1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
|
import operator_benchmark as op_bench
import torch
import torch.nn as nn
"""
Microbenchmarks for MaxPool1d and AvgPool1d operators.
"""
# Configs for pool-1d ops
pool_1d_configs_short = op_bench.config_list(
attr_names=[
'kernel', 'stride', 'N', 'C', 'L'
],
attrs=[
[3, 1, 8, 256, 256],
],
cross_product_configs={
'device': ['cpu', 'cuda'],
},
tags=['short']
)
pool_1d_configs_long = op_bench.cross_product_configs(
kernel=[3],
stride=[1, 2],
N=[8, 16],
C=[3],
L=[128, 256],
device=['cpu', 'cuda'],
tags=['long']
)
pool_1d_ops_list = op_bench.op_list(
attr_names=['op_name', 'op_func'],
attrs=[
['MaxPool1d', nn.MaxPool1d],
['AvgPool1d', nn.AvgPool1d],
],
)
class Pool1dBenchmark(op_bench.TorchBenchmarkBase):
def init(self, kernel, stride, N, C, L, device, op_func):
self.inputs = {
"input": torch.rand(N, C, L, device=device)
}
self.op_func = op_func(kernel, stride=stride)
def forward(self, input):
return self.op_func(input)
op_bench.generate_pt_tests_from_op_list(pool_1d_ops_list,
pool_1d_configs_short + pool_1d_configs_long,
Pool1dBenchmark)
"""
Microbenchmarks for MaxPool2d and AvgPool2d operators.
"""
# Configs for pool-2d ops
pool_2d_configs_short = op_bench.config_list(
attr_names=[
'kernel', 'stride', 'N', 'C', 'H', 'W'
],
attrs=[
[[3, 1], [2, 1], 1, 16, 32, 32],
],
cross_product_configs={
'device': ['cpu', 'cuda'],
},
tags=['short']
)
pool_2d_configs_long = op_bench.cross_product_configs(
kernel=[[3, 2], [3, 3]],
stride=[[2, 2]],
N=[8, 16],
C=[32],
H=[32, 64],
W=[32, 64],
device=['cpu', 'cuda'],
tags=['long']
)
pool_2d_ops_list = op_bench.op_list(
attr_names=['op_name', 'op_func'],
attrs=[
['MaxPool2d', nn.MaxPool2d],
['AvgPool2d', nn.AvgPool2d],
['AdaptiveMaxPool2d', lambda kernel, stride: nn.AdaptiveMaxPool2d(kernel)],
['FractionalMaxPool2d', lambda kernel, stride: nn.FractionalMaxPool2d(kernel, output_size=2)],
],
)
class Pool2dBenchmark(op_bench.TorchBenchmarkBase):
def init(self, kernel, stride, N, C, H, W, device, op_func):
self.inputs = {
"input": torch.rand(N, C, H, W, device=device)
}
self.op_func = op_func(kernel, stride=stride)
def forward(self, input):
return self.op_func(input)
op_bench.generate_pt_tests_from_op_list(pool_2d_ops_list,
pool_2d_configs_short + pool_2d_configs_long,
Pool2dBenchmark)
"""
Microbenchmarks for MaxPool3d and AvgPool3d operators.
"""
# Configs for pool-3d ops
pool_3d_configs_short = op_bench.config_list(
attr_names=[
'kernel', 'stride', 'N', 'C', 'D', 'H', 'W'
],
attrs=[
[[3, 1, 3], [2, 1, 2], 1, 16, 16, 32, 32],
],
cross_product_configs={
'device': ['cpu', 'cuda'],
},
tags=['short']
)
pool_3d_configs_long = op_bench.cross_product_configs(
kernel=[[3, 2, 3], [3, 3, 3]],
stride=[[2, 2, 2]],
N=[8, 16],
C=[32],
D=[32],
H=[32, 64],
W=[32, 64],
device=['cpu', 'cuda'],
tags=['long']
)
pool_3d_ops_list = op_bench.op_list(
attr_names=['op_name', 'op_func'],
attrs=[
['MaxPool3d', nn.MaxPool3d],
['AvgPool3d', nn.AvgPool3d],
['AdaptiveMaxPool3d', lambda kernel, stride: nn.AdaptiveMaxPool3d(kernel)],
['FractionalMaxPool3d', lambda kernel, stride: nn.FractionalMaxPool3d(kernel, output_size=2)],
],
)
class Pool3dBenchmark(op_bench.TorchBenchmarkBase):
def init(self, kernel, stride, N, C, D, H, W, device, op_func):
self.inputs = {
"input": torch.rand(N, C, D, H, W, device=device)
}
self.op_func = op_func(kernel, stride=stride)
def forward(self, input):
return self.op_func(input)
op_bench.generate_pt_tests_from_op_list(pool_3d_ops_list,
pool_3d_configs_short + pool_3d_configs_long,
Pool3dBenchmark)
if __name__ == "__main__":
op_bench.benchmark_runner.main()
|