File: bam2bcf_indel.c.pysam.c

package info (click to toggle)
python-pysam 0.7.7-1~bpo70%2B1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy-backports
  • size: 11,096 kB
  • sloc: ansic: 25,638; python: 3,882; makefile: 157; sh: 12
file content (500 lines) | stat: -rw-r--r-- 18,393 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
#include "pysam.h"

#include <assert.h>
#include <ctype.h>
#include <string.h>
#include "bam.h"
#include "bam2bcf.h"
#include "kaln.h"
#include "kprobaln.h"
#include "khash.h"
KHASH_SET_INIT_STR(rg)

#include "ksort.h"
KSORT_INIT_GENERIC(uint32_t)

#define MINUS_CONST 0x10000000
#define INDEL_WINDOW_SIZE 50

void *bcf_call_add_rg(void *_hash, const char *hdtext, const char *list)
{
	const char *s, *p, *q, *r, *t;
	khash_t(rg) *hash;
	if (list == 0 || hdtext == 0) return _hash;
	if (_hash == 0) _hash = kh_init(rg);
	hash = (khash_t(rg)*)_hash;
	if ((s = strstr(hdtext, "@RG\t")) == 0) return hash;
	do {
		t = strstr(s + 4, "@RG\t"); // the next @RG
		if ((p = strstr(s, "\tID:")) != 0) p += 4;
		if ((q = strstr(s, "\tPL:")) != 0) q += 4;
		if (p && q && (t == 0 || (p < t && q < t))) { // ID and PL are both present
			int lp, lq;
			char *x;
			for (r = p; *r && *r != '\t' && *r != '\n'; ++r); lp = r - p;
			for (r = q; *r && *r != '\t' && *r != '\n'; ++r); lq = r - q;
			x = calloc((lp > lq? lp : lq) + 1, 1);
			for (r = q; *r && *r != '\t' && *r != '\n'; ++r) x[r-q] = *r;
			if (strstr(list, x)) { // insert ID to the hash table
				khint_t k;
				int ret;
				for (r = p; *r && *r != '\t' && *r != '\n'; ++r) x[r-p] = *r;
				x[r-p] = 0;
				k = kh_get(rg, hash, x);
				if (k == kh_end(hash)) k = kh_put(rg, hash, x, &ret);
				else free(x);
			} else free(x);
		}
		s = t;
	} while (s);
	return hash;
}

void bcf_call_del_rghash(void *_hash)
{
	khint_t k;
	khash_t(rg) *hash = (khash_t(rg)*)_hash;
	if (hash == 0) return;
	for (k = kh_begin(hash); k < kh_end(hash); ++k)
		if (kh_exist(hash, k))
			free((char*)kh_key(hash, k));
	kh_destroy(rg, hash);
}

static int tpos2qpos(const bam1_core_t *c, const uint32_t *cigar, int32_t tpos, int is_left, int32_t *_tpos)
{
	int k, x = c->pos, y = 0, last_y = 0;
	*_tpos = c->pos;
	for (k = 0; k < c->n_cigar; ++k) {
		int op = cigar[k] & BAM_CIGAR_MASK;
		int l = cigar[k] >> BAM_CIGAR_SHIFT;
		if (op == BAM_CMATCH || op == BAM_CEQUAL || op == BAM_CDIFF) {
			if (c->pos > tpos) return y;
			if (x + l > tpos) {
				*_tpos = tpos;
				return y + (tpos - x);
			}
			x += l; y += l;
			last_y = y;
		} else if (op == BAM_CINS || op == BAM_CSOFT_CLIP) y += l;
		else if (op == BAM_CDEL || op == BAM_CREF_SKIP) {
			if (x + l > tpos) {
				*_tpos = is_left? x : x + l;
				return y;
			}
			x += l;
		}
	}
	*_tpos = x;
	return last_y;
}
// FIXME: check if the inserted sequence is consistent with the homopolymer run
// l is the relative gap length and l_run is the length of the homopolymer on the reference
static inline int est_seqQ(const bcf_callaux_t *bca, int l, int l_run)
