1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
|
/* bam_consensus.c -- consensus subcommand.
Copyright (C) 1998-2001,2003 Medical Research Council (Gap4/5 source)
Copyright (C) 2003-2005,2007-2022 Genome Research Ltd.
Author: James Bonfield <jkb@sanger.ac.uk>
The primary work here is GRL since 2021, under an MIT license.
Sections derived from Gap5, which include calculate_consensus_gap5()
associated functions, are mostly copyright Genome Research Limited from
2003 onwards. These were originally under a BSD license, but as GRL is
copyright holder these portions can be considered to also be under the
same MIT license below:
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE. */
/*
* The Gap5 consensus algorithm was in turn derived from the earlier Gap4
* tool, developed by the Medical Research Council as part of the
* Staden Package. It is unsure how much of this source code is still
* extant, without deep review, but the license used was a compatible
* modified BSD license, included below.
*/
/*
Modified BSD license for any legacy components from the Staden Package:
Copyright (c) 2003 MEDICAL RESEARCH COUNCIL
All rights reserved
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
. Neither the name of the MEDICAL RESEARCH COUNCIL, THE LABORATORY OF
MOLECULAR BIOLOGY nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written
permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
// FIXME: also use strand to spot possible basecalling errors.
// Specifically het calls where mods are predominantly on one
// strand. So maybe require + and - calls and check concordance
// before calling a het as confident. (Still call, but low qual?)
// TODO: call by kmers rather than individual bases? Or use kmers to skew
// quality at least. It can identify variants that are low quality due to
// neighbouring edits that aren't consistently correlated.
// TODO: pileup callback ought to know when it's the last in the region /
// chromosome. This means the caller code doesn't have to handle the
// termination phase and deduplicates the code. (Changing from
// one chr to the next is the same as ending the last.)
//
// TODO: track which reads contribute to multiple confirmed (HQ) differences
// vs which contribute to only one (LQ) difference. Correlated changes
// are more likely to be real. Ie consensus more of a path than solely
// isolated columns.
//
// Either that or a dummy "end of data" call is made to signify end to
// permit tidying up. Maybe add a "start of data" call too?
// Eg 50T 20A seems T/A het,
// but 30T+ 20T- 18A+ 2A- seems like a consistent A miscall on one strand
// only, while T is spread evenly across both strands.
#include <config.h>
#include <stdio.h>
#include <stdlib.h>
#include <strings.h>
#include <math.h>
#include <limits.h>
#include <float.h>
#include <ctype.h>
#include <htslib/sam.h>
#include "samtools.h"
#include "sam_opts.h"
#include "bam_plbuf.h"
#include "consensus_pileup.h"
#ifdef __SSE__
# include <xmmintrin.h>
#else
# define _mm_prefetch(a,b)
#endif
#ifndef MIN
# define MIN(a,b) ((a)<(b)?(a):(b))
#endif
#ifndef MAX
# define MAX(a,b) ((a)>(b)?(a):(b))
#endif
// Minimum cutoff for storing mod data; => at least 10% chance
#define MOD_CUTOFF 0.46
enum format {
FASTQ,
FASTA,
PILEUP
};
typedef unsigned char uc;
typedef struct {
// User options
char *reg;
int use_qual;
int min_qual;
int adj_qual;
int use_mqual;
double scale_mqual;
int nm_adjust;
int nm_halo;
int sc_cost;
int low_mqual;
int high_mqual;
int min_depth;
double call_fract;
double het_fract;
int gap5;
enum format fmt;
int cons_cutoff;
int ambig;
int line_len;
int default_qual;
int het_only;
int all_bases;
int show_del;
int show_ins;
int excl_flags;
int incl_flags;
int min_mqual;
double P_het;
// Internal state
samFile *fp;
FILE *fp_out;
sam_hdr_t *h;
hts_idx_t *idx;
hts_itr_t *iter;
kstring_t ks_line;
kstring_t ks_ins_seq;
kstring_t ks_ins_qual;
int last_tid;
hts_pos_t last_pos;
} consensus_opts;
/* --------------------------------------------------------------------------
* A bayesian consensus algorithm that analyses the data to work out
* which hypothesis of pure A/C/G/T/absent and all combinations of two
* such bases meets the observations.
*
* This has its origins in Gap4 (homozygous) -> Gap5 (heterozygous)
* -> Crumble (tidied up to use htslib's pileup) -> here.
*
*/
#define CONS_DISCREP 4
#define CONS_ALL 15
#define CONS_MQUAL 16
typedef struct {
/* the most likely base call - we never call N here */
/* A=0, C=1, G=2, T=3, *=4 */
int call;
/* The most likely heterozygous base call */
/* Use "ACGT*"[het / 5] vs "ACGT*"[het % 5] for the combination */
int het_call;
/* Log-odds for het_call */
int het_logodd;
/* Single phred style call */
int phred;
/* Sequence depth */
int depth;
/* Discrepancy search score */
float discrep;
} consensus_t;
#define P_HET 1e-4
#define LOG10 2.30258509299404568401
#define TENOVERLOG10 4.34294481903251827652
#define TENLOG2OVERLOG10 3.0103
#ifdef __GNUC__
#define ALIGNED(x) __attribute((aligned(x)))
#else
#define ALIGNED(x)
#endif
static double prior[25] ALIGNED(16); /* Sum to 1.0 */
static double lprior15[15] ALIGNED(16); /* 15 combinations of {ACGT*} */
/* Precomputed matrices for the consensus algorithm */
static double pMM[101] ALIGNED(16);
static double p__[101] ALIGNED(16);
static double p_M[101] ALIGNED(16);
static double e_tab_a[1002] ALIGNED(16);
static double *e_tab = &e_tab_a[500];
static double e_tab2_a[1002] ALIGNED(16);
static double *e_tab2 = &e_tab2_a[500];
static double e_log[501] ALIGNED(16);
/*
* Lots of confusing matrix terms here, so some definitions will help.
*
* M = match base
* m = match pad
* _ = mismatch
* o = overcall
* u = undercall
*
* We need to distinguish between homozygous columns and heterozygous columns,
* done using a flat prior. This is implemented by treating every observation
* as coming from one of two alleles, giving us a 2D matrix of possibilities
* (the hypotheses) for each and every call (the observation).
*
* So pMM[] is the chance that given a call 'x' that it came from the
* x/x allele combination. Similarly p_o[] is the chance that call
* 'x' came from a mismatch (non-x) / overcall (consensus=*) combination.
*
* Examples with observation (call) C and * follows
*
* C | A C G T * * | A C G T *
* ----------------- -----------------
* A | __ _M __ __ o_ A | uu uu uu uu um
* C | _M MM _M _M oM C | uu uu uu uu um
* G | __ _M __ __ o_ G | uu uu uu uu um
* T | __ _M __ __ o_ T | uu uu uu uu um
* * | o_ oM o_ o_ oo * | um um um um mm
*
* In calculation terms, the _M is half __ and half MM, similarly o_ and um.
