File: indexes.py

package info (click to toggle)
python-xarray 2025.08.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 11,796 kB
  • sloc: python: 115,416; makefile: 258; sh: 47
file content (2175 lines) | stat: -rw-r--r-- 79,761 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
from __future__ import annotations

import collections.abc
import copy
import inspect
from collections import defaultdict
from collections.abc import Callable, Hashable, Iterable, Iterator, Mapping, Sequence
from typing import TYPE_CHECKING, Any, Generic, TypeVar, cast, overload

import numpy as np
import pandas as pd

from xarray.core import formatting, nputils, utils
from xarray.core.coordinate_transform import CoordinateTransform
from xarray.core.extension_array import PandasExtensionArray
from xarray.core.indexing import (
    CoordinateTransformIndexingAdapter,
    IndexSelResult,
    PandasIndexingAdapter,
    PandasMultiIndexingAdapter,
)
from xarray.core.utils import (
    Frozen,
    emit_user_level_warning,
    get_valid_numpy_dtype,
    is_allowed_extension_array_dtype,
    is_dict_like,
    is_scalar,
)

if TYPE_CHECKING:
    from xarray.core.types import ErrorOptions, JoinOptions, Self
    from xarray.core.variable import Variable


IndexVars = dict[Any, "Variable"]


class Index:
    """
    Base class inherited by all xarray-compatible indexes.

    Do not use this class directly for creating index objects. Xarray indexes
    are created exclusively from subclasses of ``Index``, mostly via Xarray's
    public API like ``Dataset.set_xindex``.

    Every subclass must at least implement :py:meth:`Index.from_variables`. The
    (re)implementation of the other methods of this base class is optional but
    mostly required in order to support operations relying on indexes such as
    label-based selection or alignment.

    The ``Index`` API closely follows the :py:meth:`Dataset` and
    :py:meth:`DataArray` API, e.g., for an index to support ``.sel()`` it needs
    to implement :py:meth:`Index.sel`, to support ``.stack()`` and
    ``.unstack()`` it needs to implement :py:meth:`Index.stack` and
    :py:meth:`Index.unstack`, etc.

    When a method is not (re)implemented, depending on the case the
    corresponding operation on a :py:meth:`Dataset` or :py:meth:`DataArray`
    either will raise a ``NotImplementedError`` or will simply drop/pass/copy
    the index from/to the result.

    Do not use this class directly for creating index objects.
    """

    @classmethod
    def from_variables(
        cls,
        variables: Mapping[Any, Variable],
        *,
        options: Mapping[str, Any],
    ) -> Self:
        """Create a new index object from one or more coordinate variables.

        This factory method must be implemented in all subclasses of Index.

        The coordinate variables may be passed here in an arbitrary number and
        order and each with arbitrary dimensions. It is the responsibility of
        the index to check the consistency and validity of these coordinates.

        Parameters
        ----------
        variables : dict-like
            Mapping of :py:class:`Variable` objects holding the coordinate labels
            to index.

        Returns
        -------
        index : Index
            A new Index object.
        """
        raise NotImplementedError()

    @classmethod
    def concat(
        cls,
        indexes: Sequence[Self],
        dim: Hashable,
        positions: Iterable[Iterable[int]] | None = None,
    ) -> Self:
        """Create a new index by concatenating one or more indexes of the same
        type.

        Implementation is optional but required in order to support
        ``concat``. Otherwise it will raise an error if the index needs to be
        updated during the operation.

        Parameters
        ----------
        indexes : sequence of Index objects
            Indexes objects to concatenate together. All objects must be of the
            same type.
        dim : Hashable
            Name of the dimension to concatenate along.
        positions : None or list of integer arrays, optional
            List of integer arrays which specifies the integer positions to which
            to assign each dataset along the concatenated dimension. If not
            supplied, objects are concatenated in the provided order.

        Returns
        -------
        index : Index
            A new Index object.
        """
        raise NotImplementedError()

    @classmethod
    def stack(cls, variables: Mapping[Any, Variable], dim: Hashable) -> Self:
        """Create a new index by stacking coordinate variables into a single new
        dimension.

        Implementation is optional but required in order to support ``stack``.
        Otherwise it will raise an error when trying to pass the Index subclass
        as argument to :py:meth:`Dataset.stack`.

        Parameters
        ----------
        variables : dict-like
            Mapping of :py:class:`Variable` objects to stack together.
        dim : Hashable
            Name of the new, stacked dimension.

        Returns
        -------
        index
            A new Index object.
        """
        raise NotImplementedError(
            f"{cls!r} cannot be used for creating an index of stacked coordinates"
        )

    def unstack(self) -> tuple[dict[Hashable, Index], pd.MultiIndex]:
        """Unstack a (multi-)index into multiple (single) indexes.

        Implementation is optional but required in order to support unstacking
        the coordinates from which this index has been built.

        Returns
        -------
        indexes : tuple
            A 2-length tuple where the 1st item is a dictionary of unstacked
            Index objects and the 2nd item is a :py:class:`pandas.MultiIndex`
            object used to unstack unindexed coordinate variables or data
            variables.
        """
        raise NotImplementedError()

    def create_variables(
        self, variables: Mapping[Any, Variable] | None = None
    ) -> IndexVars:
        """Maybe create new coordinate variables from this index.

        This method is useful if the index data can be reused as coordinate
        variable data. It is often the case when the underlying index structure
        has an array-like interface, like :py:class:`pandas.Index` objects.

        The variables given as argument (if any) are either returned as-is
        (default behavior) or can be used to copy their metadata (attributes and
        encoding) into the new returned coordinate variables.

        Note: the input variables may or may not have been filtered for this
        index.

        Parameters
        ----------
        variables : dict-like, optional
            Mapping of :py:class:`Variable` objects.

        Returns
        -------
        index_variables : dict-like
            Dictionary of :py:class:`Variable` or :py:class:`IndexVariable`
            objects.
        """
        if variables is not None:
            # pass through
            return dict(**variables)
        else:
            return {}

    def should_add_coord_to_array(
        self,
        name: Hashable,
        var: Variable,
        dims: set[Hashable],
    ) -> bool:
        """Define whether or not an index coordinate variable should be added to
        a new DataArray.

        This method is called repeatedly for each Variable associated with this
        index when creating a new DataArray (via its constructor or from a
        Dataset) or updating an existing one. The variables associated with this
        index are the ones passed to :py:meth:`Index.from_variables` and/or
        returned by :py:meth:`Index.create_variables`.

        By default returns ``True`` if the dimensions of the coordinate variable
        are a subset of the array dimensions and ``False`` otherwise (DataArray
        model). This default behavior may be overridden in Index subclasses to
        bypass strict conformance with the DataArray model. This is useful for
        example to include the (n+1)-dimensional cell boundary coordinate
        associated with an interval index.

        Returning ``False`` will either:

        - raise a :py:class:`CoordinateValidationError` when passing the
          coordinate directly to a new or an existing DataArray, e.g., via
          ``DataArray.__init__()`` or ``DataArray.assign_coords()``

        - drop the coordinate (and therefore drop the index) when a new
          DataArray is constructed by indexing a Dataset

        Parameters
        ----------
        name : Hashable
            Name of a coordinate variable associated to this index.
        var : Variable
            Coordinate variable object.
        dims: tuple
            Dimensions of the new DataArray object being created.

        """
        return all(d in dims for d in var.dims)

    def to_pandas_index(self) -> pd.Index:
        """Cast this xarray index to a pandas.Index object or raise a
        ``TypeError`` if this is not supported.

        This method is used by all xarray operations that still rely on
        pandas.Index objects.

        By default it raises a ``TypeError``, unless it is re-implemented in
        subclasses of Index.
        """
        raise TypeError(f"{self!r} cannot be cast to a pandas.Index object")

    def isel(
        self, indexers: Mapping[Any, int | slice | np.ndarray | Variable]
    ) -> Index | None:
        """Maybe returns a new index from the current index itself indexed by
        positional indexers.

        This method should be re-implemented in subclasses of Index if the
        wrapped index structure supports indexing operations. For example,
        indexing a ``pandas.Index`` is pretty straightforward as it behaves very
        much like an array. By contrast, it may be harder doing so for a
        structure like a kd-tree that differs much from a simple array.

        If not re-implemented in subclasses of Index, this method returns
        ``None``, i.e., calling :py:meth:`Dataset.isel` will either drop the
        index in the resulting dataset or pass it unchanged if its corresponding
        coordinate(s) are not indexed.

        Parameters
        ----------
        indexers : dict
            A dictionary of positional indexers as passed from
            :py:meth:`Dataset.isel` and where the entries have been filtered
            for the current index.

