1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
|
"""
DataFrame class
"""
import json
from bisect import bisect_left, bisect_right
from collections import OrderedDict, namedtuple
from itertools import compress
from typing import Any, Callable, Iterator, Literal, Self
from tabulate import tabulate
from raccoon.sort_utils import sorted_exists, sorted_index, sorted_list_indexes
class DataFrame(object):
"""
DataFrame class. The raccoon DataFrame implements a simplified version of the pandas DataFrame with the key
objective difference that the raccoon DataFrame is meant for use cases where the size of the DataFrame rows is
expanding frequently. This is known to be slow with Pandas due to the use of numpy as the underlying data structure.
Raccoon uses native lists, or any other provided drop-in replacement for lists, as the underlying data structure
which is quick to expand and grow the size. The DataFrame can be designated as sort, in which case the rows will be
sort by index on construction, and then any addition of a new row will insert it into the DataFrame so that the
index remains sort.
"""
# Define slots to make object faster
__slots__ = ["_data", "_index", "_index_name", "_columns", "_sort", "_dropin"]
def __init__(
self,
data: dict[Any, list | Any] | None = None,
columns: list | None = None,
index: list | None = None,
index_name: str | tuple | None = "index",
sort: bool | None = None,
dropin: Callable = None,
):
"""
:param data: (optional) dictionary of lists. The keys of the dictionary will be used for the column names and\
the lists will be used for the column data.
:param columns: (optional) list of column names that will define the order
:param index: (optional) list of index values. If None then the index will be integers starting with zero
:param index_name: (optional) name for the index. Default is "index"
:param sort: if True then DataFrame will keep the index sort. If True all index values must be of same type.
If None then will default to True if no index is provided.
:param dropin: if supplied the drop-in replacement for list that will be used
"""
# standard variable setup
self._index = None
self._index_name = index_name
self._columns = None
self._dropin = dropin
# quality checks
if (index is not None) and not (self._check_list(index) or isinstance(index, list)):
raise TypeError("index must be a list. if dropin provided, must be of that type")
if (columns is not None) and not (self._check_list(columns) or isinstance(columns, list)):
raise TypeError("columns must be a list. if dropin provided, must be of that type")
# define from dictionary
if data is None:
self._data = dropin() if dropin else list()
if columns:
# expand to the number of columns
self._data = (
dropin([dropin() for _ in range(len(columns))]) if dropin else [[] for _ in range(len(columns))]
)
self.columns = columns
else:
self.columns = list()
if index:
if not columns:
raise ValueError("cannot initialize with index but no columns")
# pad out to the number of rows
self._pad_data(max_len=len(index))
self.index = index
else:
self.index = list()
elif isinstance(data, dict):
# set data from dict values. If dict value is not a list, wrap it to make a single element list
self._data = (
dropin(
[dropin(x) if ((type(x) == dropin) or (type(x) == list)) else dropin([x]) for x in data.values()]
)
if dropin
else [x if type(x) == list else [x] for x in data.values()]
)
# setup columns from directory keys
self.columns = data.keys()
# pad the data
self._pad_data()
# setup index
if index:
self.index = index
else:
self.index = range(len(self._data[0]))
else:
raise TypeError("Not valid data type.")
# sort by columns if provided
if columns:
self._sort_columns(columns)
# setup sort
self._sort = None
if sort is not None:
self.sort = sort
else:
if index:
self.sort = False
else:
self.sort = True
def __repr__(self):
return "object id: %s\ncolumns:\n%s\ndata:\n%s\nindex:\n%s\n" % (
id(self),
self._columns,
self._data,
self._index,
)
def __str__(self) -> str:
return self._make_table()
def _check_list(self, x: list) -> bool:
return type(x) == (self._dropin if self._dropin else list)
def _make_table(self, index: bool = True, **kwargs) -> str:
kwargs["headers"] = "keys" if "headers" not in kwargs.keys() else kwargs["headers"]
return tabulate(self.to_dict(ordered=True, index=index), **kwargs)
def print(self, index: bool = True, **kwargs) -> None:
"""
Print the contents of the DataFrame. This method uses the tabulate function from the tabulate package. Use the
kwargs to pass along any arguments to the tabulate function.
:param index: If True then include the indexes as a column in the output, if False ignore the index
:param kwargs: Parameters to pass along to the tabulate function
:return: output of the tabulate function
"""
print(self._make_table(index=index, **kwargs))
def _sort_columns(self, columns_list: list) -> None:
"""
Given a list of column names will sort the DataFrame columns to match the given order
:param columns_list: list of column names. Must include all column names
:return: nothing
"""
if not (all([x in columns_list for x in self._columns]) and all([x in self._columns for x in columns_list])):
raise ValueError(
"columns_list must be all in current columns, and all current columns must be in columns_list"
)
new_sort = [self._columns.index(x) for x in columns_list]
self._data = (
self._dropin([self._data[x] for x in new_sort]) if self._dropin else [self._data[x] for x in new_sort]
)
self._columns = (
self._dropin([self._columns[x] for x in new_sort]) if self._dropin else [self._columns[x] for x in new_sort]
)
def _pad_data(self, max_len: int | None = None) -> None:
"""
Pad the data in DataFrame with [None] to ensure that all columns have the same length.
