1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
|
#!/usr/bin/env python
#file test_split_libraries.py
__author__ = "Rob Knight"
__copyright__ = "Copyright 2011, The QIIME Project" #consider project name
__credits__ = ["Rob Knight", "William Walters"] #remember to add yourself
__license__ = "GPL"
__version__ = "1.4.0"
__maintainer__ = "William Walters"
__email__ = "william.a.walters@colorado.edu"
__status__ = "Release"
from os.path import exists
from StringIO import StringIO
from numpy import array
from shutil import rmtree
from cogent import DNA
from cogent.util.unit_test import TestCase, main
from qiime.util import get_tmp_filename
from cogent.util.misc import remove_files
from qiime.split_libraries import (
expand_degeneracies, get_infile, count_mismatches,
ok_mm_primer, check_map, fasta_ids,
count_ambig, split_seq, primer_exceeds_mismatches,
check_barcode, make_histograms, SeqQualBad,
seq_exceeds_homopolymers, check_window_qual_scores, check_seqs,
local_align_primer_seq, preprocess
)
from qiime.parse import parse_qual_score
from qiime.util import create_dir
class FakeOutFile(object):
def __init__(self):
self.data = ""
def write(self,s):
self.data += s
class TopLevelTests(TestCase):
"""Tests of top-level functions"""
def setUp(self):
""" """
self.in_seqs_variable_len_bc1 = in_seqs_variable_len_bc1
self.bc_map_variable_len_bc1 = bc_map_variable_len_bc1
self.primer_seq_lens_variable_len_bc1 = primer_seq_lens_variable_len_bc1
self.all_primers_variable_len_bc1 = all_primers_variable_len_bc1
self.expected_fasta_variable_len_bc1 = expected_fasta_variable_len_bc1
self.in_seqs_variable_len_bc2 = in_seqs_variable_len_bc1
self.bc_map_variable_len_bc2 = bc_map_variable_len_bc2
self.primer_seq_lens_variable_len_bc2 = primer_seq_lens_variable_len_bc2
self.all_primers_variable_len_bc2 = all_primers_variable_len_bc2
self.expected_fasta_variable_len_bc2 = expected_fasta_variable_len_bc1
self.in_seqs_fixed_len_bc1 = in_seqs_fixed_len_bc1
self.bc_map_fixed_len_bc1 = bc_map_fixed_len_bc1
self.primer_seq_lens_fixed_len_bc1 = primer_seq_lens_fixed_len_bc1
self.all_primers_fixed_len_bc1 = all_primers_fixed_len_bc1
self.expected_fasta_fixed_len_bc1 = expected_fasta_fixed_len_bc1
self.in_seqs_fixed_len_bc2 = in_seqs_fixed_len_bc1
self.bc_map_fixed_len_bc2 = bc_map_fixed_len_bc1
self.primer_seq_lens_fixed_len_bc2 = primer_seq_lens_fixed_len_bc1
self.all_primers_fixed_len_bc2 = all_primers_fixed_len_bc1
self.expected_fasta_fixed_len_bc2 = expected_fasta_fixed_len_bc2
self.expected_fasta_fixed_len_bc1_no_primers = \
expected_fasta_fixed_len_bc1_no_primers
self.reverse_primers_fixed_len_bc1 =\
reverse_primers_fixed_len_bc1
self.in_seqs_reverse_primers =\
in_seqs_reverse_primers
self.expected_in_seqs_reverse_primers =\
expected_in_seqs_reverse_primers
self.in_seqs_reverse_primers_mismatch =\
in_seqs_reverse_primers_mismatch
self.expected_in_seqs_reverse_primers_mismatch =\
expected_in_seqs_reverse_primers_mismatch
self.expected_in_seqs_reverse_primers_full_remove =\
expected_in_seqs_reverse_primers_full_remove
self.expected_in_seqs_reverse_primers_mismatch_allowed =\
expected_in_seqs_reverse_primers_mismatch_allowed
self.expected_fasta_fixed_len_bc1_sliding_window =\
expected_fasta_fixed_len_bc1_sliding_window
self.in_seqs_fixed_len_extra_bc = in_seqs_fixed_len_extra_bc
self.expected_fasta_extra_bc = expected_fasta_extra_bc
self.expected_fasta_mad = expected_fasta_mad
self.sample_seqs_fna_file = sample_seqs_fna_file
self.expected_fasta_fixed_added_demultiplex =\
expected_fasta_fixed_added_demultiplex
self.in_seqs_added_demultiplex = in_seqs_added_demultiplex
self.bc_map_added_demultiplex = bc_map_added_demultiplex
self.bc_map_added_demultiplex_group = bc_map_added_demultiplex_group
self.expected_fasta_added_demultiplex_group =\
expected_fasta_added_demultiplex_group
self.in_seqs_fixed_len_bc1_qual_scores =\