        Returns
        -------
        maybe_index : Index
            A new Index object or ``None``.
        """
        return None

    def sel(self, labels: dict[Any, Any]) -> IndexSelResult:
        """Query the index with arbitrary coordinate label indexers.

        Implementation is optional but required in order to support label-based
        selection. Otherwise it will raise an error when trying to call
        :py:meth:`Dataset.sel` with labels for this index coordinates.

        Coordinate label indexers can be of many kinds, e.g., scalar, list,
        tuple, array-like, slice, :py:class:`Variable`, :py:class:`DataArray`, etc.
        It is the responsibility of the index to handle those indexers properly.

        Parameters
        ----------
        labels : dict
            A dictionary of coordinate label indexers passed from
            :py:meth:`Dataset.sel` and where the entries have been filtered
            for the current index.

        Returns
        -------
        sel_results : :py:class:`IndexSelResult`
            An index query result object that contains dimension positional indexers.
            It may also contain new indexes, coordinate variables, etc.
        """
        raise NotImplementedError(f"{self!r} doesn't support label-based selection")

    def join(self, other: Self, how: JoinOptions = "inner") -> Self:
        """Return a new index from the combination of this index with another
        index of the same type.

        Implementation is optional but required in order to support alignment.

        Parameters
        ----------
        other : Index
            The other Index object to combine with this index.
        join : str, optional
            Method for joining the two indexes (see :py:func:`~xarray.align`).

        Returns
        -------
        joined : Index
            A new Index object.
        """
        raise NotImplementedError(
            f"{self!r} doesn't support alignment with inner/outer join method"
        )

    def reindex_like(self, other: Self) -> dict[Hashable, Any]:
        """Query the index with another index of the same type.

        Implementation is optional but required in order to support alignment.

        Parameters
        ----------
        other : Index
            The other Index object used to query this index.

        Returns
        -------
        dim_positional_indexers : dict
            A dictionary where keys are dimension names and values are positional
            indexers.
        """
        raise NotImplementedError(f"{self!r} doesn't support re-indexing labels")

    @overload
    def equals(self, other: Index) -> bool: ...

    @overload
    def equals(
        self, other: Index, *, exclude: frozenset[Hashable] | None = None
    ) -> bool: ...

    def equals(self, other: Index, **kwargs) -> bool:
        """Compare this index with another index of the same type.

        Implementation is optional but required in order to support alignment.

        Parameters
        ----------
        other : Index
            The other Index object to compare with this object.
        exclude : frozenset of hashable, optional
            Dimensions excluded from checking. It is None by default, (i.e.,
            when this method is not called in the context of alignment). For a
            n-dimensional index this option allows an Index to optionally ignore
            any dimension in ``exclude`` when comparing ``self`` with ``other``.
            For a 1-dimensional index this kwarg can be safely ignored, as this
            method is not called when all of the index's dimensions are also
            excluded from alignment (note: the index's dimensions correspond to
            the union of the dimensions of all coordinate variables associated
            with this index).

        Returns
        -------
        is_equal : bool
            ``True`` if the indexes are equal, ``False`` otherwise.

        """
        raise NotImplementedError()

    def roll(self, shifts: Mapping[Any, int]) -> Self | None:
        """Roll this index by an offset along one or more dimensions.

        This method can be re-implemented in subclasses of Index, e.g., when the
        index can be itself indexed.

        If not re-implemented, this method returns ``None``, i.e., calling
        :py:meth:`Dataset.roll` will either drop the index in the resulting
        dataset or pass it unchanged if its corresponding coordinate(s) are not
        rolled.

        Parameters
        ----------
        shifts : mapping of hashable to int, optional
            A dict with keys matching dimensions and values given
            by integers to rotate each of the given dimensions, as passed
            :py:meth:`Dataset.roll`.

        Returns
        -------
        rolled : Index
            A new index with rolled data.
        """
        return None

    def rename(
        self,
        name_dict: Mapping[Any, Hashable],
        dims_dict: Mapping[Any, Hashable],
    ) -> Self:
        """Maybe update the index with new coordinate and dimension names.

        This method should be re-implemented in subclasses of Index if it has
        attributes that depend on coordinate or dimension names.

        By default (if not re-implemented), it returns the index itself.

        Warning: the input names are not filtered for this method, they may
        correspond to any variable or dimension of a Dataset or a DataArray.

        Parameters
        ----------
        name_dict : dict-like
            Mapping of current variable or coordinate names to the desired names,
            as passed from :py:meth:`Dataset.rename_vars`.
        dims_dict : dict-like
            Mapping of current dimension names to the desired names, as passed
            from :py:meth:`Dataset.rename_dims`.

        Returns
        -------
        renamed : Index
            Index with renamed attributes.
        """
        return self

    def copy(self, deep: bool = True) -> Self:
        """Return a (deep) copy of this index.

        Implementation in subclasses of Index is optional. The base class
        implements the default (deep) copy semantics.

        Parameters
        ----------
        deep : bool, optional
            If true (default), a copy of the internal structures
            (e.g., wrapped index) is returned with the new object.

        Returns
        -------
        index : Index
            A new Index object.
        """
        return self._copy(deep=deep)

    def __copy__(self) -> Self:
        return self.copy(deep=False)

    def __deepcopy__(self, memo: dict[int, Any] | None = None) -> Index:
        return self._copy(deep=True, memo=memo)

    def _copy(self, deep: bool = True, memo: dict[int, Any] | None = None) -> Self:
        cls = self.__class__
        copied = cls.__new__(cls)
        if deep:
            for k, v in self.__dict__.items():
                setattr(copied, k, copy.deepcopy(v, memo))
        else:
            copied.__dict__.update(self.__dict__)
        return copied

    def __getitem__(self, indexer: Any) -> Self:
        raise NotImplementedError()

    def _repr_inline_(self, max_width: int) -> str:
        return self.__class__.__name__


def _maybe_cast_to_cftimeindex(index: pd.Index) -> pd.Index:
    from xarray.coding.cftimeindex import CFTimeIndex

    if len(index) > 0 and index.dtype == "O" and not isinstance(index, CFTimeIndex):
        try:
            return CFTimeIndex(index)
        except (ImportError, TypeError):
            return index
    else:
        return index


def safe_cast_to_index(array: Any) -> pd.Index:
    """Given an array, safely cast it to a pandas.Index.

    If it is already a pandas.Index, return it unchanged.

    Unlike pandas.Index, if the array has dtype=object or dtype=timedelta64,
    this function will not attempt to do automatic type conversion but will
    always return an index with dtype=object.
    """
    from xarray.core.dataarray import DataArray
    from xarray.core.variable import Variable
    from xarray.namedarray.pycompat import to_numpy

    if isinstance(array, PandasExtensionArray):
        array = pd.Index(array.array)
    if isinstance(array, pd.Index):
        index = array
    elif isinstance(array, DataArray | Variable):
        # returns the original multi-index for pandas.MultiIndex level coordinates
        index = array._to_index()
    elif isinstance(array, Index):
        index = array.to_pandas_index()
    elif isinstance(array, PandasIndexingAdapter):
        index = array.array
    else:
        kwargs: dict[str, Any] = {}
        if hasattr(array, "dtype"):
            if array.dtype.kind == "O":
                kwargs["dtype"] = "object"
            elif array.dtype == "float16":
                emit_user_level_warning(
                    (
                        "`pandas.Index` does not support the `float16` dtype."
                        " Casting to `float64` for you, but in the future please"
                        " manually cast to either `float32` and `float64`."
                    ),
                    category=DeprecationWarning,
                )
                kwargs["dtype"] = "float64"

        index = pd.Index(to_numpy(array), **kwargs)

    return _maybe_cast_to_cftimeindex(index)


def _sanitize_slice_element(x):
    from xarray.core.dataarray import DataArray
    from xarray.core.variable import Variable

    if not isinstance(x, tuple) and len(np.shape(x)) != 0:
        raise ValueError(
            f"cannot use non-scalar arrays in a slice for xarray indexing: {x}"
        )

    if isinstance(x, Variable | DataArray):
        x = x.values

    if isinstance(x, np.ndarray):
        x = x[()]

    return x


def _query_slice(index, label, coord_name="", method=None, tolerance=None):
    if method is not None or tolerance is not None:
        raise NotImplementedError(
            "cannot use ``method`` argument if any indexers are slice objects"
        )
    indexer = index.slice_indexer(
        _sanitize_slice_element(label.start),
        _sanitize_slice_element(label.stop),
        _sanitize_slice_element(label.step),
    )
    if not isinstance(indexer, slice):
        # unlike pandas, in xarray we never want to silently convert a
        # slice indexer into an array indexer
        raise KeyError(
            "cannot represent labeled-based slice indexer for coordinate "
            f"{coord_name!r} with a slice over integer positions; the index is "
            "unsorted or non-unique"
        )
    return indexer


def _asarray_tuplesafe(values):
    """
    Convert values into a numpy array of at most 1-dimension, while preserving
    tuples.

