1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
|
#include "pysam.h"
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include "bam.h"
#include "errmod.h"
#include "faidx.h"
#define ERR_DEP 0.83f
typedef struct {
int e[2][3], p[2][2];
} score_param_t;
/* Note that although the two matrics have 10 parameters in total, only 4
* (probably 3) are free. Changing the scoring matrices in a sort of symmetric
* way will not change the result. */
static score_param_t g_param = { {{0,0,0},{-4,1,6}}, {{0,-14000}, {0,0}} };
typedef struct {
int min_baseQ, tid, max_bases;
uint16_t *bases;
bamFile fp;
bam_header_t *h;
char *ref;
faidx_t *fai;
errmod_t *em;
} ct_t;
static uint16_t gencns(ct_t *g, int n, const bam_pileup1_t *plp)
{
int i, j, ret, tmp, k, sum[4], qual;
float q[16];
if (n > g->max_bases) { // enlarge g->bases
g->max_bases = n;
kroundup32(g->max_bases);
g->bases = realloc(g->bases, g->max_bases * 2);
}
for (i = k = 0; i < n; ++i) {
const bam_pileup1_t *p = plp + i;
uint8_t *seq;
int q, baseQ, b;
if (p->is_refskip || p->is_del) continue;
baseQ = bam1_qual(p->b)[p->qpos];
if (baseQ < g->min_baseQ) continue;
seq = bam1_seq(p->b);
b = bam_nt16_nt4_table[bam1_seqi(seq, p->qpos)];
if (b > 3) continue;
q = baseQ < p->b->core.qual? baseQ : p->b->core.qual;
if (q < 4) q = 4;
if (q > 63) q = 63;
g->bases[k++] = q<<5 | bam1_strand(p->b)<<4 | b;
}
if (k == 0) return 0;
errmod_cal(g->em, k, 4, g->bases, q);
for (i = 0; i < 4; ++i) sum[i] = (int)(q[i<<2|i] + .499) << 2 | i;
for (i = 1; i < 4; ++i) // insertion sort
for (j = i; j > 0 && sum[j] < sum[j-1]; --j)
tmp = sum[j], sum[j] = sum[j-1], sum[j-1] = tmp;
qual = (sum[1]>>2) - (sum[0]>>2);
k = k < 256? k : 255;
ret = (qual < 63? qual : 63) << 2 | (sum[0]&3);
return ret<<8|k;
}
static void process_cns(bam_header_t *h, int tid, int l, uint16_t *cns)
{
int i, f[2][2], *prev, *curr, *swap_tmp, s;
uint8_t *b; // backtrack array
b = calloc(l, 1);
f[0][0] = f[0][1] = 0;
prev = f[0]; curr = f[1];
// fill the backtrack matrix
for (i = 0; i < l; ++i) {
int c = (cns[i] == 0)? 0 : (cns[i]>>8 == 0)? 1 : 2;
int tmp0, tmp1;
// compute f[0]
tmp0 = prev[0] + g_param.e[0][c] + g_param.p[0][0]; // (s[i+1],s[i])=(0,0)
tmp1 = prev[1] + g_param.e[0][c] + g_param.p[1][0]; // (0,1)
if (tmp0 > tmp1) curr[0] = tmp0, b[i] = 0;
else curr[0] = tmp1, b[i] = 1;
// compute f[1]
tmp0 = prev[0] + g_param.e[1][c] + g_param.p[0][1]; // (s[i+1],s[i])=(1,0)
tmp1 = prev[1] + g_param.e[1][c] + g_param.p[1][1]; // (1,1)
if (tmp0 > tmp1) curr[1] = tmp0, b[i] |= 0<<1;
else curr[1] = tmp1, b[i] |= 1<<1;
// swap
swap_tmp = prev; prev = curr; curr = swap_tmp;
}
// backtrack
s = prev[0] > prev[1]? 0 : 1;
for (i = l - 1; i > 0; --i) {
b[i] |= s<<2;
s = b[i]>>s&1;
}
