats->quals_1st); free(stats->quals_2nd);
free(stats->gc_1st); free(stats->gc_2nd);
stats->isize->isize_free(stats->isize->data);
free(stats->isize);
free(stats->gcd);
free(stats->rseq_buf);
free(stats->mpc_buf);
free(stats->acgtno_cycles_1st);
free(stats->acgtno_cycles_2nd);
free(stats->read_lengths);
free(stats->read_lengths_1st);
free(stats->read_lengths_2nd);
free(stats->insertions);
free(stats->deletions);
free(stats->ins_cycles_1st);
free(stats->ins_cycles_2nd);
free(stats->del_cycles_1st);
free(stats->del_cycles_2nd);
if (stats->acgtno_barcode) free(stats->acgtno_barcode);
if (stats->quals_barcode) free(stats->quals_barcode);
free(stats->tags_barcode);
destroy_regions(stats);
if ( stats->rg_hash ) khash_str2int_destroy(stats->rg_hash);
free(stats->split_name);
free(stats);
}
void output_split_stats(khash_t(c2stats) *split_hash, char* bam_fname, int sparse)
{
int i = 0;
kstring_t output_filename = { 0, 0, NULL };
stats_t *curr_stats = NULL;
for(i = kh_begin(split_hash); i != kh_end(split_hash); ++i){
if(!kh_exist(split_hash, i)) continue;
curr_stats = kh_value(split_hash, i);
round_buffer_flush(curr_stats, -1);
output_filename.l = 0;
if (curr_stats->info->split_prefix)
kputs(curr_stats->info->split_prefix, &output_filename);
else
kputs(bam_fname, &output_filename);
kputc('_', &output_filename);
kputs(curr_stats->split_name, &output_filename);
kputs(".bamstat", &output_filename);
FILE *to = fopen(output_filename.s, "w");
if(to == NULL){
error("Could not open '%s' for writing.\n", output_filename.s);
}
output_stats(to, curr_stats, sparse);
fclose(to);
}
free(output_filename.s);
}
void destroy_split_stats(khash_t(c2stats) *split_hash)
{
if (!split_hash)
return;
int i = 0;
stats_t *curr_stats = NULL;
for(i = kh_begin(split_hash); i != kh_end(split_hash); ++i){
if(!kh_exist(split_hash, i)) continue;
curr_stats = kh_value(split_hash, i);
cleanup_stats(curr_stats);
}
kh_destroy(c2stats, split_hash);
}
stats_info_t* stats_info_init(int argc, char *argv[])
{
stats_info_t* info = calloc(1, sizeof(stats_info_t));
if (!info) {
return NULL;
}
info->nisize = 8000;
info->isize_main_bulk = 0.99; // There are always outliers at the far end
info->gcd_bin_size = 20e3;
info->cov_min = 1;
info->cov_max = 1000;
info->cov_step = 1;
info->filter_readlen = -1;
info->argc = argc;
info->argv = argv;
info->remove_overlaps = 0;
info->cov_threshold = 0;
return info;
}
int init_stat_info_fname(stats_info_t* info, const char* bam_fname, const htsFormat* in_fmt)
{
// .. bam
samFile* sam;
if ((sam = sam_open_format(bam_fname, "r", in_fmt)) == 0) {
print_error_errno("stats", "failed to open \"%s\"", bam_fname);
return 1;
}
info->sam = sam;
info->sam_header = sam_hdr_read(sam);
if (info->sam_header == NULL) {
print_error("stats", "failed to read header for \"%s\"", bam_fname);
return 1;
}
return 0;
}
stats_t* stats_init()
{
stats_t *stats = calloc(1,sizeof(stats_t));
if (!stats)
return NULL;
stats->ngc = 200;
stats->nquals = 256;
stats->nbases = 300;
stats->rseq_pos = -1;
stats->tid = -1;
stats->gcd_pos = -1LL;
stats->igcd = 0;
stats->is_sorted = 1;
stats->nindels = stats->nbases;
stats->split_name = NULL;
stats->nchunks = 0;
stats->pair_count = 0;
stats->last_pair_tid = -2;
stats->last_read_flush = 0;
stats->target_count = 0;
return stats;
}
static int init_barcode_tags(stats_t* stats) {
stats->ntags = 4;
stats->tags_barcode = calloc(stats->ntags, sizeof(barcode_info_t));
if (!stats->tags_barcode)
return -1;
stats->tags_barcode[0] = (barcode_info_t){"BC", "QT", 0, -1, -1, 0};