{
	int q, qh;
	q = bca->openQ + bca->extQ * (abs(l) - 1);
	qh = l_run >= 3? (int)(bca->tandemQ * (double)abs(l) / l_run + .499) : 1000;
	return q < qh? q : qh;
}

static inline int est_indelreg(int pos, const char *ref, int l, char *ins4)
{
	int i, j, max = 0, max_i = pos, score = 0;
	l = abs(l);
	for (i = pos + 1, j = 0; ref[i]; ++i, ++j) {
		if (ins4) score += (toupper(ref[i]) != "ACGTN"[(int)ins4[j%l]])? -10 : 1;
		else score += (toupper(ref[i]) != toupper(ref[pos+1+j%l]))? -10 : 1;
		if (score < 0) break;
		if (max < score) max = score, max_i = i;
	}
	return max_i - pos;
}

/*
 *  @n:  number of samples
 */
int bcf_call_gap_prep(int n, int *n_plp, bam_pileup1_t **plp, int pos, bcf_callaux_t *bca, const char *ref,
					  const void *rghash)
{
	int i, s, j, k, t, n_types, *types, max_rd_len, left, right, max_ins, *score1, *score2, max_ref2;
	int N, K, l_run, ref_type, n_alt;
	char *inscns = 0, *ref2, *query, **ref_sample;
	khash_t(rg) *hash = (khash_t(rg)*)rghash;
	if (ref == 0 || bca == 0) return -1;
	// mark filtered reads
	if (rghash) {
		N = 0;
		for (s = N = 0; s < n; ++s) {
			for (i = 0; i < n_plp[s]; ++i) {
				bam_pileup1_t *p = plp[s] + i;
				const uint8_t *rg = bam_aux_get(p->b, "RG");
				p->aux = 1; // filtered by default
				if (rg) {
					khint_t k = kh_get(rg, hash, (const char*)(rg + 1));
					if (k != kh_end(hash)) p->aux = 0, ++N; // not filtered
				}
			}
		}
		if (N == 0) return -1; // no reads left
	}
	// determine if there is a gap
	for (s = N = 0; s < n; ++s) {
		for (i = 0; i < n_plp[s]; ++i)
			if (plp[s][i].indel != 0) break;
		if (i < n_plp[s]) break;
	}
	if (s == n) return -1; // there is no indel at this position.
	for (s = N = 0; s < n; ++s) N += n_plp[s]; // N is the total number of reads
	{ // find out how many types of indels are present
        bca->max_support = bca->max_frac = 0;
		int m, n_alt = 0, n_tot = 0, indel_support_ok = 0;
		uint32_t *aux;
		aux = calloc(N + 1, 4);
		m = max_rd_len = 0;
		aux[m++] = MINUS_CONST; // zero indel is always a type
		for (s = 0; s < n; ++s) {
            int na = 0, nt = 0; 
			for (i = 0; i < n_plp[s]; ++i) {
				const bam_pileup1_t *p = plp[s] + i;
				if (rghash == 0 || p->aux == 0) {
					++nt;
					if (p->indel != 0) {
						++na;
						aux[m++] = MINUS_CONST + p->indel;
					}
				}
				j = bam_cigar2qlen(&p->b->core, bam1_cigar(p->b));
				if (j > max_rd_len) max_rd_len = j;
			}
            float frac = (float)na/nt;
            if ( !indel_support_ok && na >= bca->min_support && frac >= bca->min_frac )
                indel_support_ok = 1;
            if ( na > bca->max_support && frac > 0 ) bca->max_support = na, bca->max_frac = frac;
            n_alt += na; 
            n_tot += nt;
		}
        // To prevent long stretches of N's to be mistaken for indels (sometimes thousands of bases),
        //  check the number of N's in the sequence and skip places where half or more reference bases are Ns.