*
* Relative weights of substitution vs overcall vs undercall are governed on a
* per base basis using the P_OVER and P_UNDER scores (subst is
* 1-P_OVER-P_UNDER).
*
* The heterozygosity weight though is a per column calculation as we're
* trying to model whether the column is pure or mixed. Hence this is done
* once via a prior and has no affect on the individual matrix cells.
*/
static void consensus_init(double p_het) {
int i;
for (i = -500; i <= 500; i++)
e_tab[i] = exp(i);
for (i = -500; i <= 500; i++)
e_tab2[i] = exp(i/10.);
for (i = 0; i <= 500; i++)
e_log[i] = log(i);
// Heterozygous locations
for (i = 0; i < 25; i++)
prior[i] = p_het / 20;
prior[0] = prior[6] = prior[12] = prior[18] = prior[24] = (1-p_het)/5;
lprior15[0] = log(prior[0]);
lprior15[1] = log(prior[1]*2);
lprior15[2] = log(prior[2]*2);
lprior15[3] = log(prior[3]*2);
lprior15[4] = log(prior[4]*2);
lprior15[5] = log(prior[6]);
lprior15[6] = log(prior[7]*2);
lprior15[7] = log(prior[8]*2);
lprior15[8] = log(prior[9]*2);
lprior15[9] = log(prior[12]);
lprior15[10] = log(prior[13]*2);
lprior15[11] = log(prior[14]*2);
lprior15[12] = log(prior[18]);
lprior15[13] = log(prior[19]*2);
lprior15[14] = log(prior[24]);
// Rewrite as new form
for (i = 1; i < 101; i++) {
double prob = 1 - pow(10, -i / 10.0);
// May want to multiply all these by 5 so pMM[i] becomes close
// to -0 for most data. This makes the sums increment very slowly,
// keeping bit precision in the accumulator.
pMM[i] = log(prob/5);
p__[i] = log((1-prob)/20);
p_M[i] = log((exp(pMM[i]) + exp(p__[i]))/2);
}
pMM[0] = pMM[1];
p__[0] = p__[1];
p_M[0] = p_M[1];
}
static inline double fast_exp(double y) {
if (y >= -50 && y <= 50)
return e_tab2[(int)(y*10)];
if (y < -500)
y = -500;
if (y > 500)
y = 500;
return e_tab[(int)y];
}
/* Taylor (deg 3) implementation of the log */
static inline double fast_log2(double val)
{
// FP representation is exponent & mantissa, where
// value = 2^E * M.
// Hence log2(value) = log2(2^E * M)
// = log2(2^E)+ log2(M)
// = E + log2(M)
union { double d; uint64_t x; } u = {val};
const int E = ((u.x >> 52) & 2047) - 1024; // exponent E
// Initial log2(M) based on mantissa
u.x &= ~(2047LL << 52);
u.x += 1023LL << 52;
val = ((-1/3.) * u.d + 2) * u.d - 2/3.;
return E + val;
}
#define ph_log(x) (-TENLOG2OVERLOG10*fast_log2((x)))
int nins(const bam1_t *b){
int i, indel = 0;
uint32_t *cig = bam_get_cigar(b);
for (i = 0; i < b->core.n_cigar; i++) {
int op = bam_cigar_op(cig[i]);
if (op == BAM_CINS || op == BAM_CDEL)
indel += bam_cigar_oplen(cig[i]);
}
return indel;
}
// Return the local NM figure within halo (+/- HALO) of pos.
// This local NM is used as a way to modify MAPQ to get a localised MAPQ
// score via an adhoc fashion.
double nm_local(const pileup_t *p, const bam1_t *b, hts_pos_t pos) {
int *nm = (int *)p->cd;
if (!nm)
return 0;
pos -= b->core.pos;
if (pos < 0)
return nm[0];
if (pos >= b->core.l_qseq)
return nm[b->core.l_qseq-1];
return nm[pos] / 10.0;
}
/*
* Initialise a new sequence appearing in the pileup. We use this to
* precompute some metrics that we'll repeatedly use in the consensus
* caller; the localised NM score.
*
* We also directly amend the BAM record (which will be discarded later
* anyway) to modify qualities to account for local quality minima.
*
* Returns 0 (discard) or 1 (keep) on success, -1 on failure.
*/
int nm_init(void *client_data, samFile *fp, sam_hdr_t *h, pileup_t *p) {
consensus_opts *opts = (consensus_opts *)client_data;
if (!opts->use_mqual)
return 1;
const bam1_t *b = &p->b;
int qlen = b->core.l_qseq, i;
int *local_nm = calloc(qlen, sizeof(*local_nm));
if (!local_nm)
return -1;
p->cd = local_nm;
if (opts->adj_qual) {
#if 0
// Tweak by localised quality.
// Quality is reduced by a significant portion of the minimum quality
// in neighbouring bases, on the pretext that if the region is bad, then
// this base is bad even if it claims otherwise.
uint8_t *qual = bam_get_qual(b);
const int qhalo = 8; // 2?
int qmin = 50; // effectively caps PacBio qual too
for (i = 0; i < qlen && i < qhalo; i++) {
local_nm[i] = qual[i];
if (qmin > qual[i])
qmin = qual[i];
}
for (;i < qlen-qhalo; i++) {
//int t = (qual[i]*1 + 3*qmin)/4; // good on 60x
int t = (qual[i] + 5*qmin)/4; // good on 15x
local_nm[i] = t < qual[i] ? t : qual[i];
if (qmin > qual[i+qhalo])
qmin = qual[i+qhalo];
else if (qmin <= qual[i-qhalo]) {
int j;
qmin = 50;
for (j = i-qhalo+1; j <= i+qhalo; j++)
if (qmin > qual[j])
qmin = qual[j];
}
}
for (; i < qlen; i++) {
local_nm[i] = qual[i];
local_nm[i] = (local_nm[i] + 6*qmin)/4;
}
for (i = 0; i < qlen; i++) {
qual[i] = local_nm[i];
// Plus overall rescale.
// Lower becomes lower, very high becomes a little higher.
// Helps deep GIAB, but detrimental elsewhere. (What this really
// indicates is quality calibration differs per data set.)
// It's probably something best accounted for somewhere else.