stats->tags_barcode[1] = (barcode_info_t){"CR", "CY", 0, -1, -1, 0};
stats->tags_barcode[2] = (barcode_info_t){"OX", "BZ", 0, -1, -1, 0};
stats->tags_barcode[3] = (barcode_info_t){"RX", "QX", 0, -1, -1, 0};
return 0;
}
static void init_stat_structs(stats_t* stats, stats_info_t* info, const char* group_id, const char* targets)
{
// Give stats_t a pointer to the info struct
// This saves us having to pass the stats_info_t to every function
stats->info = info;
// Init structures
// .. coverage bins and round buffer
if ( info->cov_step > info->cov_max - info->cov_min + 1 )
{
info->cov_step = info->cov_max - info->cov_min;
if ( info->cov_step <= 0 )
info->cov_step = 1;
}
stats->ncov = 3 + (info->cov_max-info->cov_min) / info->cov_step;
info->cov_max = info->cov_min + ((info->cov_max-info->cov_min)/info->cov_step +1)*info->cov_step - 1;
stats->cov = calloc(sizeof(uint64_t),stats->ncov);
if (!stats->cov) goto nomem;
stats->cov_rbuf.size = stats->nbases*5;
stats->cov_rbuf.buffer = calloc(sizeof(int32_t),stats->cov_rbuf.size);
if (!stats->cov_rbuf.buffer) goto nomem;
if ( group_id ) init_group_id(stats, group_id);
// .. arrays
stats->quals_1st = calloc(stats->nquals*stats->nbases,sizeof(uint64_t));
if (!stats->quals_1st) goto nomem;
stats->quals_2nd = calloc(stats->nquals*stats->nbases,sizeof(uint64_t));
if (!stats->quals_2nd) goto nomem;
stats->gc_1st = calloc(stats->ngc,sizeof(uint64_t));
if (!stats->gc_1st) goto nomem;
stats->gc_2nd = calloc(stats->ngc,sizeof(uint64_t));
if (!stats->gc_2nd) goto nomem;
stats->isize = init_isize_t(info->nisize ?info->nisize+1 :0);
if (!stats->isize) goto nomem;
stats->gcd = calloc(stats->ngcd,sizeof(gc_depth_t));
if (!stats->gcd) goto nomem;
if (info->fai) {
stats->mpc_buf = calloc(stats->nquals*stats->nbases,sizeof(uint64_t));
if (!stats->mpc_buf) goto nomem;
} else {
stats->mpc_buf = NULL;
}
stats->acgtno_cycles_1st = calloc(stats->nbases,sizeof(acgtno_count_t));
if (!stats->acgtno_cycles_1st) goto nomem;
stats->acgtno_cycles_2nd = calloc(stats->nbases,sizeof(acgtno_count_t));
if (!stats->acgtno_cycles_2nd) goto nomem;
stats->read_lengths = calloc(stats->nbases,sizeof(uint64_t));
if (!stats->read_lengths) goto nomem;
stats->read_lengths_1st = calloc(stats->nbases,sizeof(uint64_t));
if (!stats->read_lengths_1st) goto nomem;
stats->read_lengths_2nd = calloc(stats->nbases,sizeof(uint64_t));
if (!stats->read_lengths_2nd) goto nomem;
stats->insertions = calloc(stats->nbases,sizeof(uint64_t));
if (!stats->insertions) goto nomem;
stats->deletions = calloc(stats->nbases,sizeof(uint64_t));
if (!stats->deletions) goto nomem;
stats->ins_cycles_1st = calloc(stats->nbases+1,sizeof(uint64_t));
if (!stats->ins_cycles_1st) goto nomem;
stats->ins_cycles_2nd = calloc(stats->nbases+1,sizeof(uint64_t));
if (!stats->ins_cycles_2nd) goto nomem;
stats->del_cycles_1st = calloc(stats->nbases+1,sizeof(uint64_t));
if (!stats->del_cycles_1st) goto nomem;
stats->del_cycles_2nd = calloc(stats->nbases+1,sizeof(uint64_t));
if (!stats->del_cycles_2nd) goto nomem;
if (init_barcode_tags(stats) < 0)
goto nomem;
realloc_rseq_buffer(stats);
if ( targets )
init_regions(stats, targets);
return;
nomem:
error("Out of memory");
}
static stats_t* get_curr_split_stats(bam1_t* bam_line, khash_t(c2stats)* split_hash, stats_info_t* info, char* targets)
{
stats_t *curr_stats = NULL;
const uint8_t *tag_val = bam_aux_get(bam_line, info->split_tag);
if(tag_val == 0){
error("Tag '%s' not found in bam_line.\n", info->split_tag);
}