        int nN=0; for (i=pos; i-pos<max_rd_len && ref[i]; i++) if ( ref[i]=='N' ) nN++;
        if ( nN*2>i ) { free(aux); return -1; }

		ks_introsort(uint32_t, m, aux);
		// squeeze out identical types
		for (i = 1, n_types = 1; i < m; ++i)
			if (aux[i] != aux[i-1]) ++n_types;
        // Taking totals makes it hard to call rare indels
        if ( !bca->per_sample_flt )
            indel_support_ok = ( (float)n_alt / n_tot < bca->min_frac || n_alt < bca->min_support ) ? 0 : 1;
        if ( n_types == 1 || !indel_support_ok ) { // then skip
            free(aux); return -1;
        }
		if (n_types >= 64) {
			free(aux);
			if (bam_verbose >= 2) 
				fprintf(pysamerr, "[%s] excessive INDEL alleles at position %d. Skip the position.\n", __func__, pos + 1);
			return -1;
		}
		types = (int*)calloc(n_types, sizeof(int));
		t = 0;
		types[t++] = aux[0] - MINUS_CONST; 
		for (i = 1; i < m; ++i)
			if (aux[i] != aux[i-1])
				types[t++] = aux[i] - MINUS_CONST;
		free(aux);
		for (t = 0; t < n_types; ++t)
			if (types[t] == 0) break;
		ref_type = t; // the index of the reference type (0)
	}
	{ // calculate left and right boundary
		left = pos > INDEL_WINDOW_SIZE? pos - INDEL_WINDOW_SIZE : 0;
		right = pos + INDEL_WINDOW_SIZE;
		if (types[0] < 0) right -= types[0];
		// in case the alignments stand out the reference
		for (i = pos; i < right; ++i)
			if (ref[i] == 0) break;
		right = i;
	}
	/* The following block fixes a long-existing flaw in the INDEL
	 * calling model: the interference of nearby SNPs. However, it also
	 * reduces the power because sometimes, substitutions caused by
	 * indels are not distinguishable from true mutations. Multiple
	 * sequence realignment helps to increase the power.
     *
     * Masks mismatches present in at least 70% of the reads with 'N'.
	 */
	{ // construct per-sample consensus
		int L = right - left + 1, max_i, max2_i;
		uint32_t *cns, max, max2;
		char *ref0, *r;
		ref_sample = calloc(n, sizeof(void*));
		cns = calloc(L, 4);
		ref0 = calloc(L, 1);
		for (i = 0; i < right - left; ++i)
			ref0[i] = bam_nt16_table[(int)ref[i+left]];
		for (s = 0; s < n; ++s) {
			r = ref_sample[s] = calloc(L, 1);
			memset(cns, 0, sizeof(int) * L);
			// collect ref and non-ref counts
			for (i = 0; i < n_plp[s]; ++i) {
				bam_pileup1_t *p = plp[s] + i;
				bam1_t *b = p->b;
				uint32_t *cigar = bam1_cigar(b);
				uint8_t *seq = bam1_seq(b);
				int x = b->core.pos, y = 0;
				for (k = 0; k < b->core.n_cigar; ++k) {
					int op = cigar[k]&0xf;
					int j, l = cigar[k]>>4;
					if (op == BAM_CMATCH || op == BAM_CEQUAL || op == BAM_CDIFF) {
						for (j = 0; j < l; ++j)
							if (x + j >= left && x + j < right)
								cns[x+j-left] += (bam1_seqi(seq, y+j) == ref0[x+j-left])? 1 : 0x10000;
						x += l; y += l;
					} else if (op == BAM_CDEL || op == BAM_CREF_SKIP) x += l;
					else if (op == BAM_CINS || op == BAM_CSOFT_CLIP) y += l;
				}
			}
			// determine the consensus
			for (i = 0; i < right - left; ++i) r[i] = ref0[i];
			max = max2 = 0; max_i = max2_i = -1;
			for (i = 0; i < right - left; ++i) {
				if (cns[i]>>16 >= max>>16) max2 = max, max2_i = max_i, max = cns[i], max_i = i;
				else if (cns[i]>>16 >= max2>>16) max2 = cns[i], max2_i = i;
			}
			if ((double)(max&0xffff) / ((max&0xffff) + (max>>16)) >= 0.7) max_i = -1;
			if ((double)(max2&0xffff) / ((max2&0xffff) + (max2>>16)) >= 0.7) max2_i = -1;
			if (max_i >= 0) r[max_i] = 15;
			if (max2_i >= 0) r[max2_i] = 15;
			//for (i = 0; i < right - left; ++i) fputc("=ACMGRSVTWYHKDBN"[(int)r[i]], pysamerr); fputc('\n', pysamerr);