// print
for (i = 0, s = -1; i <= l; ++i) {
if (i == l || ((b[i]>>2&3) == 0 && s >= 0)) {
if (s >= 0) {
int j;
printf("%s:%d-%d\t0\t%s\t%d\t60\t%dM\t*\t0\t0\t", h->target_name[tid], s+1, i, h->target_name[tid], s+1, i-s);
for (j = s; j < i; ++j) {
int c = cns[j]>>8;
if (c == 0) putchar('N');
else putchar("ACGT"[c&3]);
}
putchar('\t');
for (j = s; j < i; ++j)
putchar(33 + (cns[j]>>8>>2));
putchar('\n');
}
//if (s >= 0) printf("%s\t%d\t%d\t%d\n", h->target_name[tid], s, i, i - s);
s = -1;
} else if ((b[i]>>2&3) && s < 0) s = i;
}
free(b);
}
static int read_aln(void *data, bam1_t *b)
{
extern int bam_prob_realn_core(bam1_t *b, const char *ref, int flag);
ct_t *g = (ct_t*)data;
int ret, len;
ret = bam_read1(g->fp, b);
if (ret >= 0 && g->fai && b->core.tid >= 0 && (b->core.flag&4) == 0) {
if (b->core.tid != g->tid) { // then load the sequence
free(g->ref);
g->ref = fai_fetch(g->fai, g->h->target_name[b->core.tid], &len);
g->tid = b->core.tid;
}
bam_prob_realn_core(b, g->ref, 1<<1|1);
}
return ret;
}
int main_cut_target(int argc, char *argv[])
{
int c, tid, pos, n, lasttid = -1, lastpos = -1, l, max_l;
const bam_pileup1_t *p;
bam_plp_t plp;
uint16_t *cns;
ct_t g;
memset(&g, 0, sizeof(ct_t));
g.min_baseQ = 13; g.tid = -1;
while ((c = getopt(argc, argv, "f:Q:i:o:0:1:2:")) >= 0) {
switch (c) {
case 'Q': g.min_baseQ = atoi(optarg); break; // quality cutoff
case 'i': g_param.p[0][1] = -atoi(optarg); break; // 0->1 transition (in) PENALTY
case '0': g_param.e[1][0] = atoi(optarg); break; // emission SCORE
case '1': g_param.e[1][1] = atoi(optarg); break;
case '2': g_param.e[1][2] = atoi(optarg); break;
case 'f': g.fai = fai_load(optarg);
if (g.fai == 0) fprintf(pysamerr, "[%s] fail to load the fasta index.\n", __func__);
break;
}
}
if (argc == optind) {
fprintf(pysamerr, "Usage: samtools targetcut [-Q minQ] [-i inPen] [-0 em0] [-1 em1] [-2 em2] [-f ref] <in.bam>\n");
return 1;
}
l = max_l = 0; cns = 0;
g.fp = strcmp(argv[optind], "-")? bam_open(argv[optind], "r") : bam_dopen(fileno(stdin), "r");
g.h = bam_header_read(g.fp);
g.em = errmod_init(1 - ERR_DEP);
plp = bam_plp_init(read_aln, &g);
while ((p = bam_plp_auto(plp, &tid, &pos, &n)) != 0) {
if (tid < 0) break;
if (tid != lasttid) { // change of chromosome
if (cns) process_cns(g.h, lasttid, l, cns);
if (max_l < g.h->target_len[tid]) {
max_l = g.h->target_len[tid];
kroundup32(max_l);
cns = realloc(cns, max_l * 2);
}
l = g.h->target_len[tid];
memset(cns, 0, max_l * 2);
lasttid = tid;
}
cns[pos] = gencns(&g, n, p);
lastpos = pos;
}
process_cns(g.h, lasttid, l, cns);
free(cns);
bam_header_destroy(g.h);
bam_plp_destroy(plp);
bam_close(g.fp);
if (g.fai) {
fai_destroy(g.fai); free(g.ref);
}
errmod_destroy(g.em);
free(g.bases);
return 0;
}
|