    Adapted from pandas.core.common._asarray_tuplesafe
    """
    if isinstance(values, tuple):
        result = utils.to_0d_object_array(values)
    else:
        result = np.asarray(values)
        if result.ndim == 2:
            result = np.empty(len(values), dtype=object)
            result[:] = values

    return result


def _is_nested_tuple(possible_tuple):
    return isinstance(possible_tuple, tuple) and any(
        isinstance(value, tuple | list | slice) for value in possible_tuple
    )


def normalize_label(value, dtype=None) -> np.ndarray:
    if getattr(value, "ndim", 1) <= 1:
        value = _asarray_tuplesafe(value)
    if dtype is not None and dtype.kind == "f" and value.dtype.kind != "b":
        # pd.Index built from coordinate with float precision != 64
        # see https://github.com/pydata/xarray/pull/3153 for details
        # bypass coercing dtype for boolean indexers (ignore index)
        # see https://github.com/pydata/xarray/issues/5727
        value = np.asarray(value, dtype=dtype)
    return value


def as_scalar(value: np.ndarray):
    # see https://github.com/pydata/xarray/pull/4292 for details
    return value[()] if value.dtype.kind in "mM" else value.item()


def get_indexer_nd(index: pd.Index, labels, method=None, tolerance=None) -> np.ndarray:
    """Wrapper around :meth:`pandas.Index.get_indexer` supporting n-dimensional
    labels
    """
    flat_labels = np.ravel(labels)
    if flat_labels.dtype == "float16":
        flat_labels = flat_labels.astype("float64")
    flat_indexer = index.get_indexer(flat_labels, method=method, tolerance=tolerance)
    indexer = flat_indexer.reshape(labels.shape)
    return indexer


T_PandasIndex = TypeVar("T_PandasIndex", bound="PandasIndex")


class PandasIndex(Index):
    """Wrap a pandas.Index as an xarray compatible index."""

    index: pd.Index
    dim: Hashable
    coord_dtype: Any

    __slots__ = ("coord_dtype", "dim", "index")

    def __init__(
        self,
        array: Any,
        dim: Hashable,
        coord_dtype: Any = None,
        *,
        fastpath: bool = False,
    ):
        if fastpath:
            index = array
        else:
            index = safe_cast_to_index(array)

        if index.name is None:
            # make a shallow copy: cheap and because the index name may be updated
            # here or in other constructors (cannot use pd.Index.rename as this
            # constructor is also called from PandasMultiIndex)
            index = index.copy()
            index.name = dim

        self.index = index
        self.dim = dim
        if coord_dtype is None:
            if is_allowed_extension_array_dtype(index.dtype):
                cast(pd.api.extensions.ExtensionDtype, index.dtype)
                coord_dtype = index.dtype
            else:
                coord_dtype = get_valid_numpy_dtype(index)
        self.coord_dtype = coord_dtype

    def _replace(self, index, dim=None, coord_dtype=None):
        if dim is None:
            dim = self.dim
        if coord_dtype is None:
            coord_dtype = self.coord_dtype
        return type(self)(index, dim, coord_dtype, fastpath=True)

    @classmethod
    def from_variables(
        cls,
        variables: Mapping[Any, Variable],
        *,
        options: Mapping[str, Any],
    ) -> PandasIndex:
        if len(variables) != 1:
            raise ValueError(
                f"PandasIndex only accepts one variable, found {len(variables)} variables"
            )

        name, var = next(iter(variables.items()))

        if var.ndim == 0:
            raise ValueError(
                f"cannot set a PandasIndex from the scalar variable {name!r}, "
                "only 1-dimensional variables are supported. "
                f"Note: you might want to use `obj.expand_dims({name!r})` to create a "
                f"new dimension and turn {name!r} as an indexed dimension coordinate."
            )
        elif var.ndim != 1:
            raise ValueError(
                "PandasIndex only accepts a 1-dimensional variable, "
                f"variable {name!r} has {var.ndim} dimensions"
            )

        dim = var.dims[0]

        # TODO: (benbovy - explicit indexes): add __index__ to ExplicitlyIndexesNDArrayMixin?
        # this could be eventually used by Variable.to_index() and would remove the need to perform
        # the checks below.

        # preserve wrapped pd.Index (if any)
        # accessing `.data` can load data from disk, so we only access if needed
        data = var._data if isinstance(var._data, PandasIndexingAdapter) else var.data  # type: ignore[redundant-expr]
        # multi-index level variable: get level index
        if isinstance(var._data, PandasMultiIndexingAdapter):
            level = var._data.level
            if level is not None:
                data = var._data.array.get_level_values(level)

        obj = cls(data, dim, coord_dtype=var.dtype)
        assert not isinstance(obj.index, pd.MultiIndex)
        # Rename safely
        # make a shallow copy: cheap and because the index name may be updated
        # here or in other constructors (cannot use pd.Index.rename as this
        # constructor is also called from PandasMultiIndex)
        obj.index = obj.index.copy()
        obj.index.name = name

        return obj

    @staticmethod
    def _concat_indexes(indexes, dim, positions=None) -> pd.Index:
        new_pd_index: pd.Index

        if not indexes:
            new_pd_index = pd.Index([])
        else:
            if not all(idx.dim == dim for idx in indexes):
                dims = ",".join({f"{idx.dim!r}" for idx in indexes})
                raise ValueError(
                    f"Cannot concatenate along dimension {dim!r} indexes with "
                    f"dimensions: {dims}"
                )
            pd_indexes = [idx.index for idx in indexes]
            new_pd_index = pd_indexes[0].append(pd_indexes[1:])

            if positions is not None:
                indices = nputils.inverse_permutation(np.concatenate(positions))
                new_pd_index = new_pd_index.take(indices)

        return new_pd_index

    @classmethod
    def concat(
        cls,
        indexes: Sequence[Self],
        dim: Hashable,
        positions: Iterable[Iterable[int]] | None = None,
    ) -> Self:
        new_pd_index = cls._concat_indexes(indexes, dim, positions)

        if not indexes:
            coord_dtype = None
        else:
            indexes_coord_dtypes = {idx.coord_dtype for idx in indexes}
            if len(indexes_coord_dtypes) == 1:
                coord_dtype = next(iter(indexes_coord_dtypes))
            else:
                coord_dtype = np.result_type(*indexes_coord_dtypes)

        return cls(new_pd_index, dim=dim, coord_dtype=coord_dtype)

    def create_variables(
        self, variables: Mapping[Any, Variable] | None = None
    ) -> IndexVars:
        from xarray.core.variable import IndexVariable

        name = self.index.name
        attrs: Mapping[Hashable, Any] | None
        encoding: Mapping[Hashable, Any] | None

        if variables is not None and name in variables:
            var = variables[name]
            attrs = var.attrs
            encoding = var.encoding
        else:
            attrs = None
            encoding = None

        data = PandasIndexingAdapter(self.index, dtype=self.coord_dtype)
        var = IndexVariable(self.dim, data, attrs=attrs, encoding=encoding)
        return {name: var}

    def to_pandas_index(self) -> pd.Index:
        return self.index

    def isel(
        self, indexers: Mapping[Any, int | slice | np.ndarray | Variable]
    ) -> PandasIndex | None:
        from xarray.core.variable import Variable

        indxr = indexers[self.dim]
        if isinstance(indxr, Variable):
            if indxr.dims != (self.dim,):
                # can't preserve a index if result has new dimensions
                return None
            else:
                indxr = indxr.data
        if not isinstance(indxr, slice) and is_scalar(indxr):
            # scalar indexer: drop index
            return None

        return self._replace(self.index[indxr])  # type: ignore[index]

    def sel(
        self, labels: dict[Any, Any], method=None, tolerance=None
    ) -> IndexSelResult:
        from xarray.core.dataarray import DataArray
        from xarray.core.variable import Variable

        if method is not None and not isinstance(method, str):
            raise TypeError("``method`` must be a string")

        assert len(labels) == 1
        coord_name, label = next(iter(labels.items()))

        if isinstance(label, slice):
            indexer = _query_slice(self.index, label, coord_name, method, tolerance)
        elif is_dict_like(label):
            raise ValueError(
                "cannot use a dict-like object for selection on "
                "a dimension that does not have a MultiIndex"
            )
        else:
            label_array = normalize_label(label, dtype=self.coord_dtype)
            if label_array.ndim == 0:
                label_value = as_scalar(label_array)
                if isinstance(self.index, pd.CategoricalIndex):
                    if method is not None:
                        raise ValueError(
                            "'method' is not supported when indexing using a CategoricalIndex."
                        )
                    if tolerance is not None:
                        raise ValueError(
                            "'tolerance' is not supported when indexing using a CategoricalIndex."
                        )
                    indexer = self.index.get_loc(label_value)
                elif method is not None:
                    indexer = get_indexer_nd(self.index, label_array, method, tolerance)
                    if np.any(indexer < 0):
                        raise KeyError(f"not all values found in index {coord_name!r}")
                else:
                    try:
                        indexer = self.index.get_loc(label_value)
                    except KeyError as e:
                        raise KeyError(
                            f"not all values found in index {coord_name!r}. "
                            "Try setting the `method` keyword argument (example: method='nearest')."
                        ) from e

            elif label_array.dtype.kind == "b":
                indexer = label_array
            else:
                indexer = get_indexer_nd(self.index, label_array, method, tolerance)
                if np.any(indexer < 0):
                    raise KeyError(f"not all values found in index {coord_name!r}")