:param max_len: If provided will extend all columns to this length, if not then will use the longest column
:return: nothing
"""
if not max_len:
max_len = max([len(x) for x in self._data])
for _, col in enumerate(self._data):
col.extend([None] * (max_len - len(col)))
def __len__(self) -> int:
return len(self._index)
@property
def data(self) -> list[list]:
return self._data.copy()
@property
def columns(self) -> list:
return self._columns.copy()
@columns.setter
def columns(self, columns_list: list) -> None:
self._validate_columns(columns_list)
self._columns = self._dropin(columns_list) if self._dropin else list(columns_list)
@property
def index(self) -> list:
"""
Return a view of the index as a list. Because this is a view any change to the return list from this method
will corrupt the DataFrame.
:return: list
"""
return self._index
@index.setter
def index(self, index_list: list) -> None:
self._validate_index(index_list)
self._index = self._dropin(index_list) if self._dropin else list(index_list)
@property
def index_name(self) -> str | tuple | None:
return self._index_name
@index_name.setter
def index_name(self, name: str | tuple | None) -> None:
self._index_name = name
@property
def dropin(self) -> Callable:
return self._dropin
@property
def sort(self) -> bool:
return self._sort
@sort.setter
def sort(self, boolean: bool) -> None:
self._sort = boolean
if self._sort:
self.sort_index()
def select_index(self, compare: Any | tuple, result: Literal["boolean", "value"] = "boolean") -> list[bool | Any]:
"""
Finds the elements in the index that match the compare parameter and returns either a list of the values that
match, or a boolean list the length of the index with True to each index that matches. If the indexes are
tuples then the compare is a tuple where None in any field of the tuple will be treated as "*" and match all
values.
:param compare: value to compare as a singleton or tuple
:param result: 'boolean' = returns a list of booleans, 'value' = returns a list of index values that match
:return: list of booleans or values
"""
if isinstance(compare, tuple):
# this crazy list comprehension will match all the tuples in the list with None being an * wildcard
booleans = [
all([(compare[i] == w if compare[i] is not None else True) for i, w in enumerate(v)])
for x, v in enumerate(self._index)
]
else:
booleans = [False] * len(self._index)
if self._sort:
booleans[sorted_index(self._index, compare)] = True
else:
booleans[self._index.index(compare)] = True
if result == "boolean":
return booleans
elif result == "value":
return list(compress(self._index, booleans))
else:
raise ValueError("only valid values for result parameter are: boolean or value.")
def get(
self,
indexes: Any | list[Any | bool] = None,
columns: Any | list = None,
as_list: bool = False,
as_dict: bool = False,
) -> Self | list | dict | Any:
"""
Given indexes and columns will return a sub-set of the DataFrame. This method will direct to the below methods
based on what types are passed in for the indexes and columns. The type of the return is determined by the
types of the parameters.
:param indexes: index value, list of index values, or a list of booleans. If None then all indexes are used
:param columns: column name or list of column names. If None then all columns are used
:param as_list: if True then return the values as a list, if False return a DataFrame. This is only used if
the get is for a single column
:param as_dict: if True then return the values as a dictionary, if False return a DataFrame. This is only used
if the get is for a single row
:return: either DataFrame, list, dict or single value. The return is a shallow copy
"""
if (indexes is None) and (columns is not None) and (not self._check_list(columns)):
return self.get_entire_column(columns, as_list)
if indexes is None:
indexes = [True] * len(self._index)
if columns is None:
columns = [True] * len(self._columns)
if self._check_list(indexes) and self._check_list(columns):
return self.get_matrix(indexes, columns)
elif self._check_list(indexes) and (not self._check_list(columns)):
return self.get_rows(indexes, columns, as_list)
elif (not self._check_list(indexes)) and self._check_list(columns):
return self.get_columns(indexes, columns, as_dict)
else:
return self.get_cell(indexes, columns)
def get_cell(self, index: Any, column: Any) -> Any:
"""
For a single index and column value return the value of the cell
:param index: index value
:param column: column name
:return: value
"""
i = sorted_index(self._index, index) if self._sort else self._index.index(index)
c = self._columns.index(column)
return self._data[c][i]
def get_rows(self, indexes: list[bool | Any], column: Any, as_list: bool = False) -> Self | list:
"""
For a list of indexes and a single column name return the values of the indexes in that column.
:param indexes: either a list of index values or a list of booleans with same length as all indexes
:param column: single column name
:param as_list: if True return a list, if False return DataFrame
:return: DataFrame is as_list if False, a list if as_list is True
"""
c = self._columns.index(column)
if all([isinstance(i, bool) for i in indexes]): # boolean list
if len(indexes) != len(self._index):
raise ValueError("boolean index list must be same size of existing index")
if all(indexes): # the entire column
data = self._data[c]
index = self._index
else:
data = list(compress(self._data[c], indexes))
index = list(compress(self._index, indexes))
else: # index values list
locations = (
[sorted_index(self._index, x) for x in indexes]
if self._sort
else [self._index.index(x) for x in indexes]
)
data = [self._data[c][i] for i in locations]
index = [self._index[i] for i in locations]
return (
data
if as_list
else DataFrame(data={column: data}, index=index, index_name=self._index_name, sort=self._sort)
)
def get_columns(
self,
index: Any,
columns: list[Any] = None,
as_dict: bool = False,
as_namedtuple: bool = False,
name: str = "raccoon",
include_index: bool = True,
) -> Self | dict | namedtuple:
"""
For a single index and list of column names return a DataFrame of the values in that index as either a dict
namedtuple or a DataFrame.