char* split_name = strdup(bam_aux2Z(tag_val));
// New stats object, under split
khiter_t k = kh_get(c2stats, split_hash, split_name);
if(k == kh_end(split_hash)){
curr_stats = stats_init(); // mallocs new instance
if (!curr_stats) {
error("Couldn't allocate split stats");
}
init_stat_structs(curr_stats, info, NULL, targets);
curr_stats->split_name = split_name;
// Record index in hash
int ret = 0;
khiter_t iter = kh_put(c2stats, split_hash, split_name, &ret);
if( ret < 0 ){
error("Failed to insert key '%s' into split_hash", split_name);
}
kh_val(split_hash, iter) = curr_stats; // store pointer to stats
}
else{
curr_stats = kh_value(split_hash, k);
free(split_name); // don't need to hold on to this if it wasn't new
}
return curr_stats;
}
int main_stats(int argc, char *argv[])
{
char *targets = NULL;
char *bam_fname = NULL;
char *bam_idx_fname = NULL;
char *group_id = NULL;
int sparse = 0, has_index_file = 0, ret = 1;
sam_global_args ga = SAM_GLOBAL_ARGS_INIT;
stats_info_t *info = stats_info_init(argc, argv);
if (!info) {
fprintf(samtools_stderr, "Could not allocate memory for info.\n");
return 1;
}
static const struct option loptions[] =
{
SAM_OPT_GLOBAL_OPTIONS('-', 0, '-', '-', 0, '@'),
{"help", no_argument, NULL, 'h'},
{"remove-dups", no_argument, NULL, 'd'},
{"sam", no_argument, NULL, 's'},
{"customized-index-file", required_argument, NULL, 'X'},
{"ref-seq", required_argument, NULL, 'r'},
{"coverage", required_argument, NULL, 'c'},
{"read-length", required_argument, NULL, 'l'},
{"insert-size", required_argument, NULL, 'i'},
{"most-inserts", required_argument, NULL, 'm'},
{"trim-quality", required_argument, NULL, 'q'},
{"target-regions", required_argument, NULL, 't'},
{"required-flag", required_argument, NULL, 'f'},
{"filtering-flag", required_argument, NULL, 'F'},
{"id", required_argument, NULL, 'I'},
{"GC-depth", required_argument, NULL, 1},
{"sparse", no_argument, NULL, 'x'},
{"split", required_argument, NULL, 'S'},
{"split-prefix", required_argument, NULL, 'P'},
{"remove-overlaps", no_argument, NULL, 'p'},
{"cov-threshold", required_argument, NULL, 'g'},
{NULL, 0, NULL, 0}
};
int opt;
while ( (opt=getopt_long(argc,argv,"?hdsXxpr:c:l:i:t:m:q:f:F:g:I:S:P:@:",loptions,NULL))>0 )
{
switch (opt)
{
case 'f': info->flag_require = bam_str2flag(optarg); break;
case 'F': info->flag_filter |= bam_str2flag(optarg); break;
case 'd': info->flag_filter |= BAM_FDUP; break;
case 'X': has_index_file = 1; break;
case 's': break;
case 'r': info->fai = fai_load(optarg);
if (info->fai==NULL)
error("Could not load faidx: %s\n", optarg);
break;
case 1 : info->gcd_bin_size = atof(optarg); break;
case 'c': if ( sscanf(optarg,"%d,%d,%d",&info->cov_min,&info->cov_max,&info->cov_step)!= 3 )
error("Unable to parse -c %s\n", optarg);
break;
case 'l': info->filter_readlen = atoi(optarg); break;
case 'i': info->nisize = atoi(optarg); break;
case 'm': info->isize_main_bulk = atof(optarg); break;
case 'q': info->trim_qual = atoi(optarg); break;
case 't': targets = optarg; break;
case 'I': group_id = optarg; break;
case 'x': sparse = 1; break;
case 'S': info->split_tag = optarg; break;
case 'P': info->split_prefix = optarg; break;
case 'p': info->remove_overlaps = 1; break;
case 'g': info->cov_threshold = atoi(optarg);
if ( info->cov_threshold < 0 || info->cov_threshold == INT_MAX )
error("Unsupported value for coverage threshold %d\n", info->cov_threshold);
break;
case '?':
case 'h': error(NULL);
/* no break */
default:
if (parse_sam_global_opt(opt, optarg, loptions, &ga) != 0)
