1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
|
## Automatically adapted for scipy Oct 31, 2005 by
# $Id: plwf.py 2182 2006-08-29 07:22:11Z oliphant $
# Copyright (c) 1996, 1997, The Regents of the University of California.
# All rights reserved. See Legal.htm for full text and disclaimer.
#
# PLWF.PY
# Simple "painter's algorithm"-class routine for making 3-D wire frames
# and related models.
#
# $Id: plwf.py 2182 2006-08-29 07:22:11Z oliphant $
#
## execfile ("pl3d.py")
from types import *
from pl3d import *
def plwf (z, y = None, x = None, fill = None, shade = 0, edges = 1,
ecolor = None, ewidth = None, cull = None, scale = None, cmax = None,
clear = 1) :
"""
plwf (z)
or plwf (z, y, x)
plots a 3-D wire frame of the given Z array, which must have the
same dimensions as the mesh (X, Y). If X and Y are not given, they
default to the first and second indices of Z, respectively.
The drawing order of the zones is determined by a simple "painter's
algorithm", which works fairly well if the mesh is reasonably near
rectilinear, but can fail even then if the viewpoint is chosen to
produce extreme fisheye perspective effects. Look at the resulting
plot carefully to be sure the algorithm has correctly rendered the
model in each case.
KEYWORDS: fill -- optional colors to use (default is to make zones
have background color), same dimension options as
for z argument to plf function
shade -- set non-zero to compute shading from current
3D lighting sources
edges -- default is 1 (draw edges), but if you provide fill
colors, you may set to 0 to supress the edges
ecolor, ewidth -- color and width of edges
cull -- default is 1 (cull back surfaces), but if you want
to see the "underside" of the model, set to 0
scale -- by default, Z is scaled to "reasonable" maximum
and minimum values related to the scale of (X,Y).
This keyword alters the default scaling factor, in
the sense that scale=2.0 will produce twice the
Z-relief of the default scale=1.0.
cmax -- the ambient= keyword in light3 can be used to
control how dark the darkest surface is; use this
to control how light the lightest surface is
the lightwf routine can change this parameter
interactively
SEE ALSO: lightwf, plm, plf, orient3, light3, fma3, window3
"""
_draw3 = get_draw3_ ( )
_square = get_square_ ( )
[_xfactor, _yfactor] = get_factors_ ( )
if (type (z) == ListType) :
xyz = z [0]
fill = z [1]
shade = z [2]
edges = z [3]
ecolor = z [4]
ewidth = z [5]
cull = z [6]
cmax = z [7]
xyz1 = get3_xy(xyz, 1)
x = xyz [0] # the original x
y = xyz [1] # the original y
# rotate (x,y,0) into on-screen orientation to determine order
# just use four corners for this
nx = shape (x)
ny = nx [1]
nx = nx [0]
xx = array([[x [0, 0], x[nx - 1, 0]],
[x [0, ny - 1] , x[nx - 1, ny - 1]]])
yy = array([[y [0, 0], y[nx - 1, 0]],
[y [0, ny - 1] , y[nx - 1, ny - 1]]])
xyzc = array ( [ xx , yy, array ( [ [0., 0.], [0., 0.]])])
xyzc = get3_xy(xyzc, 1)
# compute mean i-edge and j-edge vector z-components
iedge = avg_ (xyzc [2, :, -1] - xyzc [2, :, 0])
jedge = avg_ (xyzc [2, -1] - xyzc [2, 0])
# compute shading if necessary
if (shade) :
xyz = xyz1
fill = get3_light (xyz)
# The order either requires a transpose or not, reversal of the
# order of the first dimension or not, and reversal of the order
# of the second dimension or not.
# The direction with the minimum magnitude average z-component must
# vary fastest in the painting order. If this is the j-direction,
# a transpose will be required to make this the i-direction.
if abs (iedge) < abs (jedge) :
tmp = iedge
iedge = jedge
jedge = tmp
x = transpose (array (xyz1 [0]))
y = transpose (array (xyz1 [1]))
if fill != None :
fill = transpose (fill)
else :
x = xyz1 [0]
y = xyz1 [1]
# Zones must be drawn from back to front, which means that the
# average z-component of the edge vectors must be positive. This
# can be arranged by reversing the order of the elements if
# necessary.
if iedge < 0.0 :
x = reverse (x, 0)
y = reverse (y, 0)
if fill != None :
fill = reverse (fill, 0)
if jedge < 0.0 :
x = reverse (x, 1)
y = reverse (y, 1)
if fill != None :
fill = reverse (fill, 1)
xmax = maxelt_ (x)
xmin = minelt_ (x)
ymax = maxelt_ (y)
ymin = minelt_ (y)
if _xfactor != 1. :
xmax = xmax + (_xfactor - 1) * (xmax - xmin) / 2.0
xmin = xmin - (_xfactor - 1) * (xmax - xmin) / 2.0
if _yfactor != 1. :
ymax = ymax + (_yfactor - 1) * (ymax - ymin) / 2.0
ymin = ymin - (_yfactor - 1) * (ymax - ymin) / 2.0
if _square :
xdif = xmax - xmin
ydif = ymax - ymin
if xdif > ydif :
dif = (xdif - ydif) / 2.