:param index: single index value
:param columns: list of column names
:param as_dict: if True then return the result as a dictionary
:param as_namedtuple: if True then return the result as a named tuple
:param name: if as_namedtuple is True, this will be the name of the tuple
:param include_index: if True then include the index value in the result
:return: DataFrame or dictionary
"""
assert not (as_dict and as_namedtuple), "can only provide as_dict or as_namedtuple as True, not both"
i = sorted_index(self._index, index) if self._sort else self._index.index(index)
if as_namedtuple:
dict_row = self.get_location(location=i, columns=columns, as_dict=True, index=include_index)
return namedtuple(name, dict_row.keys())(**dict_row)
return self.get_location(location=i, columns=columns, as_dict=as_dict, index=include_index)
def get_entire_column(self, column: Any, as_list: bool = False) -> Self | list:
"""
Shortcut method to retrieve a single column all rows. Since this is a common use case this method will be
faster than the more general method.
:param column: single column name
:param as_list: if True return a list, if False return DataFrame
:return: DataFrame is as_list if False, a list if as_list is True
"""
c = self._columns.index(column)
data = self._data[c]
return (
data
if as_list
else DataFrame(data={column: data}, index=self._index, index_name=self._index_name, sort=self._sort)
)
def get_matrix(self, indexes: list[Any | bool], columns: list[Any]) -> Self:
"""
For a list of indexes and list of columns return a DataFrame of the values.
:param indexes: either a list of index values or a list of booleans with same length as all indexes
:param columns: list of column names
:return: DataFrame
"""
bool_indexes = []
locations = []
if all([isinstance(i, bool) for i in indexes]): # boolean list
is_bool_indexes = True
if len(indexes) != len(self._index):
raise ValueError("boolean index list must be same size of existing index")
bool_indexes = indexes
indexes = list(compress(self._index, indexes))
else:
is_bool_indexes = False
locations = (
[sorted_index(self._index, x) for x in indexes]
if self._sort
else [self._index.index(x) for x in indexes]
)
if all([isinstance(i, bool) for i in columns]): # boolean list
if len(columns) != len(self._columns):
raise ValueError("boolean column list must be same size of existing columns")
columns = list(compress(self._columns, columns))
col_locations = [self._columns.index(x) for x in columns]
data_dict = dict()
for c in col_locations:
data_dict[self._columns[c]] = (
list(compress(self._data[c], bool_indexes))
if is_bool_indexes
else [self._data[c][i] for i in locations]
)
return DataFrame(data=data_dict, index=indexes, columns=columns, index_name=self._index_name, sort=self._sort)
def get_location(
self,
location: int,
columns: Any | list | None = None,
as_dict: bool = False,
as_namedtuple: bool = False,
name: str = "raccoon",
index: bool = True,
) -> Self | dict | namedtuple | Any:
"""
For an index location and either (1) list of columns return a DataFrame or dictionary of the values or
(2) single column name and return the value of that cell. This is optimized for speed because it does not need
to look up the index location with a search. Also, can accept relative indexing from the end of the DataFrame
in standard python notation [-3, -2, -1]
:param location: index location in standard python form of positive or negative number
:param columns: list of columns, single column name, or None to include all columns
:param as_dict: if True then return a dictionary
:param as_namedtuple: if True then return the result as a named tuple
:param name: if as_namedtuple is True, this will be the name of the tuple
:param index: if True then include the index in the dictionary if as_dict=True
:return: DataFrame, dictionary or namedtuple if columns is a list or value if columns is a single column name
"""
assert not (as_dict and as_namedtuple), "can only provide as_dict or as_namedtuple as True, not both"
if columns is None:
columns = self._columns
elif not isinstance(columns, list): # single value for columns
c = self._columns.index(columns)
return self._data[c][location]
elif all([isinstance(i, bool) for i in columns]):
if len(columns) != len(self._columns):
raise ValueError("boolean column list must be same size of existing columns")
columns = list(compress(self._columns, columns))
data = dict()
for column in columns:
c = self._columns.index(column)
data[column] = self._data[c][location]
index_value = self._index[location]
if as_dict:
if index:
data[self._index_name] = index_value
return data
elif as_namedtuple:
if index:
data[self._index_name] = index_value
return namedtuple(name, data.keys())(**data)
else:
data = {k: [data[k]] for k in data} # this makes the dict items lists
return DataFrame(
data=data, index=[index_value], columns=columns, index_name=self._index_name, sort=self._sort
)
def get_locations(self, locations: list, columns: Any | list | None = None, **kwargs) -> Self:
"""
For list of locations and list of columns return a DataFrame of the values.
:param locations: list of index locations
:param columns: list of column names
:param kwargs: will pass along these parameters to the get() method
:return: DataFrame
"""
indexes = [self._index[x] for x in locations]
return self.get(indexes, columns, **kwargs)
def get_slice(
self, start_index: Any = None, stop_index: Any = None, columns: list | None = None, as_dict: bool = False
) -> Self | tuple:
"""
For sorted DataFrames will return either a DataFrame or dict of all the rows where the index is greater than
or equal to the start_index if provided and less than or equal to the stop_index if provided. If either the
start or stop index is None then will include from the first or last element, similar to standard python
slide of [:5] or [:5]. Both end points are considered inclusive.