//qual[i] = qual[i]*qual[i]/40+1;
}
memset(local_nm, 0, qlen * sizeof(*local_nm));
#else
// Skew local NM by qual vs min-qual delta
uint8_t *qual = bam_get_qual(b);
const int qhalo = 8; // 4
int qmin = 99;
for (i = 0; i < qlen && i < qhalo; i++) {
if (qmin > qual[i])
qmin = qual[i];
}
for (;i < qlen-qhalo; i++) {
int t = (qual[i] + 5*qmin)/4; // good on 15x
local_nm[i] += t < qual[i] ? (qual[i]-t) : 0;
if (qmin > qual[i+qhalo])
qmin = qual[i+qhalo];
else if (qmin <= qual[i-qhalo]) {
int j;
qmin = 99;
for (j = i-qhalo+1; j <= i+qhalo; j++)
if (qmin > qual[j])
qmin = qual[j];
}
}
for (; i < qlen; i++) {
int t = (qual[i] + 5*qmin)/4; // good on 15x
local_nm[i] += t < qual[i] ? (qual[i]-t) : 0;
}
#endif
}
// Adjust local_nm array by the number of edits within
// a defined region (pos +/- halo).
const int halo = opts->nm_halo;
const uint8_t *md = bam_aux_get(b, "MD");
if (!md)
return 1;
md = (const uint8_t *)bam_aux2Z(md);
// Handle cost of being near a soft-clip
uint32_t *cig = bam_get_cigar(b);
int ncig = b->core.n_cigar;
if ( (cig[0] & BAM_CIGAR_MASK) == BAM_CSOFT_CLIP ||
((cig[0] & BAM_CIGAR_MASK) == BAM_CHARD_CLIP && ncig > 1 &&
(cig[1] & BAM_CIGAR_MASK) == BAM_CSOFT_CLIP)) {
for (i = 0; i < halo && i < qlen; i++)
local_nm[i]+=opts->sc_cost;
for (; i < halo*2 && i < qlen; i++)
local_nm[i]+=opts->sc_cost>>1;
}
if ( (cig[ncig-1] & BAM_CIGAR_MASK) == BAM_CSOFT_CLIP ||
((cig[ncig-1] & BAM_CIGAR_MASK) == BAM_CHARD_CLIP && ncig > 1 &&
(cig[ncig-2] & BAM_CIGAR_MASK) == BAM_CSOFT_CLIP)) {
for (i = qlen-1; i >= qlen-halo && i >= 0; i--)
local_nm[i]+=opts->sc_cost;
for (; i >= qlen-halo*2 && i >= 0; i--)
local_nm[i]+=opts->sc_cost>>1;
}
// Now iterate over MD tag
int pos = 0;
while (*md) {
if (isdigit(*md)) {
uint8_t *endptr;
long i = strtol((char *)md, (char **)&endptr, 10);
md = endptr;
pos += i;
continue;
}
// deletion.
// Should we bump local_nm here too? Maybe
if (*md == '^') {
while (*++md && !isdigit(*md))
continue;
continue;
}
// substitution
for (i = pos-halo*2 >= 0 ? pos-halo*2 : 0; i < pos-halo; i++)
local_nm[i]+=5;
for (; i < pos+halo && i < qlen; i++)
local_nm[i]+=10;
for (; i < pos+halo*2 && i < qlen; i++)
local_nm[i]+=5;
md++;
}
return 1;
}
static
int calculate_consensus_gap5(hts_pos_t pos, int flags, int depth,
pileup_t *plp, consensus_opts *opts,
consensus_t *cons, int default_qual) {
int i, j;
static int init_done =0;
static double q2p[101], mqual_pow[256];
double min_e_exp = DBL_MIN_EXP * log(2) + 1;
double S[15] ALIGNED(16) = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
double sumsC[6] = {0,0,0,0,0,0}; // A C G T * N
// Small hash on seq to check for uniqueness of surrounding bases.
// If it's frequent, then it's more likely to be correctly called than
// if it's rare.
// Helps a bit on deep data, especially with K2=3, but detrimental on
// shallow and (currently) quite a slow down.
//#define K2 2
#ifdef K2
int hashN[1<<(K2*4+2)] = {0};
int hash1[1<<2] = {0};
#endif
/* Map the 15 possible combinations to 1-base or 2-base encodings */
static int map_sing[15] ALIGNED(16) =
{0, 5, 5, 5, 5,
1, 5, 5, 5,
2, 5, 5,
3, 5,
4};
static int map_het[15] ALIGNED(16) =
{0, 1, 2, 3, 4,
6, 7, 8, 9,
12, 13, 14,
18, 19,
24};
if (!init_done) {
init_done = 1;
consensus_init(opts->P_het);
for (i = 0; i <= 100; i++) {
q2p[i] = pow(10, -i/10.0);
}
for (i = 0; i < 255; i++) {
//mqual_pow[i] = 1-pow(10, -(i+.01)/10.0);
mqual_pow[i] = 1-pow(10, -(i*.9)/10.0);
//mqual_pow[i] = 1-pow(10, -(i/3+.1)/10.0);
//mqual_pow[i] = 1-pow(10, -(i/2+.05)/10.0);
}
// unknown mqual
mqual_pow[255] = mqual_pow[10];
}
/* Initialise */
int counts[6] = {0};
/* Accumulate */
#ifdef K2
const pileup_t *ptmp = plp;
for (; ptmp; ptmp = ptmp->next) {
const pileup_t *p = ptmp;
if (p->qual < opts->min_qual)
continue;
int hb = 0;
#define _ 0
static int X[16] = {_,0,1,_,2,_,_,_,3,_,_,_,_,_,_,_};
#undef _
uint8_t *seq = bam_get_seq(&p->b);
int i, base1 = X[p->base4];
hash1[base1]++;
for (i = p->seq_offset-K2; i <= p->seq_offset+K2; i++) {
int base = i >= 0 && i < p->b.core.l_qseq ? X[bam_seqi(seq,i)] : _;
hb = (hb<<2)|base;
}
hashN[hb]++;
}
#endif
int td = depth; // original depth
depth = 0;
for (; plp; plp = plp->next) {
pileup_t *p = plp;
if (p->next)
_mm_prefetch(p->next, _MM_HINT_T0);
if (p->qual < opts->min_qual)
continue;
if (p->ref_skip)
continue;
#ifdef K2
int hb = 0;
#define _ 0
static int X[16] = {_,0,1,_,2,_,_,_,3,_,_,_,_,_,_,_};
int i, base1 = X[p->base4];
for (i = p->seq_offset-K2; i <= p->seq_offset+K2; i++) {
int base = i >= 0 && i < p->b.core.l_qseq ? X[bam_seqi(seq,i)] : _;
hb = (hb<<2)|base;
}
// fprintf(stderr, "%c: %d %d of %d\t%d %d\n", p->base, hashN[hb], hash1[base1], td, p->qual, p->qual * hashN[hb] / hash1[base1]);
#undef _
#endif
const bam1_t *b = &p->b;
uint8_t base = p->base4;
uint8_t *qual_arr = bam_get_qual(b);
uint8_t qual = p->qual;
//qual = qual*qual/40+1;
if (qual == 255 || (qual == 0 && *qual_arr == 255))
qual = default_qual;
#ifdef K2
//qual = qual * hashN[hb] / hash1[base1];
qual -= -TENOVERLOG10*log(hashN[hb] / (hash1[base1]+.1));
if (qual < 1)
qual = 1;
#endif
// =ACM GRSV TWYH KDBN *
static int L[32] = {
5,0,1,5, 2,5,5,5, 3,5,5,5, 5,5,5,5,
4,4,4,4, 4,4,4,4, 4,4,4,4, 4,4,4,4,
};
// convert from sam base to acgt*n order.
base = L[base];
double MM, __, _M, qe;
// Correction for mapping quality. Maybe speed up via lookups?