            # attach dimension names and/or coordinates to positional indexer
            if isinstance(label, Variable):
                indexer = Variable(label.dims, indexer)
            elif isinstance(label, DataArray):
                indexer = DataArray(indexer, coords=label._coords, dims=label.dims)

        return IndexSelResult({self.dim: indexer})

    def equals(self, other: Index, *, exclude: frozenset[Hashable] | None = None):
        if not isinstance(other, PandasIndex):
            return False
        return self.index.equals(other.index) and self.dim == other.dim

    def join(
        self,
        other: Self,
        how: str = "inner",
    ) -> Self:
        if how == "outer":
            index = self.index.union(other.index)
        else:
            # how = "inner"
            index = self.index.intersection(other.index)

        coord_dtype = np.result_type(self.coord_dtype, other.coord_dtype)
        return type(self)(index, self.dim, coord_dtype=coord_dtype)

    def reindex_like(
        self, other: Self, method=None, tolerance=None
    ) -> dict[Hashable, Any]:
        if not self.index.is_unique:
            raise ValueError(
                f"cannot reindex or align along dimension {self.dim!r} because the "
                "(pandas) index has duplicate values"
            )

        return {self.dim: get_indexer_nd(self.index, other.index, method, tolerance)}

    def roll(self, shifts: Mapping[Any, int]) -> PandasIndex:
        shift = shifts[self.dim] % self.index.shape[0]

        if shift != 0:
            new_pd_idx = self.index[-shift:].append(self.index[:-shift])
        else:
            new_pd_idx = self.index[:]

        return self._replace(new_pd_idx)

    def rename(self, name_dict, dims_dict):
        if self.index.name not in name_dict and self.dim not in dims_dict:
            return self

        new_name = name_dict.get(self.index.name, self.index.name)
        index = self.index.rename(new_name)
        new_dim = dims_dict.get(self.dim, self.dim)
        return self._replace(index, dim=new_dim)

    def _copy(
        self: T_PandasIndex, deep: bool = True, memo: dict[int, Any] | None = None
    ) -> T_PandasIndex:
        if deep:
            # pandas is not using the memo
            index = self.index.copy(deep=True)
        else:
            # index will be copied in constructor
            index = self.index
        return self._replace(index)

    def __getitem__(self, indexer: Any):
        return self._replace(self.index[indexer])

    def __repr__(self):
        return f"PandasIndex({self.index!r})"


def _check_dim_compat(variables: Mapping[Any, Variable], all_dims: str = "equal"):
    """Check that all multi-index variable candidates are 1-dimensional and
    either share the same (single) dimension or each have a different dimension.

    """
    if any(var.ndim != 1 for var in variables.values()):
        raise ValueError("PandasMultiIndex only accepts 1-dimensional variables")

    dims = {var.dims for var in variables.values()}

    if all_dims == "equal" and len(dims) > 1:
        raise ValueError(
            "unmatched dimensions for multi-index variables "
            + ", ".join([f"{k!r} {v.dims}" for k, v in variables.items()])
        )

    if all_dims == "different" and len(dims) < len(variables):
        raise ValueError(
            "conflicting dimensions for multi-index product variables "
            + ", ".join([f"{k!r} {v.dims}" for k, v in variables.items()])
        )


T_PDIndex = TypeVar("T_PDIndex", bound=pd.Index)


def remove_unused_levels_categories(index: T_PDIndex) -> T_PDIndex:
    """
    Remove unused levels from MultiIndex and unused categories from CategoricalIndex
    """
    if isinstance(index, pd.MultiIndex):
        new_index = cast(pd.MultiIndex, index.remove_unused_levels())
        # if it contains CategoricalIndex, we need to remove unused categories
        # manually. See https://github.com/pandas-dev/pandas/issues/30846
        if any(isinstance(lev, pd.CategoricalIndex) for lev in new_index.levels):
            levels = []
            for i, level in enumerate(new_index.levels):
                if isinstance(level, pd.CategoricalIndex):
                    level = level[new_index.codes[i]].remove_unused_categories()
                else:
                    level = level[new_index.codes[i]]
                levels.append(level)
            # TODO: calling from_array() reorders MultiIndex levels. It would
            # be best to avoid this, if possible, e.g., by using
            # MultiIndex.remove_unused_levels() (which does not reorder) on the
            # part of the MultiIndex that is not categorical, or by fixing this
            # upstream in pandas.
            new_index = pd.MultiIndex.from_arrays(levels, names=new_index.names)
        return cast(T_PDIndex, new_index)

    if isinstance(index, pd.CategoricalIndex):
        return index.remove_unused_categories()  # type: ignore[attr-defined]

    return index


class PandasMultiIndex(PandasIndex):
    """Wrap a pandas.MultiIndex as an xarray compatible index."""

    index: pd.MultiIndex
    dim: Hashable
    coord_dtype: Any
    level_coords_dtype: dict[str, Any]

    __slots__ = ("coord_dtype", "dim", "index", "level_coords_dtype")

    def __init__(self, array: Any, dim: Hashable, level_coords_dtype: Any = None):
        super().__init__(array, dim)

        # default index level names
        names = []
        for i, idx in enumerate(self.index.levels):
            name = idx.name or f"{dim}_level_{i}"
            if name == dim:
                raise ValueError(
                    f"conflicting multi-index level name {name!r} with dimension {dim!r}"
                )
            names.append(name)
        self.index.names = names

        if level_coords_dtype is None:
            level_coords_dtype = {
                idx.name: get_valid_numpy_dtype(idx) for idx in self.index.levels
            }
        self.level_coords_dtype = level_coords_dtype

    def _replace(self, index, dim=None, level_coords_dtype=None) -> PandasMultiIndex:
        if dim is None:
            dim = self.dim
        index.name = dim
        if level_coords_dtype is None:
            level_coords_dtype = self.level_coords_dtype
        return type(self)(index, dim, level_coords_dtype)

    @classmethod
    def from_variables(
        cls,
        variables: Mapping[Any, Variable],
        *,
        options: Mapping[str, Any],
    ) -> PandasMultiIndex:
        _check_dim_compat(variables)
        dim = next(iter(variables.values())).dims[0]

        index = pd.MultiIndex.from_arrays(
            [var.values for var in variables.values()], names=variables.keys()
        )
        index.name = dim
        level_coords_dtype = {name: var.dtype for name, var in variables.items()}
        obj = cls(index, dim, level_coords_dtype=level_coords_dtype)

        return obj

    @classmethod
    def concat(
        cls,
        indexes: Sequence[Self],
        dim: Hashable,
        positions: Iterable[Iterable[int]] | None = None,
    ) -> Self:
        new_pd_index = cls._concat_indexes(indexes, dim, positions)

        if not indexes:
            level_coords_dtype = None
        else:
            level_coords_dtype = {}
            for name in indexes[0].level_coords_dtype:
                level_coords_dtype[name] = np.result_type(
                    *[idx.level_coords_dtype[name] for idx in indexes]
                )

        return cls(new_pd_index, dim=dim, level_coords_dtype=level_coords_dtype)

    @classmethod
    def stack(
        cls, variables: Mapping[Any, Variable], dim: Hashable
    ) -> PandasMultiIndex:
        """Create a new Pandas MultiIndex from the product of 1-d variables (levels) along a
        new dimension.

        Level variables must have a dimension distinct from each other.

        Keeps levels the same (doesn't refactorize them) so that it gives back the original
        labels after a stack/unstack roundtrip.