ymin = ymin - dif
ymax = ymax + dif
elif ydif > xdif :
dif = (ydif - xdif) / 2.
xmin = xmin - dif
xmax = xmax + dif
if fill != None :
if len (fill.shape) == 1:
fill = bytscl (fill)
else:
k = fill.shape [0]
l = fill.shape [1]
fill = reshape ( bytscl (ravel (fill)), (k, l))
if cull == 0 : #transparent mesh
if ecolor != None :
plm (y, x, color = ecolor)
else :
plm (y, x)
elif ecolor != None and ewidth != None and cmax != None :
plf (fill, y, x, edges = edges, ecolor = ecolor,
ewidth = ewidth, cmin = 0.0, cmax = cmax, legend = "")
elif ecolor != None and ewidth != None :
plf (fill, y, x, edges = edges, ewidth = ewidth,
cmin = 0.0, ecolor = ecolor, legend = "")
elif ecolor != None and cmax != None :
plf (fill, y, x, edges = edges, ecolor = ecolor,
cmin = 0.0, cmax = cmax, legend = "")
elif ewidth != None and cmax != None :
plf (fill, y, x, edges = edges, ewidth = ewidth,
cmin = 0.0, cmax = cmax, legend = "")
elif ecolor != None :
plf (fill, y, x, edges = edges, ecolor = ecolor,
cmin = 0.0, legend = "")
elif ewidth != None :
plf (fill, y, x, edges = edges, ewidth = ewidth,
cmin = 0.0, legend = "")
elif cmax != None :
plf (fill, y, x, edges = edges,
cmin = 0.0, cmax = cmax, legend = "")
else :
plf (fill, y, x, edges = edges, cmin = 0.0, legend = "")
return [xmin, xmax, ymin, ymax]
xyz = xyz_wf (z, y, x, scale = scale)
if clear :
clear3 ( )
set3_object (plwf, [xyz, fill, shade, edges, ecolor, ewidth, cull, cmax])
if ( _draw3 ) :
call_idler ( ) # This will traverse and execute the drawing list
# if the default idler has been set.
_LightwfError = "LightwfError"
def lightwf (cmax) :
"""
lightwf (cmax)
Sets the cmax= parameter interactively, assuming the current
3D display list contains the result of a previous plwf call.
This changes the color of the brightest surface in the picture.
The darkest surface color can be controlled using the ambient=
keyword to light3.
SEE ALSO: plwf, light3
"""
_draw3_list = get_draw3_list_ ()
_draw3_n = get_draw3_n_ ()
list = _draw3_list [_draw3_n:]
if list [0] != plwf :
raise _LightwfError, "current 3D display list is not a plwf"
list [1] [7] = cmax
undo3_set_ (lightwf, list)
_Xyz_wfError = "Xyz_wfError"
def xyz_wf (z, y, x, scale = 1.0) :
"""
xyz_wf (z, [y, x] [,scale = 1.0])
returns a 3-by-ni-by-nj array whose 0th entry is x, 1th entry
is y, and 2th entry is z. z is ni-by-nj. x and y, if present,
must be the same shape. If not present, integer ranges will
be used to create an equally spaced coordinate grid in x and y.
The function which scales the "topography" of z(x,y) is
potentially useful apart from plwf.
For example, the xyz array used by plwf can be converted from
a quadrilateral mesh plotted using plf to a polygon list plotted
using plfp like this:
xyz= xyz_wf(z,y,x,scale=scale);
ni= shape(z)[1];
nj= shape(z)[2];
list = ravel (add.outer (
ravel(add.outer (adders,zeros(nj-1, Int))) +
arange((ni-1)*(nj-1), dtype = Int),
array ( [[0, 1], [nj + 1, nj]])))
xyz=array([take(ravel(xyz[0]),list,0),
take(ravel(xyz[1]),list,0),
take(ravel(xyz[2]),list,0)])
nxyz= ones((ni-1)*(nj-1)) * 4;
The resulting array xyz is 3-by-(4*(nj-1)*(ni-1)).
xyz[0:3,4*i:4*(i+1)] are the clockwise coordinates of the
vertices of cell number i.
"""
if len (shape (z)) < 2 :
raise _Xyz_wfError, "impossible dimensions for z array"
nx = shape (z) [0]
ny = shape (z) [1]
if y == None or x == None :
if x != None or y != None :
raise _Xyz_wfError, "either give y,x both or neither"
x = span (0, ny - 1, ny, nx)
y = transpose (span (0, nx - 1, nx, ny))
elif shape (x) != shape (z) or shape (y) != shape (z) :
raise _Xyz_wfError, "x, y, and z must all have same dimensions"
xyscl = max (maxelt_ (x) - minelt_ (x),
maxelt_ (y) - minelt_ (y))
if scale != None:
xyscl = xyscl * scale
dz = maxelt_ (z) - minelt_ (z)
zscl= dz + (dz == 0.0)
if zscl :
z = z * 0.5 * xyscl /zscl
xbar = avg_ (x)
ybar = avg_ (y)
zbar = avg_ (z)
xyz = array ( [x - xbar, y - ybar, z - zbar], Float)
return (xyz)
|