// Cannot nullify mapping quality completely. Lots of (true)
// SNPs means low mapping quality. (Ideally need to know
// hamming distance to next best location.)
if (flags & CONS_MQUAL) {
int mqual = b->core.qual;
if (opts->nm_adjust) {
mqual /= (nm_local(p, b, pos)+1);
mqual *= 1 + 2*(0.5-(td>30?30:td)/60.0); // depth fudge
}
// higher => call more; +FP, -FN
// lower => call less; -FP, +FN
mqual *= opts->scale_mqual;
// Drop these? They don't seem to ever help.
if (mqual < opts->low_mqual)
mqual = opts->low_mqual;
if (mqual > opts->high_mqual)
mqual = opts->high_mqual;
double _p = 1-q2p[qual];
double _m = mqual_pow[mqual];
qual = ph_log(1-(_m * _p + (1 - _m)/4)); // CURRENT
//qual = ph_log(1-_p*_m); // testing
//qual *= 6/sqrt(td);
}
/* Quality 0 should never be permitted as it breaks the maths */
if (qual < 1)
qual = 1;
__ = p__[qual]; // neither match
MM = pMM[qual] - __; // both match
_M = p_M[qual] - __; // one allele only (half match)
if (flags & CONS_DISCREP) {
qe = q2p[qual];
sumsC[base] += 1 - qe;
}
counts[base]++;
switch (base) {
case 0: // A
S[0] += MM;
S[1] += _M;
S[2] += _M;
S[3] += _M;
S[4] += _M;
break;
case 1: // C
S[1] += _M;
S[5] += MM;
S[6] += _M;
S[7] += _M;
S[8] += _M;
break;
case 2: // G
S[ 2] += _M;
S[ 6] += _M;
S[ 9] += MM;
S[10] += _M;
S[11] += _M;
break;
case 3: // T
S[ 3] += _M;
S[ 7] += _M;
S[10] += _M;
S[12] += MM;
S[13] += _M;
break;
case 4: // *
S[ 4] += _M;
S[ 8] += _M;
S[11] += _M;
S[13] += _M;
S[14] += MM;
break;
case 5: /* N => equal weight to all A,C,G,T but not a pad */
S[ 0] += MM;
S[ 1] += MM;
S[ 2] += MM;
S[ 3] += MM;
S[ 4] += _M;
S[ 5] += MM;
S[ 6] += MM;
S[ 7] += MM;
S[ 8] += _M;
S[ 9] += MM;
S[10] += MM;
S[11] += _M;
S[12] += MM;
S[13] += _M;
break;
}
depth++;
if (p->eof && p->cd) {
free(p->cd);
p->cd = NULL;
}
}
/* We've accumulated stats, so now we speculate on the consensus call */
double shift, max, max_het, norm[15];
int call = 0, het_call = 0;
double tot1 = 0, tot2 = 0;
/*
* Scale numbers so the maximum score is 0. This shift is essentially
* a multiplication in non-log scale to both numerator and denominator,
* so it cancels out. We do this to avoid calling exp(-large_num) and
* ending up with norm == 0 and hence a 0/0 error.
*
* Can also generate the base-call here too.
*/
shift = -DBL_MAX;
max = -DBL_MAX;
max_het = -DBL_MAX;
for (j = 0; j < 15; j++) {
S[j] += lprior15[j];
if (shift < S[j])
shift = S[j];
/* Only call pure AA, CC, GG, TT, ** for now */
if (j != 0 && j != 5 && j != 9 && j != 12 && j != 14) {
if (max_het < S[j]) {
max_het = S[j];
het_call = j;
}
continue;
}
if (max < S[j]) {
max = S[j];
call = j;
}
}
/*
* Shift and normalise.
* If call is, say, b we want p = b/(a+b+c+...+n), but then we do
* p/(1-p) later on and this has exceptions when p is very close
* to 1.
*
* Hence we compute b/(a+b+c+...+n - b) and
* rearrange (p/norm) / (1 - (p/norm)) to be p/norm2.
*/
for (j = 0; j < 15; j++) {
S[j] -= shift;
double e = fast_exp(S[j]);
S[j] = (S[j] > min_e_exp) ? e : DBL_MIN;
norm[j] = 0;
}
for (j = 0; j < 15; j++) {
norm[j] += tot1;
norm[14-j] += tot2;
tot1 += S[j];
tot2 += S[14-j];
}
/* And store result */
if (!depth || depth == counts[5] /* all N */) {
cons->call = 4; /* N */
cons->het_call = 0;
cons->het_logodd = 0;
cons->phred = 0;
cons->depth = 0;
cons->discrep = 0;
return 0;
}
cons->depth = depth;
/* Call */
if (norm[call] == 0) norm[call] = DBL_MIN;
// Approximation of phred for when S[call] ~= 1 and norm[call]
// is small. Otherwise we need the full calculation.
int ph;
if (S[call] == 1 && norm[call] < .01)
ph = ph_log(norm[call]) + .5;
else
ph = ph_log(1-S[call]/(norm[call]+S[call])) + .5;
cons->call = map_sing[call];
cons->phred = ph < 0 ? 0 : ph;
if (norm[het_call] == 0) norm[het_call] = DBL_MIN;
ph = TENLOG2OVERLOG10 * (fast_log2(S[het_call])
- fast_log2(norm[het_call])) + .5;
cons->het_call = map_het[het_call];
cons->het_logodd = ph;
/* Compute discrepancy score */
if (flags & CONS_DISCREP) {
double m = sumsC[0]+sumsC[1]+sumsC[2]+sumsC[3]+sumsC[4];
double c;
if (cons->het_logodd > 0)
c = sumsC[cons->het_call%5] + sumsC[cons->het_call/5];
else
c = sumsC[cons->call];
cons->discrep = (m-c)/sqrt(m);
}
return 0;
}
/* --------------------------------------------------------------------------
* Main processing logic
*/
static void dump_fastq(consensus_opts *opts,
const char *name,
const char *seq, size_t seq_l,
const char *qual, size_t qual_l) {
enum format fmt = opts->fmt;
int line_len = opts->line_len;
FILE *fp = opts->fp_out;
fprintf(fp, "%c%s\n", ">@"[fmt==FASTQ], name);
size_t i;
for (i = 0; i < seq_l; i += line_len)
fprintf(fp, "%.*s\n", (int)MIN(line_len, seq_l - i), seq+i);
if (fmt == FASTQ) {
fprintf(fp, "+\n");
for (i = 0; i < seq_l; i += line_len)
fprintf(fp, "%.*s\n", (int)MIN(line_len, seq_l - i), qual+i);
}
}
//---------------------------------------------------------------------------
/*
* Reads a single alignment record, using either the iterator
* or a direct sam_read1 call.