        """
        _check_dim_compat(variables, all_dims="different")

        level_indexes = [safe_cast_to_index(var) for var in variables.values()]
        for name, idx in zip(variables, level_indexes, strict=True):
            if isinstance(idx, pd.MultiIndex):
                raise ValueError(
                    f"cannot create a multi-index along stacked dimension {dim!r} "
                    f"from variable {name!r} that wraps a multi-index"
                )

        # from_product sorts by default, so we can't use that always
        # https://github.com/pydata/xarray/issues/980
        # https://github.com/pandas-dev/pandas/issues/14672
        if all(index.is_monotonic_increasing for index in level_indexes):
            index = pd.MultiIndex.from_product(
                level_indexes, sortorder=0, names=variables.keys()
            )
        else:
            split_labels, levels = zip(
                *[lev.factorize() for lev in level_indexes], strict=True
            )
            labels_mesh = np.meshgrid(*split_labels, indexing="ij")
            labels = [x.ravel().tolist() for x in labels_mesh]

            index = pd.MultiIndex(
                levels=levels, codes=labels, sortorder=0, names=variables.keys()
            )
        level_coords_dtype = {k: var.dtype for k, var in variables.items()}

        return cls(index, dim, level_coords_dtype=level_coords_dtype)

    def unstack(self) -> tuple[dict[Hashable, Index], pd.MultiIndex]:
        clean_index = remove_unused_levels_categories(self.index)

        if not clean_index.is_unique:
            raise ValueError(
                "Cannot unstack MultiIndex containing duplicates. Make sure entries "
                f"are unique, e.g., by  calling ``.drop_duplicates('{self.dim}')``, "
                "before unstacking."
            )

        new_indexes: dict[Hashable, Index] = {}
        for name, lev in zip(clean_index.names, clean_index.levels, strict=True):
            idx = PandasIndex(
                lev.copy(), name, coord_dtype=self.level_coords_dtype[name]
            )
            new_indexes[name] = idx

        return new_indexes, clean_index

    @classmethod
    def from_variables_maybe_expand(
        cls,
        dim: Hashable,
        current_variables: Mapping[Any, Variable],
        variables: Mapping[Any, Variable],
    ) -> tuple[PandasMultiIndex, IndexVars]:
        """Create a new multi-index maybe by expanding an existing one with
        new variables as index levels.

        The index and its corresponding coordinates may be created along a new dimension.
        """
        names: list[Hashable] = []
        codes: list[Iterable[int]] = []
        levels: list[Iterable[Any]] = []
        level_variables: dict[Any, Variable] = {}

        _check_dim_compat({**current_variables, **variables})

        if len(current_variables) > 1:
            # expand from an existing multi-index
            data = cast(
                PandasMultiIndexingAdapter, next(iter(current_variables.values()))._data
            )
            current_index = data.array
            names.extend(current_index.names)
            codes.extend(current_index.codes)
            levels.extend(current_index.levels)
            for name in current_index.names:
                level_variables[name] = current_variables[name]

        elif len(current_variables) == 1:
            # expand from one 1D variable (no multi-index): convert it to an index level
            var = next(iter(current_variables.values()))
            new_var_name = f"{dim}_level_0"
            names.append(new_var_name)
            cat = pd.Categorical(var.values, ordered=True)
            codes.append(cat.codes)
            levels.append(cat.categories)
            level_variables[new_var_name] = var

        for name, var in variables.items():
            names.append(name)
            cat = pd.Categorical(var.values, ordered=True)
            codes.append(cat.codes)
            levels.append(cat.categories)
            level_variables[name] = var

        codes_as_lists = [list(x) for x in codes]
        index = pd.MultiIndex(levels=levels, codes=codes_as_lists, names=names)
        level_coords_dtype = {k: var.dtype for k, var in level_variables.items()}
        obj = cls(index, dim, level_coords_dtype=level_coords_dtype)
        index_vars = obj.create_variables(level_variables)

        return obj, index_vars

    def keep_levels(
        self, level_variables: Mapping[Any, Variable]
    ) -> PandasMultiIndex | PandasIndex:
        """Keep only the provided levels and return a new multi-index with its
        corresponding coordinates.

        """
        index = self.index.droplevel(
            [k for k in self.index.names if k not in level_variables]
        )

        if isinstance(index, pd.MultiIndex):
            level_coords_dtype = {k: self.level_coords_dtype[k] for k in index.names}
            return self._replace(index, level_coords_dtype=level_coords_dtype)
        else:
            # backward compatibility: rename the level coordinate to the dimension name
            return PandasIndex(
                index.rename(self.dim),
                self.dim,
                coord_dtype=self.level_coords_dtype[index.name],
            )

    def reorder_levels(
        self, level_variables: Mapping[Any, Variable]
    ) -> PandasMultiIndex:
        """Re-arrange index levels using input order and return a new multi-index with
        its corresponding coordinates.

        """
        index = cast(pd.MultiIndex, self.index.reorder_levels(level_variables.keys()))
        level_coords_dtype = {k: self.level_coords_dtype[k] for k in index.names}
        return self._replace(index, level_coords_dtype=level_coords_dtype)

    def create_variables(
        self, variables: Mapping[Any, Variable] | None = None
    ) -> IndexVars:
        from xarray.core.variable import IndexVariable

        if variables is None:
            variables = {}

        index_vars: IndexVars = {}
        for name in (self.dim,) + tuple(self.index.names):
            if name == self.dim:
                level = None
                dtype = None
            else:
                level = name
                dtype = self.level_coords_dtype[name]  # type: ignore[index]  # TODO: are Hashables ok?

            var = variables.get(name)
            if var is not None:
                attrs = var.attrs
                encoding = var.encoding
            else:
                attrs = {}
                encoding = {}

            data = PandasMultiIndexingAdapter(self.index, dtype=dtype, level=level)  # type: ignore[arg-type]  # TODO: are Hashables ok?
            index_vars[name] = IndexVariable(
                self.dim,
                data,
                attrs=attrs,
                encoding=encoding,
                fastpath=True,
            )

        return index_vars

    def sel(self, labels, method=None, tolerance=None) -> IndexSelResult:
        from xarray.core.dataarray import DataArray
        from xarray.core.variable import Variable

        if method is not None or tolerance is not None:
            raise ValueError(
                "multi-index does not support ``method`` and ``tolerance``"
            )

        new_index = None
        scalar_coord_values = {}

        indexer: int | slice | np.ndarray | Variable | DataArray

        # label(s) given for multi-index level(s)
        if all(lbl in self.index.names for lbl in labels):
            label_values = {}
            for k, v in labels.items():
                label_array = normalize_label(v, dtype=self.level_coords_dtype[k])
                try:
                    label_values[k] = as_scalar(label_array)
                except ValueError as err:
                    # label should be an item not an array-like
                    raise ValueError(
                        "Vectorized selection is not "
                        f"available along coordinate {k!r} (multi-index level)"
                    ) from err

            has_slice = any(isinstance(v, slice) for v in label_values.values())

            if len(label_values) == self.index.nlevels and not has_slice:
                indexer = self.index.get_loc(
                    tuple(label_values[k] for k in self.index.names)
                )
            else:
                indexer, new_index = self.index.get_loc_level(
                    tuple(label_values.values()), level=tuple(label_values.keys())
                )
                scalar_coord_values.update(label_values)
                # GH2619. Raise a KeyError if nothing is chosen
                if indexer.dtype.kind == "b" and indexer.sum() == 0:  # type: ignore[union-attr]
                    raise KeyError(f"{labels} not found")

        # assume one label value given for the multi-index "array" (dimension)
        else:
            if len(labels) > 1:
                coord_name = next(iter(set(labels) - set(self.index.names)))
                raise ValueError(
                    f"cannot provide labels for both coordinate {coord_name!r} (multi-index array) "
                    f"and one or more coordinates among {self.index.names!r} (multi-index levels)"
                )

            coord_name, label = next(iter(labels.items()))

            if is_dict_like(label):
                invalid_levels = tuple(
                    name for name in label if name not in self.index.names
                )
                if invalid_levels:
                    raise ValueError(
                        f"multi-index level names {invalid_levels} not found in indexes {tuple(self.index.names)}"
                    )
                return self.sel(label)

            elif isinstance(label, slice):
                indexer = _query_slice(self.index, label, coord_name)

            elif isinstance(label, tuple):
                if _is_nested_tuple(label):
                    indexer = self.index.get_locs(label)
                elif len(label) == self.index.nlevels:
                    indexer = self.index.get_loc(label)
                else:
                    levels = [self.index.names[i] for i in range(len(label))]
                    indexer, new_index = self.index.get_loc_level(label, level=levels)
                    scalar_coord_values.update(dict(zip(levels, label, strict=True)))

            else:
                label_array = normalize_label(label)
                if label_array.ndim == 0:
                    label_value = as_scalar(label_array)
                    indexer, new_index = self.index.get_loc_level(label_value, level=0)
                    scalar_coord_values[self.index.names[0]] = label_value
                elif label_array.dtype.kind == "b":
                    indexer = label_array
                else:
                    if label_array.ndim > 1:
                        raise ValueError(
                            "Vectorized selection is not available along "
                            f"coordinate {coord_name!r} with a multi-index"
                        )
                    indexer = get_indexer_nd(self.index, label_array)
                    if np.any(indexer < 0):
                        raise KeyError(f"not all values found in index {coord_name!r}")