		}
		free(ref0); free(cns);
	}
	{ // the length of the homopolymer run around the current position
		int c = bam_nt16_table[(int)ref[pos + 1]];
		if (c == 15) l_run = 1;
		else {
			for (i = pos + 2; ref[i]; ++i)
				if (bam_nt16_table[(int)ref[i]] != c) break;
			l_run = i;
			for (i = pos; i >= 0; --i)
				if (bam_nt16_table[(int)ref[i]] != c) break;
			l_run -= i + 1;
		}
	}
	// construct the consensus sequence
	max_ins = types[n_types - 1];   // max_ins is at least 0
	if (max_ins > 0) {
		int *inscns_aux = calloc(5 * n_types * max_ins, sizeof(int));
		// count the number of occurrences of each base at each position for each type of insertion
		for (t = 0; t < n_types; ++t) {
			if (types[t] > 0) {
				for (s = 0; s < n; ++s) {
					for (i = 0; i < n_plp[s]; ++i) {
						bam_pileup1_t *p = plp[s] + i;
						if (p->indel == types[t]) {
							uint8_t *seq = bam1_seq(p->b);
							for (k = 1; k <= p->indel; ++k) {
								int c = bam_nt16_nt4_table[bam1_seqi(seq, p->qpos + k)];
                                assert(c<5);
								++inscns_aux[(t*max_ins+(k-1))*5 + c];
							}
						}
					}
				}
			}
		}
		// use the majority rule to construct the consensus
		inscns = calloc(n_types * max_ins, 1);
		for (t = 0; t < n_types; ++t) {
			for (j = 0; j < types[t]; ++j) {
				int max = 0, max_k = -1, *ia = &inscns_aux[(t*max_ins+j)*5];
				for (k = 0; k < 5; ++k)
					if (ia[k] > max)
						max = ia[k], max_k = k;
				inscns[t*max_ins + j] = max? max_k : 4;
                if ( max_k==4 ) { types[t] = 0; break; } // discard insertions which contain N's
			}
		}
		free(inscns_aux);
	}
	// compute the likelihood given each type of indel for each read
	max_ref2 = right - left + 2 + 2 * (max_ins > -types[0]? max_ins : -types[0]);
	ref2  = calloc(max_ref2, 1);
	query = calloc(right - left + max_rd_len + max_ins + 2, 1);
	score1 = calloc(N * n_types, sizeof(int));
	score2 = calloc(N * n_types, sizeof(int));
	bca->indelreg = 0;
	for (t = 0; t < n_types; ++t) {
		int l, ir;
		kpa_par_t apf1 = { 1e-4, 1e-2, 10 }, apf2 = { 1e-6, 1e-3, 10 };
		apf1.bw = apf2.bw = abs(types[t]) + 3;
		// compute indelreg
		if (types[t] == 0) ir = 0;
		else if (types[t] > 0) ir = est_indelreg(pos, ref, types[t], &inscns[t*max_ins]);
		else ir = est_indelreg(pos, ref, -types[t], 0);
		if (ir > bca->indelreg) bca->indelreg = ir;
//		fprintf(pysamerr, "%d, %d, %d\n", pos, types[t], ir);
		// realignment
		for (s = K = 0; s < n; ++s) {
			// write ref2
			for (k = 0, j = left; j <= pos; ++j)
				ref2[k++] = bam_nt16_nt4_table[(int)ref_sample[s][j-left]];
			if (types[t] <= 0) j += -types[t];
			else for (l = 0; l < types[t]; ++l)
					 ref2[k++] = inscns[t*max_ins + l];
			for (; j < right && ref[j]; ++j)
				ref2[k++] = bam_nt16_nt4_table[(int)ref_sample[s][j-left]];
			for (; k < max_ref2; ++k) ref2[k] = 4;
			if (j < right) right = j;
			// align each read to ref2
			for (i = 0; i < n_plp[s]; ++i, ++K) {
				bam_pileup1_t *p = plp[s] + i;
				int qbeg, qend, tbeg, tend, sc, kk;
				uint8_t *seq = bam1_seq(p->b);
				uint32_t *cigar = bam1_cigar(p->b);
				if (p->b->core.flag&4) continue; // unmapped reads
				// FIXME: the following loop should be better moved outside; nonetheless, realignment should be much slower anyway.
				for (kk = 0; kk < p->b->core.n_cigar; ++kk)
					if ((cigar[kk]&BAM_CIGAR_MASK) == BAM_CREF_SKIP) break;
				if (kk < p->b->core.n_cigar) continue;
				// FIXME: the following skips soft clips, but using them may be more sensitive.