*/
static int readaln2(void *dat, samFile *fp, sam_hdr_t *h, bam1_t *b) {
consensus_opts *opts = (consensus_opts *)dat;
for (;;) {
int ret = opts->iter
? sam_itr_next(fp, opts->iter, b)
: sam_read1(fp, h, b);
if (ret < 0)
return ret;
// Apply hard filters
if (opts->incl_flags && !(b->core.flag & opts->incl_flags))
continue;
if (opts->excl_flags && (b->core.flag & opts->excl_flags))
continue;
if (b->core.qual < opts->min_mqual)
continue;
return ret;
}
}
/* --------------------------------------------------------------------------
* A simple summing algorithm, either pure base frequency, or by
* weighting them according to their quality values.
*
* This is crude, but easy to understand and fits with several
* standard pileup criteria (eg COG-UK / CLIMB Covid-19 seq project).
*
*
* call1 / score1 / depth1 is the highest scoring allele.
* call2 / score2 / depth2 is the second highest scoring allele.
*
* Het_fract: score2/score1
* Call_fract: score1 or score1+score2 over total score
* Min_depth: minimum total depth of utilised bases (depth1+depth2)
* Min_score: minimum total score of utilised bases (score1+score2)
*
* Eg het_fract 0.66, call_fract 0.75 and min_depth 10.
* 11A, 2C, 2G (14 total depth) is A.
* 9A, 2C, 2G (12 total depth) is N as depth(A) < 10.
* 11A, 5C, 5G (21 total depth) is N as 11/21 < 0.75 (call_fract)
*
*
* 6A, 5G, 1C (12 total depth) is AG het as depth(A)+depth(G) >= 10
* and 5/6 >= 0.66 and 11/12 >= 0.75.
*
* 6A, 5G, 4C (15 total depth) is N as (6+5)/15 < 0.75 (call_fract).
*
*
* Note for the purpose of deletions, a base/del has an ambiguity
* code of lower-case base (otherwise it is uppercase).
*/
static int calculate_consensus_simple(const pileup_t *plp,
consensus_opts *opts, int *qual) {
int i, min_qual = opts->min_qual;
// Map "seqi" nt16 to A,C,G,T compatibility with weights on pure bases.
// where seqi is A | (C<<1) | (G<<2) | (T<<3)
// * A C M G R S V T W Y H K D B N
static int seqi2A[16] = { 0,8,0,4, 0,4,0,2, 0,4,0,2, 0,2,0,1 };
static int seqi2C[16] = { 0,0,8,4, 0,0,4,2, 0,0,4,2, 0,0,2,1 };
static int seqi2G[16] = { 0,0,0,0, 8,4,4,1, 0,0,0,0, 4,2,2,1 };
static int seqi2T[16] = { 0,0,0,0, 0,0,0,0, 8,4,4,2, 8,2,2,1 };
// Ignore ambiguous bases in seq for now, so we don't treat R, Y, etc
// as part of one base and part another. Based on BAM seqi values.
// We also use freq[16] as "*" for gap.
int freq[17] = {0}; // base frequency, aka depth
int score[17] = {0}; // summation of base qualities
// Accumulate
for (; plp; plp = plp->next) {
const pileup_t *p = plp;
if (p->next)
_mm_prefetch(p->next, _MM_HINT_T0);
int q = p->qual;
if (q < min_qual)
// Should we still record these in freq[] somewhere so
// we can use them in the fracts?
// Difference between >= X% of high-qual bases calling Y
// and >= X% of all bases are high-quality Y calls.
continue;
//int b = p->is_del ? 16 : bam_seqi(bam_get_seq(&p->b), p->seq_offset);
int b = p->base4;
// Map ambiguity codes to one or more component bases.
if (b < 16) {
int Q = seqi2A[b] * (opts->use_qual ? q : 1);
freq[1] += Q?1:0;
score[1] += Q?Q:0;
Q = seqi2C[b] * (opts->use_qual ? q : 1);
freq[2] += Q?1:0;
score[2] += Q?Q:0;
Q = seqi2G[b] * (opts->use_qual ? q : 1);
freq[4] += Q?1:0;
score[4] += Q?Q:0;
Q = seqi2T[b] * (opts->use_qual ? q : 1);
freq[8] += Q?1:0;
score[8] += Q?Q:0;
} else { /* * */
freq[16] ++;
score[16]+=8 * (opts->use_qual ? q : 1);
}
}
// Total usable depth
int tscore = 0;
for (i = 0; i < 5; i++)
tscore += score[1<<i];
// Best and second best potential calls
int call1 = 15, call2 = 15;
int depth1 = 0, depth2 = 0;
int score1 = 0, score2 = 0;
for (i = 0; i < 5; i++) {
int c = 1<<i; // A C G T *
if (score1 < score[c]) {
depth2 = depth1;
score2 = score1;
call2 = call1;
depth1 = freq[c];
score1 = score[c];
call1 = c;
} else if (score2 < score[c]) {
depth2 = freq[c];
score2 = score[c];
call2 = c;
}
}
// Work out which best and second best are usable as a call
int used_score = score1;
int used_depth = depth1;
int used_base = call1;
if (score2 >= opts->het_fract * score1 && opts->ambig) {
used_base |= call2;
used_score += score2;
used_depth += depth2;
}
// N is too shallow, or insufficient proportion of total
if (used_depth < opts->min_depth ||
used_score < opts->call_fract * tscore) {
used_depth = 0;
// But note shallow gaps are still called gaps, not N, as
// we're still more confident there is no base than it is
// A, C, G or T.