                # attach dimension names and/or coordinates to positional indexer
                if isinstance(label, Variable):
                    indexer = Variable(label.dims, indexer)
                elif isinstance(label, DataArray):
                    # do not include label-indexer DataArray coordinates that conflict
                    # with the level names of this index
                    coords = {
                        k: v
                        for k, v in label._coords.items()
                        if k not in self.index.names
                    }
                    indexer = DataArray(indexer, coords=coords, dims=label.dims)

        if new_index is not None:
            if isinstance(new_index, pd.MultiIndex):
                level_coords_dtype = {
                    k: self.level_coords_dtype[k] for k in new_index.names
                }
                new_index = self._replace(
                    new_index, level_coords_dtype=level_coords_dtype
                )
                dims_dict = {}
                drop_coords = []
            else:
                new_index = PandasIndex(
                    new_index,
                    new_index.name,
                    coord_dtype=self.level_coords_dtype[new_index.name],
                )
                dims_dict = {self.dim: new_index.index.name}
                drop_coords = [self.dim]

            # variable(s) attrs and encoding metadata are propagated
            # when replacing the indexes in the resulting xarray object
            new_vars = new_index.create_variables()
            indexes = cast(dict[Any, Index], dict.fromkeys(new_vars, new_index))

            # add scalar variable for each dropped level
            variables = new_vars
            for name, val in scalar_coord_values.items():
                variables[name] = Variable([], val)

            return IndexSelResult(
                {self.dim: indexer},
                indexes=indexes,
                variables=variables,
                drop_indexes=list(scalar_coord_values),
                drop_coords=drop_coords,
                rename_dims=dims_dict,
            )

        else:
            return IndexSelResult({self.dim: indexer})

    def join(self, other, how: str = "inner"):
        if how == "outer":
            # bug in pandas? need to reset index.name
            other_index = other.index.copy()
            other_index.name = None
            index = self.index.union(other_index)
            index.name = self.dim
        else:
            # how = "inner"
            index = self.index.intersection(other.index)

        level_coords_dtype = {
            k: np.result_type(lvl_dtype, other.level_coords_dtype[k])
            for k, lvl_dtype in self.level_coords_dtype.items()
        }

        return type(self)(index, self.dim, level_coords_dtype=level_coords_dtype)

    def rename(self, name_dict, dims_dict):
        if not set(self.index.names) & set(name_dict) and self.dim not in dims_dict:
            return self

        # pandas 1.3.0: could simply do `self.index.rename(names_dict)`
        new_names = [name_dict.get(k, k) for k in self.index.names]
        index = self.index.rename(new_names)

        new_dim = dims_dict.get(self.dim, self.dim)
        new_level_coords_dtype = dict(
            zip(new_names, self.level_coords_dtype.values(), strict=True)
        )
        return self._replace(
            index, dim=new_dim, level_coords_dtype=new_level_coords_dtype
        )


class CoordinateTransformIndex(Index):
    """Helper class for creating Xarray indexes based on coordinate transforms.

    - wraps a :py:class:`CoordinateTransform` instance
    - takes care of creating the index (lazy) coordinates
    - supports point-wise label-based selection
    - supports exact alignment only, by comparing indexes based on their transform
      (not on their explicit coordinate labels)

    .. caution::
        This API is experimental and subject to change. Please report any bugs or surprising
        behaviour you encounter.
    """

    transform: CoordinateTransform

    def __init__(
        self,
        transform: CoordinateTransform,
    ):
        self.transform = transform

    def create_variables(
        self, variables: Mapping[Any, Variable] | None = None
    ) -> IndexVars:
        from xarray.core.variable import Variable

        new_variables = {}

        for name in self.transform.coord_names:
            # copy attributes, if any
            attrs: Mapping[Hashable, Any] | None

            if variables is not None and name in variables:
                var = variables[name]
                attrs = var.attrs
            else:
                attrs = None

            data = CoordinateTransformIndexingAdapter(self.transform, name)
            new_variables[name] = Variable(self.transform.dims, data, attrs=attrs)

        return new_variables

    def isel(
        self, indexers: Mapping[Any, int | slice | np.ndarray | Variable]
    ) -> Index | None:
        # TODO: support returning a new index (e.g., possible to re-calculate the
        # the transform or calculate another transform on a reduced dimension space)
        return None

    def sel(
        self, labels: dict[Any, Any], method=None, tolerance=None
    ) -> IndexSelResult:
        from xarray.core.dataarray import DataArray
        from xarray.core.variable import Variable

        if method != "nearest":
            raise ValueError(
                "CoordinateTransformIndex only supports selection with method='nearest'"
            )

        labels_set = set(labels)
        coord_names_set = set(self.transform.coord_names)

        missing_labels = coord_names_set - labels_set
        if missing_labels:
            missing_labels_str = ",".join([f"{name}" for name in missing_labels])
            raise ValueError(f"missing labels for coordinate(s): {missing_labels_str}.")

        label0_obj = next(iter(labels.values()))
        dim_size0 = getattr(label0_obj, "sizes", {})

        is_xr_obj = [
            isinstance(label, DataArray | Variable) for label in labels.values()
        ]
        if not all(is_xr_obj):
            raise TypeError(
                "CoordinateTransformIndex only supports advanced (point-wise) indexing "
                "with either xarray.DataArray or xarray.Variable objects."
            )
        dim_size = [getattr(label, "sizes", {}) for label in labels.values()]
        if any(ds != dim_size0 for ds in dim_size):
            raise ValueError(
                "CoordinateTransformIndex only supports advanced (point-wise) indexing "
                "with xarray.DataArray or xarray.Variable objects of matching dimensions."
            )

        coord_labels = {
            name: labels[name].values for name in self.transform.coord_names
        }
        dim_positions = self.transform.reverse(coord_labels)

        results: dict[str, Variable | DataArray] = {}
        dims0 = tuple(dim_size0)
        for dim, pos in dim_positions.items():
            # TODO: rounding the decimal positions is not always the behavior we expect
            # (there are different ways to represent implicit intervals)
            # we should probably make this customizable.
            pos = np.round(pos).astype("int")
            if isinstance(label0_obj, Variable):
                results[dim] = Variable(dims0, pos)
            else:
                # dataarray
                results[dim] = DataArray(pos, dims=dims0)

        return IndexSelResult(results)

    def equals(
        self, other: Index, *, exclude: frozenset[Hashable] | None = None
    ) -> bool:
        if not isinstance(other, CoordinateTransformIndex):
            return False
        return self.transform.equals(other.transform, exclude=exclude)

    def rename(
        self,
        name_dict: Mapping[Any, Hashable],
        dims_dict: Mapping[Any, Hashable],
    ) -> Self:
        coord_names = self.transform.coord_names
        dims = self.transform.dims
        dim_size = self.transform.dim_size

        if not set(coord_names) & set(name_dict) and not set(dims) & set(dims_dict):
            return self

        new_transform = copy.deepcopy(self.transform)
        new_transform.coord_names = tuple(name_dict.get(n, n) for n in coord_names)
        new_transform.dims = tuple(str(dims_dict.get(d, d)) for d in dims)
        new_transform.dim_size = {
            str(dims_dict.get(d, d)): v for d, v in dim_size.items()
        }

        return type(self)(new_transform)


def create_default_index_implicit(
    dim_variable: Variable,
    all_variables: Mapping | Iterable[Hashable] | None = None,
) -> tuple[PandasIndex, IndexVars]:
    """Create a default index from a dimension variable.

    Create a PandasMultiIndex if the given variable wraps a pandas.MultiIndex,
    otherwise create a PandasIndex (note that this will become obsolete once we
    depreciate implicitly passing a pandas.MultiIndex as a coordinate).