:param start_index: lowest index value to include, or None to start from the first row
:param stop_index: highest index value to include, or None to end at the last row
:param columns: list of column names to include, or None for all columns
:param as_dict: if True then return a tuple of (list of index, dict of column names: list data values)
:return: DataFrame or tuple
"""
if not self._sort:
raise RuntimeError("Can only use get_slice on sorted DataFrames")
if columns is None:
columns = self._columns
elif all([isinstance(i, bool) for i in columns]):
if len(columns) != len(self._columns):
raise ValueError("boolean column list must be same size of existing columns")
columns = list(compress(self._columns, columns))
start_location = bisect_left(self._index, start_index) if start_index is not None else None
stop_location = bisect_right(self._index, stop_index) if stop_index is not None else None
index = self._index[start_location:stop_location]
data = dict()
for column in columns:
c = self._columns.index(column)
data[column] = self._data[c][start_location:stop_location]
if as_dict:
return index, data
else:
data = data if data else None # if the dict is empty, convert to None
return DataFrame(
data=data,
index=index,
columns=columns,
index_name=self._index_name,
sort=self._sort,
dropin=self._dropin,
)
def _insert_row(self, i: int, index: Any) -> None:
"""
Insert a new row in the DataFrame.
:param i: index location to insert
:param index: index value to insert into the index list
:return: nothing
"""
if i == len(self._index):
self._add_row(index)
else:
self._index.insert(i, index)
for c in range(len(self._columns)):
self._data[c].insert(i, None)
def _insert_missing_rows(self, indexes: list[Any]) -> None:
"""
Given a list of indexes, find all the indexes that are not currently in the DataFrame and make a new row for
that index, inserting into the index. This requires the DataFrame to be sort=True
:param indexes: list of indexes
:return: nothing
"""
new_indexes = [x for x in indexes if x not in self._index]
for x in new_indexes:
self._insert_row(bisect_left(self._index, x), x)
def _add_row(self, index: Any) -> None:
"""
Add a new row to the DataFrame
:param index: index of the new row
:return: nothing
"""
self._index.append(index)
for c, _ in enumerate(self._columns):
self._data[c].append(None)
def _add_missing_rows(self, indexes: list[Any]) -> None:
"""
Given a list of indexes, find all the indexes that are not currently in the DataFrame and make a new row for
that index by appending to the DataFrame. This does not maintain sort order for the index.
:param indexes: list of indexes
:return: nothing
"""
new_indexes = [x for x in indexes if x not in self._index]
for x in new_indexes:
self._add_row(x)
def _add_column(self, column: Any) -> None:
"""
Add a new column to the DataFrame
:param column: column name
:return: nothing
"""
self._columns.append(column)
if self._dropin:
self._data.append(self._dropin([None] * len(self._index)))
else:
self._data.append([None] * len(self._index))
def set(
self, indexes: Any | list | list[bool] = None, columns: Any | None = None, values: Any | list = None
) -> None:
"""
Given indexes and columns will set a sub-set of the DataFrame to the values provided. This method will direct
to the below methods based on what types are passed in for the indexes and columns. If the indexes or columns
contains values not in the DataFrame then new rows or columns will be added.
:param indexes: indexes value, list of indexes values, or a list of booleans. If None then all indexes are used
:param columns: columns name, if None then all columns are used. Currently, can only handle a single column or
all columns
:param values: value or list of values to set (index, column) to. If setting just a single row, then must be a
dict where the keys are the column names. If a list then must be the same length as the indexes parameter, if
indexes=None, then must be the same and length of DataFrame
:return: nothing
"""
if (indexes is not None) and (columns is not None):
if self._check_list(indexes):
self.set_column(indexes, columns, values)
else:
self.set_cell(indexes, columns, values)
elif (indexes is not None) and (columns is None):
self.set_row(indexes, values)
elif (indexes is None) and (columns is not None):
self.set_column(indexes, columns, values)
else:
raise ValueError("either or both of indexes or columns must be provided")
def set_cell(self, index, column, value):
"""
Sets the value of a single cell. If the index and/or column is not in the current index/columns then a new
index and/or column will be created.
:param index: index value
:param column: column name
:param value: value to set
:return: nothing
"""
if self._sort:
exists, i = sorted_exists(self._index, index)
if not exists:
self._insert_row(i, index)
else:
try:
i = self._index.index(index)
except ValueError:
i = len(self._index)
self._add_row(index)
try:
c = self._columns.index(column)
except ValueError:
c = len(self._columns)
self._add_column(column)
self._data[c][i] = value
def set_row(self, index, values):
"""
Sets the values of the columns in a single row.
:param index: index value
:param values: dict with the keys as the column names and the values what to set that column to
:return: nothing
"""
if self._sort:
exists, i = sorted_exists(self._index, index)
if not exists:
self._insert_row(i, index)
else:
try:
i = self._index.index(index)
except ValueError: # new row
i = len(self._index)
self._add_row(index)
if isinstance(values, dict):
if not (set(values.keys()).issubset(self._columns)):
raise ValueError("keys of values are not all in existing columns")
for c, column in enumerate(self._columns):
self._data[c][i] = values.get(column, self._data[c][i])
else:
raise TypeError("cannot handle values of this type.")
def set_column(self, index=None, column=None, values=None):
"""
Set a column to a single value or list of values. If any of the index values are not in the current indexes
then a new row will be created.