used_base = call1 == 16 /*&& depth1 >= call_fract * depth*/
? 16 : 0; // * or N
}
// Our final call. "?" shouldn't be possible to generate
const char *het =
"NACMGRSVTWYHKDBN"
"*ac?g???t???????";
//printf("%c %d\n", het[used_base], used_depth);
if (qual)
*qual = used_base ? 100.0 * used_score / tscore : 0;
return het[used_base];
}
static int empty_pileup2(consensus_opts *opts, sam_hdr_t *h, int tid,
hts_pos_t start, hts_pos_t end) {
const char *name = sam_hdr_tid2name(h, tid);
hts_pos_t i;
int err = 0;
for (i = start; i < end; i++)
err |= fprintf(opts->fp_out, "%s\t%"PRIhts_pos"\t0\t0\tN\t0\t*\t*\n", name, i+1) < 0;
return err ? -1 : 0;
}
/*
* Returns 0 on success
* -1 on failure
*/
static int basic_pileup(void *cd, samFile *fp, sam_hdr_t *h, pileup_t *p,
int depth, hts_pos_t pos, int nth, int is_insert) {
unsigned char *qp, *cp;
char *rp;
int ref, cb, cq;
consensus_opts *opts = (consensus_opts *)cd;
int tid = p->b.core.tid;
// opts->show_ins=0;
// opts->show_del=1;
if (!opts->show_ins && nth)
return 0;
if (opts->iter) {
if (opts->iter->beg >= pos || opts->iter->end < pos)
return 0;
}
if (opts->all_bases) {
if (tid != opts->last_tid && opts->last_tid >= 0) {
hts_pos_t len = sam_hdr_tid2len(opts->h, opts->last_tid);
if (opts->iter)
len = MIN(opts->iter->end, len);
if (empty_pileup2(opts, opts->h, opts->last_tid, opts->last_pos,
len) < 0)
return -1;
if (tid >= 0) {
if (empty_pileup2(opts, opts->h, tid,
opts->iter ? opts->iter->beg : 0,
pos-1) < 0)
return -1;
}
}
if (opts->last_pos >= 0 && pos > opts->last_pos+1) {
if (empty_pileup2(opts, opts->h, p->b.core.tid, opts->last_pos,
pos-1) < 0)
return -1;
} else if (opts->last_pos < 0) {
if (empty_pileup2(opts, opts->h, p->b.core.tid,
opts->iter ? opts->iter->beg : 0, pos-1) < 0)
return -1;
}
}
if (opts->gap5) {
consensus_t cons;
calculate_consensus_gap5(pos, opts->use_mqual ? CONS_MQUAL : 0,
depth, p, opts, &cons, opts->default_qual);
if (cons.het_logodd > 0 && opts->ambig) {
cb = "AMRWa" // 5x5 matrix with ACGT* per row / col
"MCSYc"
"RSGKg"
"WYKTt"
"acgt*"[cons.het_call];
cq = cons.het_logodd;
} else{
cb = "ACGT*"[cons.call];
cq = cons.phred;
}
if (cq < opts->cons_cutoff && cb != '*') {
cb = 'N';
cq = 0;
}
} else {
cb = calculate_consensus_simple(p, opts, &cq);
}
if (cb < 0)
return -1;
if (!p)
return 0;
if (!opts->show_del && cb == '*')
return 0;
/* Ref, pos, nth, score, seq, qual */
kstring_t *ks = &opts->ks_line;
ks->l = 0;
ref = p->b.core.tid;
rp = (char *)sam_hdr_tid2name(h, ref);
int err = 0;
err |= kputs(rp, ks) < 0;
err |= kputc_('\t', ks) < 0;
err |= kputw(pos, ks) < 0;
err |= kputc_('\t', ks) < 0;
err |= kputw(nth, ks) < 0;
err |= kputc_('\t', ks) < 0;
err |= kputw(depth, ks) < 0;
err |= kputc_('\t', ks) < 0;
err |= kputc_(cb, ks) < 0;
err |= kputc_('\t', ks) < 0;
err |= kputw(cq, ks) < 0;
err |= kputc_('\t', ks) < 0;
if (err)
return -1;
/* Seq + qual at predetermined offsets */
if (ks_resize(ks, ks->l + depth*2 + 2) < 0)
return -1;
cp = (unsigned char *)ks->s + ks->l;
ks->l += depth*2 + 2;
qp = cp+depth+1;
for (; p; p = p->next) {
// Too tight a loop to help much, but some benefit still
if (p->next && p->next->next)
_mm_prefetch(p->next->next, _MM_HINT_T0);
if (p->b_is_rev) {
*cp++ = p->base == '*' ? '#' : tolower(p->base);
} else {
*cp++ = p->base;
}
*qp++ = MIN(p->qual,93) + '!';
}
*cp++ = '\t';
*qp++ = '\n';
if (fwrite(ks->s, 1, ks->l, opts->fp_out) != ks->l)
return -1;
opts->last_pos = pos;
opts->last_tid = tid;
return 0;
}
static int basic_fasta(void *cd, samFile *fp, sam_hdr_t *h, pileup_t *p,
int depth, hts_pos_t pos, int nth, int is_insert) {
int cb, cq;
consensus_opts *opts = (consensus_opts *)cd;
int tid = p->b.core.tid;
kstring_t *seq = &opts->ks_ins_seq;
kstring_t *qual = &opts->ks_ins_qual;
if (!opts->show_ins && nth)
return 0;
if (opts->iter) {
if (opts->iter->beg >= pos || opts->iter->end < pos)
return 0;
}
if (tid != opts->last_tid) {
if (opts->last_tid != -1) {
if (opts->all_bases) {
int i, N;
if (opts->iter) {
opts->last_pos = MAX(opts->last_pos, opts->iter->beg-1);
N = opts->iter->end;
} else {
N = INT_MAX;
}
N = MIN(N, sam_hdr_tid2len(opts->h, opts->last_tid))
- opts->last_pos;
if (N > 0) {
if (ks_expand(seq, N+1) < 0)
return -1;
if (ks_expand(qual, N+1) < 0)
return -1;
for (i = 0; i < N; i++) {
seq->s[seq->l++] = 'N';
qual->s[qual->l++] = '!';
}
seq->s[seq->l] = 0;
qual->s[qual->l] = 0;
}
}
dump_fastq(opts, sam_hdr_tid2name(opts->h, opts->last_tid),
seq->s, seq->l, qual->s, qual->l);
}
seq->l = 0; qual->l = 0;
opts->last_tid = tid;
// if (opts->all_bases)
// opts->last_pos = 0;
if (opts->iter)
opts->last_pos = opts->iter->beg;
else
opts->last_pos = opts->all_bases ? 0 : pos-1;
}
// share this with basic_pileup
if (opts->gap5) {
consensus_t cons;
calculate_consensus_gap5(pos, opts->use_mqual ? CONS_MQUAL : 0,
depth, p, opts, &cons, opts->default_qual);
if (cons.het_logodd > 0 && opts->ambig) {
cb = "AMRWa" // 5x5 matrix with ACGT* per row / col
"MCSYc"
"RSGKg"
"WYKTt"
"acgt*"[cons.het_call];
cq = cons.het_logodd;
} else{
cb = "ACGT*"[cons.call];
cq = cons.phred;
}
if (cq < opts->cons_cutoff && cb != '*' &&
cons.het_call % 5 != 4 && cons.het_call / 5 != 4) {
// het base/* keeps base or * as most likely pure call, else N.
// This is because we don't have a traditional way of representing
// base or not-base ambiguity.