in_seqs_fixed_len_bc1_qual_scores
self.sample_mapping = sample_mapping
self.sample_fasta_file = get_tmp_filename(prefix = "sample_seqs_",
suffix = ".fasta")
seq_file = open(self.sample_fasta_file, 'w')
seq_file.write("\n".join(self.in_seqs_fixed_len_extra_bc))
seq_file.close()
self.sample_qual_file = get_tmp_filename(prefix = "sample_qual_",
suffix = ".qual")
qual_file = open(self.sample_qual_file, "w")
qual_file.write("\n".join(self.in_seqs_fixed_len_bc1_qual_scores))
qual_file.close()
self.sample_mapping_file = get_tmp_filename(prefix = "sample_mapping_",
suffix = ".txt")
map_file = open(self.sample_mapping_file, "w")
map_file.write(self.sample_mapping)
map_file.close()
self.output_dir = get_tmp_filename(prefix = "split_libraries_",
suffix = "/")
create_dir(self.output_dir)
self._files_to_remove = \
[self.sample_fasta_file, self.sample_qual_file,
self.sample_mapping_file]
def tearDown(self):
if self._files_to_remove:
remove_files(self._files_to_remove)
if exists(self.output_dir):
rmtree(self.output_dir)
def test_check_window_qual_scores(self):
"""check_window_qual_scores returns False, index if window below qual
threshold."""
scores1 = [8,8,8,8,8,8,8,2,2,2,2,2]
self.assertEqual(check_window_qual_scores(scores1, 5, 5), (False, 5))
self.assertEqual(check_window_qual_scores(scores1, 10, 5), (True, 2))
# windowsize larger than qual score list works
self.assertEqual(check_window_qual_scores(scores1, 100, 5), (True, 0))
self.assertEqual(check_window_qual_scores([], 5, 1), True)
#check each base in its own window
self.assertEqual(check_window_qual_scores(scores1, 1, 2), (True, 11))
self.assertEqual(check_window_qual_scores(scores1, 1, 5), (False, 7))
def test_expand_degeneracies(self):
"""generate_possibilities should make possible strings"""
self.assertEqual(expand_degeneracies(['ACG']), ['ACG'])
self.assertEqual(expand_degeneracies(['RGY']),
['AGT', 'AGC', 'GGT', 'GGC'])
def test_get_infile(self):
"""get_infile should return filehandle"""
pass #not practically testable, but obvious file I/O
def test_count_mismatches(self):
"""count_mismatches should count mismatches correctly"""
self.assertEqual(count_mismatches('GG','GG',10), 0)
self.assertEqual(count_mismatches('GGG','AAA',10), 3)
self.assertEqual(count_mismatches('GGG','AAA',1), 2)
def test_ok_mm_primer(self):
"""ok_mm_primer should test that primer is within max mismatches"""
primers = ['AAAA', 'GGGG']
self.assertEqual(ok_mm_primer('AAAA', primers, 0), True)
self.assertEqual(ok_mm_primer('AAAA', primers, 3), True)
self.assertEqual(ok_mm_primer('CCCC', primers, 0), False)
self.assertEqual(ok_mm_primer('CCCA', primers, 3), True)
self.assertEqual(ok_mm_primer('CCCA', primers, 2), False)
self.assertEqual(ok_mm_primer('CCGG', primers, 2), True)
self.assertEqual(ok_mm_primer('CCGA', primers, 2), False)
def test_check_map(self):
"""check_map should return valid barcodes as expected"""
s = """#SampleID\tBarcodeSequence\tLinkerPrimerSequence\tX\tDescription
#fake data
x\tAA\tAC\t3\tsample_x
y\t"AC"\tAC\t4\t"sample_y"
z\tGG\tGC\t5\tsample_z"""
f = StringIO(s)
f.name='test.xls'
headers, id_map, barcode_to_sample_id, warnings, errors, \
primer_seqs_lens, all_primers = check_map(f,
disable_primer_check=False)
self.assertEqual(barcode_to_sample_id, {'AA':'x','AC':'y','GG':'z'})
self.assertEqual(errors, [])
self.assertEqual(warnings, [])
def test_check_map_primer_pool(self):
"""check_map should handle primer pools as expected"""
s = """#SampleID\tBarcodeSequence\tLinkerPrimerSequence\tX\tDescription
#fake data
x\tAA\tAC\t3\tsample_x
y\t"AC"\tAT,DC\t4\t"sample_y"
z\tGG\tGC\t5\tsample_z"""
f = StringIO(s)
f.name='test.xls'
headers, id_map, barcode_to_sample_id, warnings, errors, \
primer_seqs_lens, all_primers = check_map(f,
disable_primer_check=False)
self.assertEqual(barcode_to_sample_id, {'AA':'x','AC':'y','GG':'z'})
self.assertEqual(errors, [])
self.assertEqual(warnings, [])