:param index: list of index values or list of booleans. If a list of booleans then the list must be the same\
length as the DataFrame
:param column: column name
:param values: either a single value or a list. The list must be the same length as the index list if the index\
list is values, or the length of the True values in the index list if the index list is booleans
:return: nothing
"""
try:
c = self._columns.index(column)
except ValueError: # new column
c = len(self._columns)
self._add_column(column)
if index: # index was provided
if all([isinstance(i, bool) for i in index]): # boolean list
if not self._check_list(values): # single value provided, not a list, so turn values into list
values = [values for x in index if x]
if len(index) != len(self._index):
raise ValueError("boolean index list must be same size of existing index")
if len(values) != index.count(True):
raise ValueError("length of values list must equal number of True entries in index list")
indexes = [i for i, x in enumerate(index) if x]
for x, i in enumerate(indexes):
self._data[c][i] = values[x]
else: # list of index
if not self._check_list(values): # single value provided, not a list, so turn values into list
values = [values for _ in index]
if len(values) != len(index):
raise ValueError("length of values and index must be the same.")
# insert or append indexes as needed
if self._sort:
exists_tuples = list(zip(*[sorted_exists(self._index, x) for x in index]))
exists = exists_tuples[0]
indexes = exists_tuples[1]
if not all(exists):
self._insert_missing_rows(index)
indexes = [sorted_index(self._index, x) for x in index]
else:
try: # all index in current index
indexes = [self._index.index(x) for x in index]
except ValueError: # new rows need to be added
self._add_missing_rows(index)
indexes = [self._index.index(x) for x in index]
for x, i in enumerate(indexes):
self._data[c][i] = values[x]
else: # no index, only values
if not self._check_list(values): # values not a list, turn into one of length same as index
values = [values for _ in self._index]
if len(values) != len(self._index):
raise ValueError("values list must be at same length as current index length.")
else:
self._data[c] = self._dropin(values) if self._dropin else values
def set_location(self, location, values, missing_to_none=False):
"""
Sets the column values, as given by the keys of the values dict, for the row at location to the values of the
values dict. If missing_to_none is False then columns not in the values dict will be left unchanged, if it is
True then they are set to None. This method does not add new columns and raises an error.
:param location: location
:param values: dict of column names as keys and the value as the value to set the row for that column to
:param missing_to_none: if True set any column missing in the values to None, otherwise leave unchanged
:return: nothing
"""
if missing_to_none:
# populate the dict with None in any column missing
for column in self._columns:
if column not in values:
values[column] = None
for column in values:
i = self._columns.index(column)
self._data[i][location] = values[column]
def set_locations(self, locations, column, values):
"""
For a list of locations and a column set the values.
:param locations: list of index locations
:param column: column name
:param values: list of values or a single value
:return: nothing
"""
indexes = [self._index[x] for x in locations]
self.set(indexes, column, values)
def append_row(self, index, values, new_cols=True):
"""
Appends a row of values to the end of the data. If there are new columns in the values and new_cols is True
they will be added. Be very careful with this function as for sort DataFrames it will not enforce sort order.
Use this only for speed when needed, be careful.
:param index: value of the index
:param values: dictionary of values
:param new_cols: if True add new columns in values, if False ignore
:return: nothing
"""
if index in self._index:
raise IndexError("index already in DataFrame")
if new_cols:
for col in values:
if col not in self._columns:
self._add_column(col)
# append index value
self._index.append(index)
# add data values, if not in values then use None
for c, col in enumerate(self._columns):
self._data[c].append(values.get(col, None))
def append_rows(self, indexes, values, new_cols=True):
"""
Appends rows of values to the end of the data. If there are new columns in the values and new_cols is True
they will be added. Be very careful with this function as for sort DataFrames it will not enforce sort order.
Use this only for speed when needed, be careful.
:param indexes: list of indexes
:param values: dictionary of values where the key is the column name and the value is a list
:param new_cols: if True add new columns in values, if False ignore
:return: nothing
"""
# check that the values data is less than or equal to the length of the indexes
for column in values:
if len(values[column]) > len(indexes):
raise ValueError("length of %s column in values is longer than indexes" % column)
# check the indexes are not duplicates
combined_index = self._index + indexes
if len(set(combined_index)) != len(combined_index):
raise IndexError("duplicate indexes in DataFrames")
if new_cols:
for col in values:
if col not in self._columns:
self._add_column(col)
# append index value
self._index.extend(indexes)
# add data values, if not in values then use None
for c, col in enumerate(self._columns):
self._data[c].extend(values.get(col, [None] * len(indexes)))
self._pad_data()
def _slice_index(self, slicer):
try:
start_index = sorted_index(self._index, slicer.start) if self._sort else self._index.index(slicer.start)
except ValueError:
raise IndexError("start of slice not in the index")
try:
end_index = sorted_index(self._index, slicer.stop) if self._sort else self._index.index(slicer.stop)
except ValueError:
raise IndexError("end of slice not in the index")
if end_index < start_index:
raise IndexError("end of slice is before start of slice")
pre_list = [False] * start_index
mid_list = [True] * (end_index - start_index + 1)
post_list = [False] * (len(self._index) - 1 - end_index)
pre_list.extend(mid_list)
pre_list.extend(post_list)
return pre_list
def __getitem__(self, index):
"""
Convenience wrapper around the get() method for using df[]
Usage...
df['a'] -- get column
df[['a','b',c']] -- get columns
df[5, 'b'] -- get cell at index=5, column='b'
df[[4, 5], 'c'] -- get indexes=[4, 5], column='b'
df[[4, 5], ['a', 'b']] -- get indexes=[4, 5], columns=['a', 'b']
Can also use a boolean list for anything. If the DataFrame is sort=True then the indexes slice values do not
need to be in the index, will use greater than or equal to / less than equal to. For sort=False the provided
slide values must be in the index.