cb = 'N';
cq = 0;
}
} else {
cb = calculate_consensus_simple(p, opts, &cq);
}
if (cb < 0)
return -1;
if (!p)
return 0;
if (!opts->show_del && cb == '*') {
opts->last_pos = pos;
opts->last_tid = tid;
return 0;
}
// end of share
// Append consensus base/qual to seqs
if (pos > opts->last_pos) {
if (opts->last_pos >= 0 || opts->all_bases) {
// FIXME: don't expand qual if fasta
if (ks_expand(seq, pos - opts->last_pos) < 0 ||
ks_expand(qual, pos - opts->last_pos) < 0)
return -1;
memset(seq->s + seq->l, 'N', pos - (opts->last_pos+1));
memset(qual->s + qual->l, '!', pos - (opts->last_pos+1));
seq->l += pos - (opts->last_pos+1);
qual->l += pos - (opts->last_pos+1);
}
}
if ((nth && opts->show_ins && cb != '*')
|| cb != '*' || (pos > opts->last_pos && opts->show_del)) {
int err = 0;
err |= kputc(cb, seq) < 0;
err |= kputc(MIN(cq, '~'-'!')+'!', qual) < 0;
if (err)
return -1;
}
opts->last_pos = pos;
opts->last_tid = tid;
return 0;
}
// END OF NEW PILEUP
//---------------------------------------------------------------------------
static void usage_exit(FILE *fp, int exit_status) {
fprintf(fp, "Usage: samtools consensus [options] <in.bam>\n");
fprintf(fp, "\nOptions:\n");
fprintf(fp, " -r, --region REG Limit query to REG. Requires an index\n");
fprintf(fp, " -f, --format FMT Output in format FASTA, FASTQ or PILEUP [FASTA]\n");
fprintf(fp, " -l, --line-len INT Wrap FASTA/Q at line length INT [70]\n");
fprintf(fp, " -o, --output FILE Output consensus to FILE\n");
fprintf(fp, " -m, --mode STR Switch consensus mode to \"simple\"/\"bayesian\" [bayesian]\n");
fprintf(fp, " -a Output all bases (start/end of reference)\n");
fprintf(fp, " --rf, --incl-flags STR|INT\n");
fprintf(fp, " Only include reads with any flag bit set [0]\n");
fprintf(fp, " --ff, --excl-flags STR|INT\n");
fprintf(fp, " Exclude reads with any flag bit set\n");
fprintf(fp, " [UNMAP,SECONDARY,QCFAIL,DUP]\n");
fprintf(fp, " --min-MQ INT Exclude reads with mapping quality below INT [0]\n");
fprintf(fp, " --show-del yes/no Whether to show deletion as \"*\" [no]\n");
fprintf(fp, " --show-ins yes/no Whether to show insertions [yes]\n");
fprintf(fp, " -A, --ambig Enable IUPAC ambiguity codes [off]\n");
fprintf(fp, "\nFor simple consensus mode:\n");
fprintf(fp, " -q, --(no-)use-qual Use quality values in calculation [off]\n");
fprintf(fp, " -c, --call-fract INT At least INT portion of bases must agree [0.75]\n");
fprintf(fp, " -d, --min-depth INT Minimum depth of INT [1]\n");
fprintf(fp, " -H, --het-fract INT Minimum fraction of 2nd-most to most common base [0.5]\n");
fprintf(fp, "\nFor default \"Bayesian\" consensus mode:\n");
fprintf(fp, " -C, --cutoff C Consensus cutoff quality C [10]\n");
fprintf(fp, " --(no-)adj-qual Modify quality with local minima [on]\n");
fprintf(fp, " --(no-)use-MQ Use mapping quality in calculation [on]\n");
fprintf(fp, " --(no-)adj-MQ Modify mapping quality by local NM [on]\n");
fprintf(fp, " --NM-halo INT Size of window for NM count in --adj-MQ [50]\n");
fprintf(fp, " --scale-MQ FLOAT Scale mapping quality by FLOAT [1.00]\n");
fprintf(fp, " --low-MQ INT Cap minimum mapping quality [1]\n");
fprintf(fp, " --high-MQ INT Cap maximum mapping quality [60]\n");
fprintf(fp, " --P-het FLOAT Probability of heterozygous site[%.1e]\n",
P_HET);
fprintf(fp, "\nGlobal options:\n");
sam_global_opt_help(fp, "-.---@-.");
exit(exit_status);
}
int main_consensus(int argc, char **argv) {
int c, ret = 1;
consensus_opts opts = {
// User options
.gap5 = 1,
.use_qual = 0,
.min_qual = 0,
.adj_qual = 1,
.use_mqual = 1,
.scale_mqual = 1.00,
.nm_adjust = 1,
.nm_halo = 50,
.sc_cost = 60,
.low_mqual = 1,
.high_mqual = 60,
.min_depth = 1,
.call_fract = 0.75,
.het_fract = 0.5,
.het_only = 0,
.fmt = FASTA,
.cons_cutoff = 10,
.ambig = 0,
.line_len = 70,
.default_qual = 10,
.all_bases = 0,
.show_del = 0,
.show_ins = 1,
.incl_flags = 0,
.excl_flags = BAM_FUNMAP | BAM_FSECONDARY | BAM_FQCFAIL | BAM_FDUP,
.min_mqual = 0,
.P_het = P_HET,
// Internal state
.ks_line = {0,0},
.ks_ins_seq = {0,0},
.ks_ins_qual = {0,0},
.fp = NULL,
.fp_out = stdout,
.iter = NULL,
.idx = NULL,
.last_tid = -1,
.last_pos = -1,
};
sam_global_args ga = SAM_GLOBAL_ARGS_INIT;
static const struct option lopts[] = {
SAM_OPT_GLOBAL_OPTIONS('-', 0, 'O', '-', '-', '@'),
{"use-qual", no_argument, NULL, 'q'},
{"no-use-qual", no_argument, NULL, 'q'+1000},
{"adj-qual", no_argument, NULL, 'q'+100},
{"no-adj-qual", no_argument, NULL, 'q'+101},
{"use-MQ", no_argument, NULL, 'm'+1000},
{"no-use-MQ", no_argument, NULL, 'm'+1001},
{"adj-MQ", no_argument, NULL, 'm'+100},
{"no-adj-MQ", no_argument, NULL, 'm'+101},
{"NM-halo", required_argument, NULL, 'h'+100},
{"SC-cost", required_argument, NULL, 'h'+101},
{"scale-MQ", required_argument, NULL, 14},
{"low-MQ" , required_argument, NULL, 9},
{"high-MQ", required_argument, NULL, 10},
{"min-depth", required_argument, NULL, 'd'},
{"call-fract", required_argument, NULL, 'c'},
{"het-fract", required_argument, NULL, 'H'},
{"region", required_argument, NULL, 'r'},
{"format", required_argument, NULL, 'f'},
{"cutoff", required_argument, NULL, 'C'},
{"ambig", no_argument, NULL, 'A'},
{"line-len", required_argument, NULL, 'l'},
{"default-qual", required_argument, NULL, 1},
{"het-only", no_argument, NULL, 6},
{"show-del", required_argument, NULL, 7},
{"show-ins", required_argument, NULL, 8},
{"output", required_argument, NULL, 'o'},
{"incl-flags", required_argument, NULL, 11},
{"rf", required_argument, NULL, 11},