error("Unknown argument: %s\n", optarg);
break;
}
}
bam_fname = argv[optind++];
if ( !bam_fname )
{
if ( isatty(STDIN_FILENO) )
error(NULL);
bam_fname = "-";
}
if (init_stat_info_fname(info, bam_fname, &ga.in)) {
free(info);
return 1;
}
if (has_index_file && !(bam_idx_fname = argv[optind++])) {
fprintf(samtools_stderr, "No index file provided\n");
free(info);
return 1;
}
if (ga.nthreads > 0)
hts_set_threads(info->sam, ga.nthreads);
stats_t *all_stats = stats_init();
if (!all_stats) {
fprintf(samtools_stderr, "Could not allocate memory for stats.\n");
cleanup_stats_info(info);
return 1;
}
stats_t *curr_stats = NULL;
init_stat_structs(all_stats, info, group_id, targets);
// Init
// .. hash
khash_t(c2stats)* split_hash = kh_init(c2stats);
if (!split_hash) goto cleanup_all_stats;
khash_t(qn2pair)* read_pairs = kh_init(qn2pair);
if (!read_pairs) goto cleanup_split_hash;
// Collect statistics
bam1_t *bam_line = bam_init1();
if (!bam_line) goto cleanup_read_pairs;
if (optind < argc) {
// Region:interval arguments in the command line
hts_idx_t *bam_idx = NULL;
if (has_index_file) {
bam_idx = sam_index_load2(info->sam, bam_fname, bam_idx_fname);
} else {
// If an index filename has not been specified, look alongside the alignment file
bam_idx = sam_index_load(info->sam, bam_fname);
}
if (bam_idx) {
hts_itr_multi_t *iter = sam_itr_regarray(bam_idx, info->sam_header, &argv[optind], argc - optind);
if (iter) {
if (!targets) {
all_stats->nchunks = argc-optind;
if (replicate_regions(all_stats, iter))
fprintf(samtools_stderr, "Replications of the regions failed\n");
}
if ( all_stats->nregions && all_stats->regions ) {
while ((ret = sam_itr_next(info->sam, iter, bam_line)) >= 0) {
if (info->split_tag) {
curr_stats = get_curr_split_stats(bam_line, split_hash, info, targets);
collect_stats(bam_line, curr_stats, read_pairs);
}
collect_stats(bam_line, all_stats, read_pairs);
}
if (ret < -1) {
fprintf(samtools_stderr, "Failure while running the iterator\n");
hts_itr_multi_destroy(iter);
hts_idx_destroy(bam_idx);
goto cleanup;
}
}
hts_itr_multi_destroy(iter);
} else {
fprintf(samtools_stderr, "Multi-region iterator could not be created\n");
hts_idx_destroy(bam_idx);
goto cleanup;
}
hts_idx_destroy(bam_idx);
} else {
if (has_index_file)
fprintf(samtools_stderr, "Invalid index file '%s'\n", bam_idx_fname);
fprintf(samtools_stderr, "Random alignment retrieval only works for indexed files\n");
goto cleanup;
}
} else {
if ( info->cov_threshold > 0 && !targets ) {
fprintf(samtools_stderr, "Coverage percentage calculation requires a list of target regions\n");
goto cleanup;
}
// Stream through the entire BAM ignoring off-target regions if -t is given
while ((ret = sam_read1(info->sam, info->sam_header, bam_line)) >= 0) {
if (info->split_tag) {
curr_stats = get_curr_split_stats(bam_line, split_hash, info, targets);
collect_stats(bam_line, curr_stats, read_pairs);
}
collect_stats(bam_line, all_stats, read_pairs);
}
if (ret < -1) {
fprintf(samtools_stderr, "Failure while decoding file\n");
goto cleanup;
}
}
round_buffer_flush(all_stats, -1);
output_stats(samtools_stdout, all_stats, sparse);
if (info->split_tag)
output_split_stats(split_hash, bam_fname, sparse);
ret = 0;
cleanup:
bam_destroy1(bam_line);
sam_hdr_destroy(info->sam_header);
sam_global_args_free(&ga);
cleanup_read_pairs:
cleanup_overlaps(read_pairs, INT64_MAX);
cleanup_split_hash:
destroy_split_stats(split_hash);
cleanup_all_stats:
cleanup_stats(all_stats);
cleanup_stats_info(info);
return ret;
}
|