    """
    if all_variables is None:
        all_variables = {}
    if not isinstance(all_variables, Mapping):
        all_variables = dict.fromkeys(all_variables)

    name = dim_variable.dims[0]
    array = getattr(dim_variable._data, "array", None)
    index: PandasIndex

    if isinstance(array, pd.MultiIndex):
        index = PandasMultiIndex(array, name)
        index_vars = index.create_variables()
        # check for conflict between level names and variable names
        duplicate_names = [k for k in index_vars if k in all_variables and k != name]
        if duplicate_names:
            # dirty workaround for an edge case where both the dimension
            # coordinate and the level coordinates are given for the same
            # multi-index object => do not raise an error
            # TODO: remove this check when removing the multi-index dimension coordinate
            if len(duplicate_names) < len(index.index.names):
                conflict = True
            else:
                duplicate_vars = [all_variables[k] for k in duplicate_names]
                conflict = any(
                    v is None or not dim_variable.equals(v) for v in duplicate_vars
                )

            if conflict:
                conflict_str = "\n".join(duplicate_names)
                raise ValueError(
                    f"conflicting MultiIndex level / variable name(s):\n{conflict_str}"
                )
    else:
        dim_var = {name: dim_variable}
        index = PandasIndex.from_variables(dim_var, options={})
        index_vars = index.create_variables(dim_var)

    return index, index_vars


# generic type that represents either a pandas or an xarray index
T_PandasOrXarrayIndex = TypeVar("T_PandasOrXarrayIndex", Index, pd.Index)


class Indexes(collections.abc.Mapping, Generic[T_PandasOrXarrayIndex]):
    """Immutable proxy for Dataset or DataArray indexes.

    It is a mapping where keys are coordinate names and values are either pandas
    or xarray indexes.

    It also contains the indexed coordinate variables and provides some utility
    methods.

    """

    _index_type: type[Index | pd.Index]
    _indexes: dict[Any, T_PandasOrXarrayIndex]
    _variables: dict[Any, Variable]

    __slots__ = (
        "__coord_name_id",
        "__id_coord_names",
        "__id_index",
        "_dims",
        "_index_type",
        "_indexes",
        "_variables",
    )

    def __init__(
        self,
        indexes: Mapping[Any, T_PandasOrXarrayIndex] | None = None,
        variables: Mapping[Any, Variable] | None = None,
        index_type: type[Index | pd.Index] = Index,
    ):
        """Constructor not for public consumption.

        Parameters
        ----------
        indexes : dict
            Indexes held by this object.
        variables : dict
            Indexed coordinate variables in this object. Entries must
            match those of `indexes`.
        index_type : type
            The type of all indexes, i.e., either :py:class:`xarray.indexes.Index`
            or :py:class:`pandas.Index`.

        """
        if indexes is None:
            indexes = {}
        if variables is None:
            variables = {}

        unmatched_keys = set(indexes) ^ set(variables)
        if unmatched_keys:
            raise ValueError(
                f"unmatched keys found in indexes and variables: {unmatched_keys}"
            )

        if any(not isinstance(idx, index_type) for idx in indexes.values()):
            index_type_str = f"{index_type.__module__}.{index_type.__name__}"
            raise TypeError(
                f"values of indexes must all be instances of {index_type_str}"
            )

        self._index_type = index_type
        self._indexes = dict(**indexes)
        self._variables = dict(**variables)

        self._dims: Mapping[Hashable, int] | None = None
        self.__coord_name_id: dict[Any, int] | None = None
        self.__id_index: dict[int, T_PandasOrXarrayIndex] | None = None
        self.__id_coord_names: dict[int, tuple[Hashable, ...]] | None = None

    @property
    def _coord_name_id(self) -> dict[Any, int]:
        if self.__coord_name_id is None:
            self.__coord_name_id = {k: id(idx) for k, idx in self._indexes.items()}
        return self.__coord_name_id

    @property
    def _id_index(self) -> dict[int, T_PandasOrXarrayIndex]:
        if self.__id_index is None:
            self.__id_index = {id(idx): idx for idx in self.get_unique()}
        return self.__id_index

    @property
    def _id_coord_names(self) -> dict[int, tuple[Hashable, ...]]:
        if self.__id_coord_names is None:
            id_coord_names: Mapping[int, list[Hashable]] = defaultdict(list)
            for k, v in self._coord_name_id.items():
                id_coord_names[v].append(k)
            self.__id_coord_names = {k: tuple(v) for k, v in id_coord_names.items()}

        return self.__id_coord_names

    @property
    def variables(self) -> Mapping[Hashable, Variable]:
        return Frozen(self._variables)

    @property
    def dims(self) -> Mapping[Hashable, int]:
        from xarray.core.variable import calculate_dimensions

        if self._dims is None:
            self._dims = calculate_dimensions(self._variables)

        return Frozen(self._dims)

    def copy(self) -> Indexes:
        return type(self)(dict(self._indexes), dict(self._variables))

    def get_unique(self) -> list[T_PandasOrXarrayIndex]:
        """Return a list of unique indexes, preserving order."""

        unique_indexes: list[T_PandasOrXarrayIndex] = []
        seen: set[int] = set()

        for index in self._indexes.values():
            index_id = id(index)
            if index_id not in seen:
                unique_indexes.append(index)
                seen.add(index_id)

        return unique_indexes

    def is_multi(self, key: Hashable) -> bool:
        """Return True if ``key`` maps to a multi-coordinate index,
        False otherwise.
        """
        return len(self._id_coord_names[self._coord_name_id[key]]) > 1

    def get_all_coords(
        self, key: Hashable, errors: ErrorOptions = "raise"
    ) -> dict[Hashable, Variable]:
        """Return all coordinates having the same index.

        Parameters
        ----------
        key : hashable
            Index key.
        errors : {"raise", "ignore"}, default: "raise"
            If "raise", raises a ValueError if `key` is not in indexes.
            If "ignore", an empty tuple is returned instead.

        Returns
        -------
        coords : dict
            A dictionary of all coordinate variables having the same index.

        """
        if errors not in ["raise", "ignore"]:
            raise ValueError('errors must be either "raise" or "ignore"')

        if key not in self._indexes:
            if errors == "raise":
                raise ValueError(f"no index found for {key!r} coordinate")
            else:
                return {}

        all_coord_names = self._id_coord_names[self._coord_name_id[key]]
        return {k: self._variables[k] for k in all_coord_names}

    def get_all_dims(
        self, key: Hashable, errors: ErrorOptions = "raise"
    ) -> Mapping[Hashable, int]:
        """Return all dimensions shared by an index.

        Parameters
        ----------
        key : hashable
            Index key.
        errors : {"raise", "ignore"}, default: "raise"
            If "raise", raises a ValueError if `key` is not in indexes.
            If "ignore", an empty tuple is returned instead.

        Returns
        -------
        dims : dict
            A dictionary of all dimensions shared by an index.

        """
        from xarray.core.variable import calculate_dimensions

        return calculate_dimensions(self.get_all_coords(key, errors=errors))

    def group_by_index(
        self,
    ) -> list[tuple[T_PandasOrXarrayIndex, dict[Hashable, Variable]]]:
        """Returns a list of unique indexes and their corresponding coordinates."""

        index_coords = []
        for i, index in self._id_index.items():
            coords = {k: self._variables[k] for k in self._id_coord_names[i]}
            index_coords.append((index, coords))

        return index_coords

    def to_pandas_indexes(self) -> Indexes[pd.Index]:
        """Returns an immutable proxy for Dataset or DataArray pandas indexes.

        Raises an error if this proxy contains indexes that cannot be coerced to
        pandas.Index objects.

        """
        indexes: dict[Hashable, pd.Index] = {}

        for k, idx in self._indexes.items():
            if isinstance(idx, pd.Index):
                indexes[k] = idx
            elif isinstance(idx, Index):
                indexes[k] = idx.to_pandas_index()

        return Indexes(indexes, self._variables, index_type=pd.Index)

    def copy_indexes(
        self, deep: bool = True, memo: dict[int, T_PandasOrXarrayIndex] | None = None
    ) -> tuple[dict[Hashable, T_PandasOrXarrayIndex], dict[Hashable, Variable]]:
        """Return a new dictionary with copies of indexes, preserving
        unique indexes.

        Parameters
        ----------
        deep : bool, default: True
            Whether the indexes are deep or shallow copied onto the new object.
        memo : dict if object id to copied objects or None, optional
            To prevent infinite recursion deepcopy stores all copied elements
            in this dict.

        """
        new_indexes: dict[Hashable, T_PandasOrXarrayIndex] = {}
        new_index_vars: dict[Hashable, Variable] = {}

        xr_idx: Index
        new_idx: T_PandasOrXarrayIndex
        for idx, coords in self.group_by_index():
            if isinstance(idx, pd.Index):
                convert_new_idx = True
                dim = next(iter(coords.values())).dims[0]
                if isinstance(idx, pd.MultiIndex):
                    xr_idx = PandasMultiIndex(idx, dim)
                else:
                    xr_idx = PandasIndex(idx, dim)
            else:
                convert_new_idx = False
                xr_idx = idx

            new_idx = xr_idx._copy(deep=deep, memo=memo)  # type: ignore[assignment]
            idx_vars = xr_idx.create_variables(coords)

            if convert_new_idx:
                new_idx = new_idx.index  # type: ignore[attr-defined]

            new_indexes.update(dict.fromkeys(coords, new_idx))
            new_index_vars.update(idx_vars)

        return new_indexes, new_index_vars

    def __iter__(self) -> Iterator[T_PandasOrXarrayIndex]:
        return iter(self._indexes)

    def __len__(self) -> int:
        return len(self._indexes)

    def __contains__(self, key) -> bool:
        return key in self._indexes

    def __getitem__(self, key) -> T_PandasOrXarrayIndex:
        return self._indexes[key]

    def __repr__(self):
        indexes = formatting._get_indexes_dict(self)
        return formatting.indexes_repr(indexes)


def default_indexes(
    coords: Mapping[Any, Variable], dims: Iterable
) -> dict[Hashable, Index]:
    """Default indexes for a Dataset/DataArray.