				// determine the start and end of sequences for alignment
				qbeg = tpos2qpos(&p->b->core, bam1_cigar(p->b), left,  0, &tbeg);
				qend = tpos2qpos(&p->b->core, bam1_cigar(p->b), right, 1, &tend);
				if (types[t] < 0) {
					int l = -types[t];
					tbeg = tbeg - l > left?  tbeg - l : left;
				}
				// write the query sequence
				for (l = qbeg; l < qend; ++l)
					query[l - qbeg] = bam_nt16_nt4_table[bam1_seqi(seq, l)];
				{ // do realignment; this is the bottleneck
					const uint8_t *qual = bam1_qual(p->b), *bq;
					uint8_t *qq;
					qq = calloc(qend - qbeg, 1);
					bq = (uint8_t*)bam_aux_get(p->b, "ZQ");
					if (bq) ++bq; // skip type
					for (l = qbeg; l < qend; ++l) {
						qq[l - qbeg] = bq? qual[l] + (bq[l] - 64) : qual[l];
						if (qq[l - qbeg] > 30) qq[l - qbeg] = 30;
						if (qq[l - qbeg] < 7) qq[l - qbeg] = 7;
					}
					sc = kpa_glocal((uint8_t*)ref2 + tbeg - left, tend - tbeg + abs(types[t]),
									(uint8_t*)query, qend - qbeg, qq, &apf1, 0, 0);
					l = (int)(100. * sc / (qend - qbeg) + .499); // used for adjusting indelQ below
					if (l > 255) l = 255;
					score1[K*n_types + t] = score2[K*n_types + t] = sc<<8 | l;
					if (sc > 5) {
						sc = kpa_glocal((uint8_t*)ref2 + tbeg - left, tend - tbeg + abs(types[t]),
										(uint8_t*)query, qend - qbeg, qq, &apf2, 0, 0);
						l = (int)(100. * sc / (qend - qbeg) + .499);
						if (l > 255) l = 255;
						score2[K*n_types + t] = sc<<8 | l;
					}
					free(qq);
				}
/*
				for (l = 0; l < tend - tbeg + abs(types[t]); ++l)
					fputc("ACGTN"[(int)ref2[tbeg-left+l]], pysamerr);
				fputc('\n', pysamerr);
				for (l = 0; l < qend - qbeg; ++l) fputc("ACGTN"[(int)query[l]], pysamerr);
				fputc('\n', pysamerr);
				fprintf(pysamerr, "pos=%d type=%d read=%d:%d name=%s qbeg=%d tbeg=%d score=%d\n", pos, types[t], s, i, bam1_qname(p->b), qbeg, tbeg, sc);
*/
			}
		}
	}
	free(ref2); free(query);
	{ // compute indelQ
		int *sc, tmp, *sumq;
		sc   = alloca(n_types * sizeof(int));
		sumq = alloca(n_types * sizeof(int));
		memset(sumq, 0, sizeof(int) * n_types);
		for (s = K = 0; s < n; ++s) {
			for (i = 0; i < n_plp[s]; ++i, ++K) {
				bam_pileup1_t *p = plp[s] + i;
				int *sct = &score1[K*n_types], indelQ1, indelQ2, seqQ, indelQ;
				for (t = 0; t < n_types; ++t) sc[t] = sct[t]<<6 | t;
				for (t = 1; t < n_types; ++t) // insertion sort
					for (j = t; j > 0 && sc[j] < sc[j-1]; --j)
						tmp = sc[j], sc[j] = sc[j-1], sc[j-1] = tmp;
				/* errmod_cal() assumes that if the call is wrong, the
				 * likelihoods of other events are equal. This is about
				 * right for substitutions, but is not desired for
				 * indels. To reuse errmod_cal(), I have to make
				 * compromise for multi-allelic indels.