# Returns all possible primers with lengths associated.
expected_all_primers = {'AC': 2, 'GC': 2, 'AT': 2, 'TC': 2}
self.assertEqual(all_primers, expected_all_primers)
# Returns all primers associated with each barcode.
expected_primer_seqs_lens = {'AA': {'AC': 2}, 'GG': {'GC': 2},
'AC': {'AC': 2, 'GC': 2, 'AT': 2, 'TC': 2}}
self.assertEqual(primer_seqs_lens, expected_primer_seqs_lens)
def test_fasta_ids(self):
"""fasta_ids should return list of ids in fasta files, no dups"""
first = StringIO('>x\nACT\n>y\nAAA')
first_copy = StringIO('>x\nACT\n>y\nAAA')
second = StringIO('>a\nGGG\n>b\nCCC')
self.assertEqual(fasta_ids([first, second]), set(['x','y','a','b']))
first.seek(0) #need to reset so we can read it again
self.assertRaises(ValueError, fasta_ids, [first,first_copy])
def test_count_ambig(self):
"""count_ambig should count ambiguous bases in seq"""
s = 'ACC'
s2 = 'RNY'
s3 = 'NA'
self.assertEqual(count_ambig(s), 0)
self.assertEqual(count_ambig(s2), 3)
self.assertEqual(count_ambig(s3), 1)
self.assertEqual(count_ambig(''), 0)
def test_split_seq(self):
"""split_seq should split seq into pieces"""
seq = 'AAAACCCCCGTGTGTGT'
barcode, primer, remainder = split_seq(seq, 4, 5)
self.assertEqual(barcode, 'AAAA')
self.assertEqual(primer, 'CCCCC')
self.assertEqual(remainder, 'GTGTGTGT')
def test_primer_exceeds_mismatches(self):
"""primer_exceeds_mismatches returns True if too many mismatches"""
primers = ['AAAA', 'TTTT']
exact = 'AAAA'
mismatch_ok = 'AAAT'
mismatch_bad = 'GGGG'
self.assertEqual(primer_exceeds_mismatches(exact, primers, 0), False)
self.assertEqual(primer_exceeds_mismatches(mismatch_ok, primers, 1),
False)
self.assertEqual(primer_exceeds_mismatches(mismatch_bad, primers, 2),
True)
# Tests for local alignment functions
def test_local_align_primer_seq_fwd_rev_match(self):
"local_align function can handle fwd/rev primers with no mismatches"
# forward primer
primer = DNA.makeSequence('TAGC',Name='F5')
seq = 'TAGC'
# mismatch_count, hit_start
expected = (0,0)
actual = local_align_primer_seq(primer,seq)
self.assertEqual(actual,expected)
primer = DNA.makeSequence('TAGC',Name='F5')
seq = 'TAGCCCCC'
# mismatch_count, hit_start
expected = (0,0)
actual = local_align_primer_seq(primer,seq)
self.assertEqual(actual,expected)
primer = DNA.makeSequence('TAGC',Name='F5')
seq = 'CCCTAGCCCCC'
# mismatch_count, hit_start
expected = (0,3)
actual = local_align_primer_seq(primer,seq)
self.assertEqual(actual,expected)
# different length primer
primer = DNA.makeSequence('GTTTAGC',Name='F5')
seq = 'GTTTAGC'
# mismatch_count, hit_start
expected = (0,0)
actual = local_align_primer_seq(primer,seq)
self.assertEqual(actual,expected)
primer = DNA.makeSequence('GCTC',Name='R5')
seq = 'TAGCCCCC'
# mismatch_count, hit_start
expected = (1,2)
actual = local_align_primer_seq(primer,seq)
self.assertEqual(actual,expected)
primer = DNA.makeSequence('GCTA',Name='R5')
seq = 'CCCTAGCCCCC'
# mismatch_count, hit_start
expected = (1,1)
actual = local_align_primer_seq(primer,seq)
self.assertEqual(actual,expected)
def test_local_align_primer_seq_fwd_rev_match_ambig(self):
"local_align function can handle fwd/rev primers with ambigs"
primer = DNA.makeSequence('TASC',Name='F5')
seq = 'TAGC'
# primer_hit, target, mismatch_count, hit_start
expected = (0,0)