    Parameters
    ----------
    coords : Mapping[Any, xarray.Variable]
        Coordinate variables from which to draw default indexes.
    dims : iterable
        Iterable of dimension names.

    Returns
    -------
    Mapping from indexing keys (levels/dimension names) to indexes used for
    indexing along that dimension.
    """
    indexes: dict[Hashable, Index] = {}
    coord_names = set(coords)

    for name, var in coords.items():
        if name in dims and var.ndim == 1:
            index, index_vars = create_default_index_implicit(var, coords)
            if set(index_vars) <= coord_names:
                indexes.update(dict.fromkeys(index_vars, index))

    return indexes


def _wrap_index_equals(
    index: Index,
) -> Callable[[Index, frozenset[Hashable]], bool]:
    # TODO: remove this Index.equals() wrapper (backward compatibility)

    sig = inspect.signature(index.equals)

    if len(sig.parameters) == 1:
        index_cls_name = type(index).__module__ + "." + type(index).__qualname__
        emit_user_level_warning(
            f"the signature ``{index_cls_name}.equals(self, other)`` is deprecated. "
            f"Please update it to "
            f"``{index_cls_name}.equals(self, other, *, exclude=None)`` "
            f"or kindly ask the maintainers of ``{index_cls_name}`` to do it. "
            "See documentation of xarray.Index.equals() for more info.",
            FutureWarning,
        )
        exclude_kwarg = False
    else:
        exclude_kwarg = True

    def equals_wrapper(other: Index, exclude: frozenset[Hashable]) -> bool:
        if exclude_kwarg:
            return index.equals(other, exclude=exclude)
        else:
            return index.equals(other)

    return equals_wrapper


def indexes_equal(
    index: Index,
    other_index: Index,
    variable: Variable,
    other_variable: Variable,
    cache: dict[tuple[int, int], bool | None] | None = None,
) -> bool:
    """Check if two indexes are equal, possibly with cached results.

    If the two indexes are not of the same type or they do not implement
    equality, fallback to coordinate labels equality check.

    """
    if cache is None:
        # dummy cache
        cache = {}

    key = (id(index), id(other_index))
    equal: bool | None = None

    if key not in cache:
        if type(index) is type(other_index):
            try:
                equal = index.equals(other_index)
            except NotImplementedError:
                equal = None
            else:
                cache[key] = equal
        else:
            equal = None
    else:
        equal = cache[key]

    if equal is None:
        equal = variable.equals(other_variable)

    return cast(bool, equal)


def indexes_all_equal(
    elements: Sequence[tuple[Index, dict[Hashable, Variable]]],
    exclude_dims: frozenset[Hashable],
) -> bool:
    """Check if indexes are all equal.

    If they are not of the same type or they do not implement this check, check
    if their coordinate variables are all equal instead.

    """

    def check_variables():
        variables = [e[1] for e in elements]
        return any(
            not variables[0][k].equals(other_vars[k])
            for other_vars in variables[1:]
            for k in variables[0]
        )

    indexes = [e[0] for e in elements]

    same_objects = all(indexes[0] is other_idx for other_idx in indexes[1:])
    if same_objects:
        return True

    same_type = all(type(indexes[0]) is type(other_idx) for other_idx in indexes[1:])
    if same_type:
        index_equals_func = _wrap_index_equals(indexes[0])
        try:
            not_equal = any(
                not index_equals_func(other_idx, exclude_dims)
                for other_idx in indexes[1:]
            )
        except NotImplementedError:
            not_equal = check_variables()
    else:
        not_equal = check_variables()

    return not not_equal


def _apply_indexes_fast(indexes: Indexes[Index], args: Mapping[Any, Any], func: str):
    # This function avoids the call to indexes.group_by_index
    # which is really slow when repeatedly iterating through
    # an array. However, it fails to return the correct ID for
    # multi-index arrays
    indexes_fast, coords = indexes._indexes, indexes._variables

    new_indexes: dict[Hashable, Index] = dict(indexes_fast.items())
    new_index_variables: dict[Hashable, Variable] = {}
    for name, index in indexes_fast.items():
        coord = coords[name]
        if hasattr(coord, "_indexes"):
            index_vars = {n: coords[n] for n in coord._indexes}
        else:
            index_vars = {name: coord}
        index_dims = {d for var in index_vars.values() for d in var.dims}
        index_args = {k: v for k, v in args.items() if k in index_dims}

        if index_args:
            new_index = getattr(index, func)(index_args)
            if new_index is not None:
                new_indexes.update(dict.fromkeys(index_vars, new_index))
                new_index_vars = new_index.create_variables(index_vars)
                new_index_variables.update(new_index_vars)
            else:
                for k in index_vars:
                    new_indexes.pop(k, None)
    return new_indexes, new_index_variables


def _apply_indexes(
    indexes: Indexes[Index],
    args: Mapping[Any, Any],
    func: str,
) -> tuple[dict[Hashable, Index], dict[Hashable, Variable]]:
    new_indexes: dict[Hashable, Index] = dict(indexes.items())
    new_index_variables: dict[Hashable, Variable] = {}

    for index, index_vars in indexes.group_by_index():
        index_dims = {d for var in index_vars.values() for d in var.dims}
        index_args = {k: v for k, v in args.items() if k in index_dims}
        if index_args:
            new_index = getattr(index, func)(index_args)
            if new_index is not None:
                new_indexes.update(dict.fromkeys(index_vars, new_index))
                new_index_vars = new_index.create_variables(index_vars)
                new_index_variables.update(new_index_vars)
            else:
                for k in index_vars:
                    new_indexes.pop(k, None)

    return new_indexes, new_index_variables


def isel_indexes(
    indexes: Indexes[Index],
    indexers: Mapping[Any, Any],
) -> tuple[dict[Hashable, Index], dict[Hashable, Variable]]:
    # Fast path function _apply_indexes_fast does not work with multi-coordinate
    # Xarray indexes (see https://github.com/pydata/xarray/issues/10063).
    # -> call it only in the most common case where all indexes are default
    # PandasIndex each associated to a single 1-dimensional coordinate.
    if any(type(idx) is not PandasIndex for idx in indexes._indexes.values()):
        return _apply_indexes(indexes, indexers, "isel")
    else:
        return _apply_indexes_fast(indexes, indexers, "isel")


def roll_indexes(
    indexes: Indexes[Index],
    shifts: Mapping[Any, int],
) -> tuple[dict[Hashable, Index], dict[Hashable, Variable]]:
    return _apply_indexes(indexes, shifts, "roll")


def filter_indexes_from_coords(
    indexes: Mapping[Any, Index],
    filtered_coord_names: set,
) -> dict[Hashable, Index]:
    """Filter index items given a (sub)set of coordinate names.

    Drop all multi-coordinate related index items for any key missing in the set
    of coordinate names.

    """
    filtered_indexes: dict[Any, Index] = dict(indexes)

    index_coord_names: dict[Hashable, set[Hashable]] = defaultdict(set)
    for name, idx in indexes.items():
        index_coord_names[id(idx)].add(name)

    for idx_coord_names in index_coord_names.values():
        if not idx_coord_names <= filtered_coord_names:
            for k in idx_coord_names:
                del filtered_indexes[k]

    return filtered_indexes


def assert_no_index_corrupted(
    indexes: Indexes[Index],
    coord_names: set[Hashable],
    action: str = "remove coordinate(s)",
) -> None:
    """Assert removing coordinates or indexes will not corrupt indexes."""

    # An index may be corrupted when the set of its corresponding coordinate name(s)
    # partially overlaps the set of coordinate names to remove
    for index, index_coords in indexes.group_by_index():
        common_names = set(index_coords) & coord_names
        if common_names and len(common_names) != len(index_coords):
            common_names_str = ", ".join(f"{k!r}" for k in common_names)
            index_names_str = ", ".join(f"{k!r}" for k in index_coords)
            raise ValueError(
                f"cannot {action} {common_names_str}, which would corrupt "
                f"the following index built from coordinates {index_names_str}:\n"
                f"{index}"
            )