:param index: any of the parameters above
:return: DataFrame of the subset slice
"""
if isinstance(index, tuple): # index and column
if isinstance(index[0], slice) and self._sort: # faster for sorted DF
columns = index[1] if isinstance(index[1], list) else [index[1]]
return self.get_slice(index[0].start, index[0].stop, columns)
else:
indexes = self._slice_index(index[0]) if isinstance(index[0], slice) else index[0]
return self.get(indexes=indexes, columns=index[1])
if isinstance(index, slice): # just a slice of index
if self._sort: # faster for sorted DF
return self.get_slice(index.start, index.stop)
else:
return self.get(indexes=self._slice_index(index))
else: # just the columns
return self.get(columns=index)
def __setitem__(self, index, value):
"""
Convenience wrapper around the set() method for using df[] = X
Usage...
df[1, 'a'] -- set cell at index=1, column=a
df[[0, 3], 'b'] -- set index=[0, 3], column=b
df[1:2, 'b'] -- set index slice 1:2, column=b
:param index: any of the parameter examples above
:param value: single value or list of values
:return: nothing
"""
if isinstance(index, tuple): # index and column
indexes = self._slice_index(index[0]) if isinstance(index[0], slice) else index[0]
return self.set(indexes=indexes, columns=index[1], values=value)
else: # just the columns
return self.set(indexes=None, columns=index, values=value)
def to_list(self):
"""
For a single column DataFrame returns a list of the values. Raises error if more than one column.
:return: list
"""
if len(self._columns) > 1:
raise TypeError("tolist() only works with a single column DataFrame")
return self._data[0]
def to_dict(self, index=True, ordered=False):
"""
Returns a dict where the keys are the column names and the values are lists of the values for that column.
:param index: If True then include the index in the dict with the index_name as the key
:param ordered: If True then return an OrderedDict() to preserve the order of the columns in the DataFrame
:return: dict or OrderedDict()
"""
result = OrderedDict() if ordered else dict()
if index:
result.update({self._index_name: self._index})
if ordered:
data_dict = [(column, self._data[i]) for i, column in enumerate(self._columns)]
else:
data_dict = {column: self._data[i] for i, column in enumerate(self._columns)}
result.update(data_dict)
return result
def to_json(self) -> str:
"""
Returns a JSON of the entire DataFrame that can be reconstructed back with raccoon.from_json(input). Any object
that cannot be serialized will be replaced with the representation of the object using repr(). In that instance
the DataFrame will have a string representation in place of the object and will not reconstruct exactly.
If there is a dropin supplied then the output will have a string representation of the droping func class
in the metadata as the dropin function cannot be stored with the JSON.
:return: json string
"""
input_dict = {"data": self.to_dict(index=False), "index": list(self._index)}
# if self._dropin, turn into lists
if self._dropin:
input_dict["index"] = list(input_dict["index"])
for key in input_dict["data"]:
input_dict["data"][key] = list(input_dict["data"][key])
meta_data = dict()
for key in self.__slots__:
if key not in ["_data", "_index"]:
value = self.__getattribute__(key)
meta_data[key.lstrip("_")] = value if not type(value) == self._dropin else list(value)
input_dict["meta_data"] = meta_data
return json.dumps(input_dict, default=repr)
def rename_columns(self, rename_dict):
"""
Renames the columns
:param rename_dict: dict where the keys are the current column names and the values are the new names
:return: nothing
"""
if not all([x in self._columns for x in rename_dict.keys()]):
raise ValueError("all dictionary keys must be in current columns")
for current in rename_dict.keys():
self._columns[self._columns.index(current)] = rename_dict[current]
def head(self, rows):
"""
Return a DataFrame of the first N rows
:param rows: number of rows
:return: DataFrame
"""
rows_bool = [True] * min(rows, len(self._index))
rows_bool.extend([False] * max(0, len(self._index) - rows))
return self.get(indexes=rows_bool)
def tail(self, rows):
"""
Return a DataFrame of the last N rows
:param rows: number of rows
:return: DataFrame
"""
rows_bool = [False] * max(0, len(self._index) - rows)
rows_bool.extend([True] * min(rows, len(self._index)))
return self.get(indexes=rows_bool)
def delete_rows(self, indexes):
"""
Delete rows from the DataFrame
:param indexes: either a list of values or list of booleans for the rows to delete
:return: nothing
"""
indexes = [indexes] if not self._check_list(indexes) else indexes
if all([isinstance(i, bool) for i in indexes]): # boolean list
if len(indexes) != len(self._index):
raise ValueError("boolean indexes list must be same size of existing indexes")
indexes = [i for i, x in enumerate(indexes) if x]
else:
indexes = (
[sorted_index(self._index, x) for x in indexes]
if self._sort
else [self._index.index(x) for x in indexes]
)
indexes = sorted(indexes, reverse=True) # need to sort and reverse list so deleting works
for c, _ in enumerate(self._columns):
for i in indexes:
del self._data[c][i]
# now remove from index
for i in indexes:
del self._index[i]
def delete_all_rows(self):
"""
Deletes the contents of all rows in the DataFrame. This function is faster than delete_rows() to remove all
information, and at the same time it keeps the container lists for the columns and index so if there is another
object that references this DataFrame, like a ViewSeries, the reference remains intact.