actual = local_align_primer_seq(primer,seq)
self.assertEqual(actual,expected)
def test_local_align_primer_seq_mm(self):
"local_align function can handle fwd/rev primers with mismatches"
# forward primer
primer = DNA.makeSequence('AAAAACTTTTT',Name='F5')
seq = 'AAAAAGTTTTT'
# mismatch_count, hit_start
expected = (1,0)
actual = local_align_primer_seq(primer,seq)
self.assertEqual(actual,expected)
# forward primer
primer = DNA.makeSequence('AAAACCTTTTT',Name='F5')
seq = 'AAAAAGTTTTT'
# mismatch_count, hit_start
expected = (2,0)
actual = local_align_primer_seq(primer,seq)
self.assertEqual(actual,expected)
def test_local_align_primer_seq_indels_middle(self):
"local_align function can handle fwd/rev primers with indels in middle of seq"
# Insertion in target sequence
primer = DNA.makeSequence('CGAATCGCTATCG',Name='F5')
seq = 'CGAATCTGCTATCG'
# mismatch count, hit_start
expected = (1,0)
actual = local_align_primer_seq(primer,seq)
self.assertEqual(actual,expected)
# Deletion in target sequence
primer = DNA.makeSequence('CGAATCGCTATCG',Name='F5')
seq = 'CGAATGCTATCG'
# mismatch_count, hit_start
expected = (1,0)
actual = local_align_primer_seq(primer,seq)
self.assertEqual(actual,expected)
def test_local_align_primer_seq_multiple_mismatch_indel(self):
"local_align function can handle fwd/rev primers with indels and mismatches"
# multiple insertions
primer = DNA.makeSequence('ATCGGGCGATCATT',Name='F5')
seq = 'ATCGGGTTCGATCATT'
# mismatch_count, hit_start
expected = (2,0)
actual = local_align_primer_seq(primer,seq)
self.assertEqual(actual,expected)
# two deletions
primer = DNA.makeSequence('ACGGTACAGTGG',Name='F5')
seq = 'ACGGCAGTGG'
# mismatch_count, hit_start
expected = (2,0)
actual = local_align_primer_seq(primer,seq)
self.assertEqual(actual,expected)
# deletion and mismatch
primer = DNA.makeSequence('CATCGTCGATCA',Name='F5')
seq = 'CCTCGTGATCA'
# mismatch_count, hit_start
expected = (2,0)
actual = local_align_primer_seq(primer,seq)
self.assertEqual(actual,expected)
def test_seq_exceeds_homopolymers(self):
"""seq_exceeds_homopolymers returns True if too many homopolymers"""
self.assertEqual(seq_exceeds_homopolymers('AAACGA',3), False)
self.assertEqual(seq_exceeds_homopolymers('AAACGA',2), True)
self.assertEqual(seq_exceeds_homopolymers('AAACGA',1), True)
self.assertEqual(seq_exceeds_homopolymers('AAACGATTTT',3), True)
def test_check_barcode(self):
"""check_barcode should return False if barcode ok, True otherwise"""
self.assertEqual(check_barcode('AA', None, ['AA']), (False, 'AA', \
False))
self.assertEqual(check_barcode('GCATCGTCCACA', 'golay_12',
['GCATCGTCAACA']), (2, 'GCATCGTCAACA', True))
# num errors for golay code is currently in bits
self.assertEqual(check_barcode('GGTT', 4, ['TTTT']), (2, 'TTTT', True))
def test_make_histograms(self):
"""make_histograms should make correct histograms"""
pre_lengths = [100, 110, 105, 130, 135]
post_lengths = [130, 135]
pre_hist, post_hist, bin_edges = \
make_histograms(pre_lengths, post_lengths)
self.assertEqual(pre_hist, array([2,1,0,2]))
self.assertEqual(post_hist, array([0,0,0,2]))
self.assertEqual(bin_edges, array([100,110,120,130,140]))
def test_check_seqs_sliding_window(self):
"""check_seqs handles sliding window truncations/removal """
in_seqs = self.in_seqs_fixed_len_bc1
bc_map = self.bc_map_fixed_len_bc1