				 */
				if ((sc[0]&0x3f) == ref_type) {
					indelQ1 = (sc[1]>>14) - (sc[0]>>14);
					seqQ = est_seqQ(bca, types[sc[1]&0x3f], l_run);
				} else {
					for (t = 0; t < n_types; ++t) // look for the reference type
						if ((sc[t]&0x3f) == ref_type) break;
					indelQ1 = (sc[t]>>14) - (sc[0]>>14);
					seqQ = est_seqQ(bca, types[sc[0]&0x3f], l_run);
				}
				tmp = sc[0]>>6 & 0xff;
				indelQ1 = tmp > 111? 0 : (int)((1. - tmp/111.) * indelQ1 + .499); // reduce indelQ
				sct = &score2[K*n_types];
				for (t = 0; t < n_types; ++t) sc[t] = sct[t]<<6 | t;
				for (t = 1; t < n_types; ++t) // insertion sort
					for (j = t; j > 0 && sc[j] < sc[j-1]; --j)
						tmp = sc[j], sc[j] = sc[j-1], sc[j-1] = tmp;
				if ((sc[0]&0x3f) == ref_type) {
					indelQ2 = (sc[1]>>14) - (sc[0]>>14);
				} else {
					for (t = 0; t < n_types; ++t) // look for the reference type
						if ((sc[t]&0x3f) == ref_type) break;
					indelQ2 = (sc[t]>>14) - (sc[0]>>14);
				}
				tmp = sc[0]>>6 & 0xff;
				indelQ2 = tmp > 111? 0 : (int)((1. - tmp/111.) * indelQ2 + .499);
				// pick the smaller between indelQ1 and indelQ2
				indelQ = indelQ1 < indelQ2? indelQ1 : indelQ2;
				if (indelQ > 255) indelQ = 255;
				if (seqQ > 255) seqQ = 255;
				p->aux = (sc[0]&0x3f)<<16 | seqQ<<8 | indelQ; // use 22 bits in total
				sumq[sc[0]&0x3f] += indelQ < seqQ? indelQ : seqQ;
//				fprintf(pysamerr, "pos=%d read=%d:%d name=%s call=%d indelQ=%d seqQ=%d\n", pos, s, i, bam1_qname(p->b), types[sc[0]&0x3f], indelQ, seqQ);
			}
		}
		// determine bca->indel_types[] and bca->inscns
		bca->maxins = max_ins;
		bca->inscns = realloc(bca->inscns, bca->maxins * 4);
		for (t = 0; t < n_types; ++t)
			sumq[t] = sumq[t]<<6 | t;
		for (t = 1; t < n_types; ++t) // insertion sort
			for (j = t; j > 0 && sumq[j] > sumq[j-1]; --j)
				tmp = sumq[j], sumq[j] = sumq[j-1], sumq[j-1] = tmp;
		for (t = 0; t < n_types; ++t) // look for the reference type
			if ((sumq[t]&0x3f) == ref_type) break;
		if (t) { // then move the reference type to the first
			tmp = sumq[t];
			for (; t > 0; --t) sumq[t] = sumq[t-1];
			sumq[0] = tmp;
		}
		for (t = 0; t < 4; ++t) bca->indel_types[t] = B2B_INDEL_NULL;
		for (t = 0; t < 4 && t < n_types; ++t) {
			bca->indel_types[t] = types[sumq[t]&0x3f];
			memcpy(&bca->inscns[t * bca->maxins], &inscns[(sumq[t]&0x3f) * max_ins], bca->maxins);
		}
		// update p->aux
		for (s = n_alt = 0; s < n; ++s) {
			for (i = 0; i < n_plp[s]; ++i) {
				bam_pileup1_t *p = plp[s] + i;
				int x = types[p->aux>>16&0x3f];
				for (j = 0; j < 4; ++j)
					if (x == bca->indel_types[j]) break;
				p->aux = j<<16 | (j == 4? 0 : (p->aux&0xffff));
				if ((p->aux>>16&0x3f) > 0) ++n_alt;
//				fprintf(pysamerr, "X pos=%d read=%d:%d name=%s call=%d type=%d q=%d seqQ=%d\n", pos, s, i, bam1_qname(p->b), p->aux>>16&63, bca->indel_types[p->aux>>16&63], p->aux&0xff, p->aux>>8&0xff);
			}
		}		
	}
	free(score1); free(score2);
	// free
	for (i = 0; i < n; ++i) free(ref_sample[i]);
	free(ref_sample);
	free(types); free(inscns);
	return n_alt > 0? 0 : -1;
}