:return: nothing
"""
del self._index[:]
for c in range(len(self._columns)):
del self._data[c][:]
def delete_columns(self, columns):
"""
Delete columns from the DataFrame
:param columns: list of columns to delete
:return: nothing
"""
columns = [columns] if not self._check_list(columns) else columns
if not all([x in self._columns for x in columns]):
raise ValueError("all columns must be in current columns")
for column in columns:
c = self._columns.index(column)
del self._data[c]
del self._columns[c]
if not len(self._data): # if all the columns have been deleted, remove index
self.index = list()
def sort_index(self):
"""
Sort the DataFrame by the index. The sort modifies the DataFrame inplace
:return: nothing
"""
sort = sorted_list_indexes(self._index)
# sort index
self._index = self._dropin([self._index[x] for x in sort]) if self._dropin else [self._index[x] for x in sort]
# each column
for c in range(len(self._data)):
self._data[c] = (
self._dropin([self._data[c][i] for i in sort]) if self._dropin else [self._data[c][i] for i in sort]
)
def sort_columns(self, column, key=None, reverse=False):
"""
Sort the DataFrame by one of the columns. The sort modifies the DataFrame inplace. The key and reverse
parameters have the same meaning as for the built-in sort() function.
:param column: column name to use for the sort
:param key: if not None then a function of one argument that is used to extract a comparison key from each
list element
:param reverse: if True then the list elements are sort as if each comparison were reversed.
:return: nothing
"""
if self._check_list(column):
raise TypeError("Can only sort by a single column ")
sort = sorted_list_indexes(self._data[self._columns.index(column)], key, reverse)
# sort index
self._index = self._dropin([self._index[x] for x in sort]) if self._dropin else [self._index[x] for x in sort]
# each column
for c in range(len(self._data)):
self._data[c] = (
self._dropin([self._data[c][i] for i in sort]) if self._dropin else [self._data[c][i] for i in sort]
)
def _validate_index(self, indexes):
if len(indexes) != len(set(indexes)):
raise ValueError("index contains duplicates")
if self._data:
if len(indexes) != len(self._data[0]):
raise ValueError("index length does not match data length")
def _validate_columns(self, columns):
if len(columns) != len(set(columns)):
raise ValueError("columns contains duplicates")
if self._data:
if len(columns) != len(self._data):
raise ValueError("number of column names does not match number of data columns")
def _validate_data(self):
if self._data:
max_rows = max([len(x) for x in self._data])
same_lens = all([len(x) == max_rows for x in self._data])
if not same_lens:
raise ValueError("data is corrupted, each column not all same length")
def validate_integrity(self):
"""
Validate the integrity of the DataFrame. This checks that the indexes, column names and internal data are not
corrupted. Will raise an error if there is a problem.
:return: nothing
"""
self._validate_columns(self._columns)
self._validate_index(self._index)
self._validate_data()
def append(self, data_frame):
"""
Append another DataFrame to this DataFrame. If the new data_frame has columns that are not in the current
DataFrame then new columns will be created. All of the indexes in the data_frame must be different from the
current indexes or will raise an error.
:param data_frame: DataFrame to append
:return: nothing
"""
if len(data_frame) == 0: # empty DataFrame, do nothing
return
data_frame_index = data_frame.index
combined_index = self._index + data_frame_index
if len(set(combined_index)) != len(combined_index):
raise ValueError("duplicate indexes in DataFrames")
for c, column in enumerate(data_frame.columns):
self.set(indexes=data_frame_index, columns=column, values=data_frame.data[c].copy())
def equality(self, column, indexes=None, value=None):
"""
Math helper method. Given a column and optional indexes will return a list of booleans on the equality of the
value for that index in the DataFrame to the value parameter.
:param column: column name to compare
:param indexes: list of index values or list of booleans. If a list of booleans then the list must be the same\
length as the DataFrame
:param value: value to compare
:return: list of booleans
"""
indexes = [True] * len(self._index) if indexes is None else indexes
compare_list = self.get_rows(indexes, column, as_list=True)
return [x == value for x in compare_list]
def _get_lists(self, left_column, right_column, indexes):
indexes = [True] * len(self._index) if indexes is None else indexes
left_list = self.get_rows(indexes, left_column, as_list=True)
right_list = self.get_rows(indexes, right_column, as_list=True)
return left_list, right_list
def add(self, left_column, right_column, indexes=None):
"""
Math helper method that adds element-wise two columns. If indexes are not None then will only perform the math
on that sub-set of the columns.