primer_seq_lens = self.primer_seq_lens_fixed_len_bc1
all_primers = self.all_primers_fixed_len_bc1
expected = self.expected_fasta_fixed_len_bc1_sliding_window
out_f = open(get_tmp_filename(prefix = "sample_seqs_",
suffix = ".fna.tmp"), "w")
self._files_to_remove.append(out_f.name.replace('.tmp',''))
actual = check_seqs(
fasta_out=out_f,
fasta_files = [in_seqs],
starting_ix=0,
valid_map = bc_map,
qual_mappings=parse_qual_score(self.in_seqs_fixed_len_bc1_qual_scores),
filters=[],
barcode_len=12,
keep_primer=False,
keep_barcode=False,
barcode_type="golay_12",
max_bc_errors=1.5,
retain_unassigned_reads=False,
attempt_bc_correction=True,
primer_seqs_lens=primer_seq_lens,
all_primers=all_primers,
max_primer_mm=0,
disable_primer_check=False,
reverse_primers = 'disable',
rev_primers = {},
qual_out = False,
qual_score_window=5,
discard_bad_windows=False,
min_qual_score=25,
min_seq_len=200)
out_f = open(out_f.name.replace('.tmp',''), "U")
actual_results = '\n'.join([line.strip() for line in out_f])
self.assertEqual(actual_results, expected)
def test_check_seqs_variable_len_bc(self):
"""check_seqs handles variable length barcodes """
# Simple test with variable length primers
in_seqs = self.in_seqs_variable_len_bc1
bc_map = self.bc_map_variable_len_bc1
primer_seq_lens = self.primer_seq_lens_variable_len_bc1
all_primers = self.all_primers_variable_len_bc1
expected = self.expected_fasta_variable_len_bc1
out_f = open(get_tmp_filename(prefix = "sample_seqs_",
suffix = ".fna.tmp"), "w")
self._files_to_remove.append(out_f.name.replace('.tmp',''))
actual = check_seqs(
fasta_out=out_f,
fasta_files = [in_seqs],
starting_ix=0,
valid_map = bc_map,
qual_mappings={},
filters=[],
barcode_len=None,
keep_primer=False,
keep_barcode=False,
barcode_type="variable_length",
max_bc_errors=0,
retain_unassigned_reads=False,
attempt_bc_correction=False,
primer_seqs_lens=primer_seq_lens,
all_primers=all_primers,
max_primer_mm=0,
disable_primer_check=False,
reverse_primers = 'disable',
rev_primers = {},
qual_out = False)
out_f = open(out_f.name.replace('.tmp',''), "U")
actual_results = '\n'.join([line.strip() for line in out_f])
self.assertEqual(actual_results, expected)
# Second test, includes truncated form of one of the barcodes-the
# longest barcode should be found first
in_seqs = self.in_seqs_variable_len_bc2
bc_map = self.bc_map_variable_len_bc2
primer_seq_lens = self.primer_seq_lens_variable_len_bc2
all_primers = self.all_primers_variable_len_bc2
expected = self.expected_fasta_variable_len_bc2
out_f = open(get_tmp_filename(prefix = "sample_seqs_",
suffix = ".fna.tmp"), "w")
self._files_to_remove.append(out_f.name.replace('.tmp',''))
actual = check_seqs(
fasta_out=out_f,
fasta_files = [in_seqs],
starting_ix=0,
valid_map = bc_map,
qual_mappings={},
filters=[],
barcode_len=None,
keep_primer=False,
keep_barcode=False,
barcode_type="variable_length",
max_bc_errors=0,
retain_unassigned_reads=False,
attempt_bc_correction=False,
primer_seqs_lens=primer_seq_lens,
all_primers=all_primers,
max_primer_mm=0,
disable_primer_check=False,
reverse_primers = 'disable',
rev_primers = {},
qual_out = False)
out_f = open(out_f.name.replace('.tmp',''), "U")
actual_results = '\n'.join([line.strip() for line in out_f])
self.assertEqual(actual_results, expected)