{"excl-flags", required_argument, NULL, 12},
{"ff", required_argument, NULL, 12},
{"min-MQ", required_argument, NULL, 13},
{"P-het", required_argument, NULL, 15},
{"mode", required_argument, NULL, 'm'},
{NULL, 0, NULL, 0}
};
while ((c = getopt_long(argc, argv, "@:qd:c:H:r:5f:C:aAl:o:m:",
lopts, NULL)) >= 0) {
switch (c) {
case 'a': opts.all_bases++; break;
case 'q': opts.use_qual=1; break;
case 'q'+1000: opts.use_qual=0; break;
case 'm'+1000: opts.use_mqual=1; break;
case 'm'+1001: opts.use_mqual=0; break;
case 14: opts.scale_mqual = atof(optarg); break;
case 9: opts.low_mqual = atoi(optarg); break;
case 10: opts.high_mqual = atoi(optarg); break;
case 'd': opts.min_depth = atoi(optarg); break;
case 'c': opts.call_fract = atof(optarg); break;
case 'H': opts.het_fract = atof(optarg); break;
case 'r': opts.reg = optarg; break;
case 'C': opts.cons_cutoff = atoi(optarg); break;
case 'A': opts.ambig = 1; break;
case 1: opts.default_qual = atoi(optarg); break;
case 6: opts.het_only = 1; break;
case 7: opts.show_del = (*optarg == 'y' || *optarg == 'Y'); break;
case 8: opts.show_ins = (*optarg == 'y' || *optarg == 'Y'); break;
case 13: opts.min_mqual = atoi(optarg); break;
case 15: opts.P_het = atof(optarg); break;
case 'q'+100: opts.adj_qual = 1; break;
case 'q'+101: opts.adj_qual = 0; break;
case 'm'+100: opts.nm_adjust = 1; break;
case 'm'+101: opts.nm_adjust = 0; break;
case 'h'+100: opts.nm_halo = atoi(optarg); break;
case 'h'+101: opts.sc_cost = atoi(optarg); break;
case 'm': // mode
if (strcasecmp(optarg, "simple") == 0) {
opts.gap5 = 0;
} else if (strcasecmp(optarg, "bayesian") == 0) {
opts.gap5 = 1;
} else {
fprintf(stderr, "Unknown mode %s\n", optarg);
return 1;
}
break;
case 'l':
if ((opts.line_len = atoi(optarg)) <= 0)
opts.line_len = INT_MAX;
break;
case 'f':
if (strcasecmp(optarg, "fasta") == 0) {
opts.fmt = FASTA;
} else if (strcasecmp(optarg, "fastq") == 0) {
opts.fmt = FASTQ;
} else if (strcasecmp(optarg, "pileup") == 0) {
opts.fmt = PILEUP;
} else {
fprintf(stderr, "Unknown format %s\n", optarg);
return 1;
}
break;
case 'o':
if (!(opts.fp_out = fopen(optarg, "w"))) {
perror(optarg);
return 1;
}
break;
case 11:
if ((opts.incl_flags = bam_str2flag(optarg)) < 0) {
print_error("consensus", "could not parse --rf %s", optarg);
return 1;
}
break;
case 12:
if ((opts.excl_flags = bam_str2flag(optarg)) < 0) {
print_error("consensus", "could not parse --ff %s", optarg);
return 1;
}
break;
default: if (parse_sam_global_opt(c, optarg, lopts, &ga) == 0) break;
/* else fall-through */
case '?':
usage_exit(stderr, EXIT_FAILURE);
}
}
if (argc != optind+1) {
if (argc == optind) usage_exit(stdout, EXIT_SUCCESS);
else usage_exit(stderr, EXIT_FAILURE);
}
opts.fp = sam_open_format(argv[optind], "r", &ga.in);
if (opts.fp == NULL) {
print_error_errno("consensus", "Cannot open input file \"%s\"",
argv[optind]);
goto err;
}
if (ga.nthreads > 0)
hts_set_threads(opts.fp, ga.nthreads);
if (hts_set_opt(opts.fp, CRAM_OPT_DECODE_MD, 0)) {
fprintf(stderr, "Failed to set CRAM_OPT_DECODE_MD value\n");
goto err;
}
if (!(opts.h = sam_hdr_read(opts.fp))) {
fprintf(stderr, "Failed to read header for \"%s\"\n", argv[optind]);
goto err;
}
if (opts.reg) {
opts.idx = sam_index_load(opts.fp, argv[optind]);
if (!opts.idx) {
print_error("consensus", "Cannot load index for input file \"%s\"",
argv[optind]);
goto err;
}
opts.iter = sam_itr_querys(opts.idx, opts.h, opts.reg);
if (!opts.iter) {
print_error("consensus", "Failed to parse region \"%s\"",
opts.reg);
goto err;
}
}
if (opts.fmt == PILEUP) {
if (pileup_loop(opts.fp, opts.h, readaln2, opts.gap5 ? nm_init : NULL,
basic_pileup, &opts) < 0)
goto err;
if (opts.all_bases) {
int tid = opts.iter ? opts.iter->tid : opts.last_tid;
int len = sam_hdr_tid2len(opts.h, tid);
int pos = opts.last_pos;
if (opts.iter) {
len = MIN(opts.iter->end, len);
pos = MAX(opts.iter->beg, pos);
}
if (empty_pileup2(&opts, opts.h, tid, pos, len) < 0)
goto err;
}
} else {
if (pileup_loop(opts.fp, opts.h, readaln2, opts.gap5 ? nm_init : NULL,
basic_fasta,
&opts) < 0)
goto err;
if (opts.all_bases) {
// fill out terminator
int tid = opts.iter ? opts.iter->tid : opts.last_tid;
int len = sam_hdr_tid2len(opts.h, tid);
int pos = opts.last_pos;
if (opts.iter) {
len = MIN(opts.iter->end, len);
pos = MAX(opts.iter->beg, pos);
opts.last_tid = opts.iter->tid;
}
if (pos < len) {
if (ks_expand(&opts.ks_ins_seq, len-pos+1) < 0)
goto err;
if (ks_expand(&opts.ks_ins_qual, len-pos+1) < 0)
goto err;
while (pos++ < len) {
opts.ks_ins_seq.s [opts.ks_ins_seq.l++] = 'N';
opts.ks_ins_qual.s[opts.ks_ins_qual.l++] = '!';
}
opts.ks_ins_seq.s [opts.ks_ins_seq.l] = 0;
opts.ks_ins_qual.s[opts.ks_ins_qual.l] = 0;
}
}
if (opts.last_tid >= 0)
dump_fastq(&opts, sam_hdr_tid2name(opts.h, opts.last_tid),
opts.ks_ins_seq.s, opts.ks_ins_seq.l,
opts.ks_ins_qual.s, opts.ks_ins_qual.l);
// if (consensus_loop(&opts) < 0) {
// print_error_errno("consensus", "Failed");
// goto err;
// }
}
ret = 0;
err:
if (opts.iter)
hts_itr_destroy(opts.iter);
if (opts.idx)
hts_idx_destroy(opts.idx);
if (opts.fp && sam_close(opts.fp) < 0) {
print_error_errno("consensus", "Closing input file \"%s\"",
argv[optind]);
ret = 1;
}
if (opts.h)
sam_hdr_destroy(opts.h);
sam_global_args_free(&ga);
if (opts.fp_out && opts.fp_out != stdout)
ret |= fclose(opts.fp_out) != 0;
else
ret |= fflush(stdout) != 0;
ks_free(&opts.ks_line);
ks_free(&opts.ks_ins_seq);
ks_free(&opts.ks_ins_qual);
if (ret)
print_error("consensus", "failed");
return ret;
}
|