:param left_column: first column name
:param right_column: second column name
:param indexes: list of index values or list of booleans. If a list of booleans then the list must be the same\
length as the DataFrame
:return: list
"""
left_list, right_list = self._get_lists(left_column, right_column, indexes)
return [l + r for l, r in zip(left_list, right_list)]
def subtract(self, left_column, right_column, indexes=None):
"""
Math helper method that subtracts element-wise two columns. If indexes are not None then will only perform the
math on that sub-set of the columns.
:param left_column: first column name
:param right_column: name of column to subtract from the left_column
:param indexes: list of index values or list of booleans. If a list of booleans then the list must be the same\
length as the DataFrame
:return: list
"""
left_list, right_list = self._get_lists(left_column, right_column, indexes)
return [l - r for l, r in zip(left_list, right_list)]
def multiply(self, left_column, right_column, indexes=None):
"""
Math helper method that multiplies element-wise two columns. If indexes are not None then will only perform the
math on that sub-set of the columns.
:param left_column: first column name
:param right_column: second column name
:param indexes: list of index values or list of booleans. If a list of booleans then the list must be the same\
length as the DataFrame
:return: list
"""
left_list, right_list = self._get_lists(left_column, right_column, indexes)
return [l * r for l, r in zip(left_list, right_list)]
def divide(self, left_column, right_column, indexes=None):
"""
Math helper method that divides element-wise two columns. If indexes are not None then will only perform the
math on that sub-set of the columns.
:param left_column: column name of dividend
:param right_column: column name of divisor
:param indexes: list of index values or list of booleans. If a list of booleans then the list must be the same\
length as the DataFrame
:return: list
"""
left_list, right_list = self._get_lists(left_column, right_column, indexes)
return [l / r for l, r in zip(left_list, right_list)]
def isin(self, column: Any, compare_list: list) -> list[bool]:
"""
Returns a boolean list where each element is whether that element in the column is in the compare_list.
:param column: single column name, does not work for multiple columns
:param compare_list: list of items to compare to
:return: list of booleans
"""
return [x in compare_list for x in self._data[self._columns.index(column)]]
def iterrows(self, index: bool = True) -> Iterator[dict]:
"""
Iterates over DataFrame rows as dictionary of the values. The index will be included.
:param index: if True include the index in the results
:return: dictionary
"""
for i in range(len(self._index)):
row = {self._index_name: self._index[i]} if index else dict()
for c, col in enumerate(self._columns):
row[col] = self._data[c][i]
yield row
def itertuples(self, index: bool = True, name: str = "Raccoon") -> Iterator[namedtuple]:
"""
Iterates over DataFrame rows as tuple of the values.
:param index: if True then include the index
:param name: name of the namedtuple
:return: namedtuple
"""
fields = [self._index_name] if index else list()
fields.extend(self._columns)
row_tuple = namedtuple(name, fields)
for i in range(len(self._index)):
row = {self._index_name: self._index[i]} if index else dict()
for c, col in enumerate(self._columns):
row[col] = self._data[c][i]
yield row_tuple(**row)
def reset_index(self, drop: bool = False) -> None:
"""
Resets the index of the DataFrame to simple integer list and the index name to 'index'. If drop is True then
the existing index is dropped, if drop is False then the current index is made a column in the DataFrame with
the index name the name of the column. If the index is a tuple multi-index then each element of the tuple is
converted into a separate column. If the index name was 'index' then the column name will be 'index_0' to not
conflict on print().
:param drop: if True then the current index is dropped, if False then index converted to columns
:return: nothing
"""
if not drop:
if isinstance(self.index_name, tuple):
index_data = list(map(list, zip(*self._index)))
for i in range(len(self.index_name)):
self.set_column(column=self.index_name[i], values=index_data[i])
else:
col_name = self.index_name if self.index_name != "index" else "index_0"
self.set_column(column=col_name, values=self._index)
self.index = list(range(self.__len__()))
self.index_name = "index"
# DataFrame creation functions
@classmethod
def from_json(cls, json_string: str, dropin_func: Callable | None = None) -> Self:
"""
Creates and return a DataFrame from a JSON of the type created by to_json.
If a dropin is in the metadata from the JSON, then the same dropin class must be provided here to
allow construction as the dropin function cannot be stored with the JSON. If required use a pickle
object for that.
:param json_string: JSON
:param dropin_func: drop-in replacement for list that was used in the JSON
:return: DataFrame
"""
input_dict = json.loads(json_string)
# convert index to tuple if required
if input_dict["index"] and isinstance(input_dict["index"][0], list):
input_dict["index"] = [tuple(x) for x in input_dict["index"]]
# convert index_name to tuple if required
if isinstance(input_dict["meta_data"]["index_name"], list):
input_dict["meta_data"]["index_name"] = tuple(input_dict["meta_data"]["index_name"])
data = input_dict["data"] if input_dict["data"] else None
# confirm the dropin and replace with the actual class
if input_dict["meta_data"]["dropin"]:
if not dropin_func:
raise AttributeError(
"the JSON has a dropin : %s : but the dropin parameter was not supplied"
% input_dict["meta_data"]["dropin"]
)
elif input_dict["meta_data"]["dropin"] == dropin_func.__str__(dropin_func):
input_dict["meta_data"]["dropin"] = dropin_func
else:
raise AttributeError(
"the supplied dropin parameter: %s : does not match the value in "
"the JSON: %s" % (dropin_func, input_dict["meta_data"]["dropin"])
)
return cls(data=data, index=input_dict["index"], **input_dict["meta_data"])
|