def test_check_seqs_fixed_len_bc(self):
"""check_seqs handles fixed length barcodes """
# Third test, fixed length barcodes, fixed length primers + one
# degenerate test. Should correct one of the passed barcodes
in_seqs = self.in_seqs_fixed_len_bc1
bc_map = self.bc_map_fixed_len_bc1
primer_seq_lens = self.primer_seq_lens_fixed_len_bc1
all_primers = self.all_primers_fixed_len_bc1
expected = self.expected_fasta_fixed_len_bc1
out_f = open(get_tmp_filename(prefix = "sample_seqs_",
suffix = ".fna.tmp"), "w")
self._files_to_remove.append(out_f.name.replace('.tmp',''))
actual = check_seqs(
fasta_out=out_f,
fasta_files = [in_seqs],
starting_ix=0,
valid_map = bc_map,
qual_mappings={},
filters=[],
barcode_len=12,
keep_primer=False,
keep_barcode=False,
barcode_type="golay_12",
max_bc_errors=1.5,
retain_unassigned_reads=False,
attempt_bc_correction=True,
primer_seqs_lens=primer_seq_lens,
all_primers=all_primers,
max_primer_mm=0,
disable_primer_check=False,
reverse_primers = 'disable',
rev_primers = {},
qual_out = False)
out_f = open(out_f.name.replace('.tmp',''), "U")
actual_results = '\n'.join([line.strip() for line in out_f])
self.assertEqual(actual_results, expected)
# Fourth test-set max_bc_errors to 0, and allow some primer mismatches
in_seqs = self.in_seqs_fixed_len_bc2
bc_map = self.bc_map_fixed_len_bc2
primer_seq_lens = self.primer_seq_lens_fixed_len_bc2
all_primers = self.all_primers_fixed_len_bc2
expected = self.expected_fasta_fixed_len_bc2
out_f = open(get_tmp_filename(prefix = "sample_seqs_",
suffix = ".fna.tmp"), "w")
self._files_to_remove.append(out_f.name.replace('.tmp',''))
actual = check_seqs(
fasta_out=out_f,
fasta_files = [in_seqs],
starting_ix=0,
valid_map = bc_map,
qual_mappings={},
filters=[],
barcode_len=12,
keep_primer=False,
keep_barcode=False,
barcode_type="golay_12",
max_bc_errors=0.5,
retain_unassigned_reads=False,
attempt_bc_correction=True,
primer_seqs_lens=primer_seq_lens,
all_primers=all_primers,
max_primer_mm=1,
disable_primer_check=False,
reverse_primers = 'disable',
rev_primers = {},
qual_out = False)
out_f = open(out_f.name.replace('.tmp',''), "U")
actual_results = '\n'.join([line.strip() for line in out_f])
self.assertEqual(actual_results, expected)
def test_check_seqs_no_primers(self):
"""check_seqs handles disabled primers """
# Fifth test, no primers, fixed length barcodes
# Should correct one of the passed barcodes
in_seqs = self.in_seqs_fixed_len_bc1
bc_map = self.bc_map_fixed_len_bc1
primer_seq_lens = {}
all_primers = {}
expected = self.expected_fasta_fixed_len_bc1_no_primers
out_f = open(get_tmp_filename(prefix = "sample_seqs_",
suffix = ".fna.tmp"), "w")
self._files_to_remove.append(out_f.name.replace('.tmp',''))
actual = check_seqs(
fasta_out=out_f,
fasta_files = [in_seqs],
starting_ix=0,
valid_map = bc_map,
qual_mappings={},
filters=[],
barcode_len=12,
keep_primer=False,
keep_barcode=False,
barcode_type="golay_12",
max_bc_errors=1.5,
retain_unassigned_reads=False,
attempt_bc_correction=True,
primer_seqs_lens=primer_seq_lens,
all_primers=all_primers,
max_primer_mm=0,
disable_primer_check=True,
reverse_primers = 'disable',
rev_primers = {},
qual_out = False)
out_f = open(out_f.name.replace('.tmp',''), "U")
actual_results = '\n'.join([line.strip() for line in out_f])
self.assertEqual(actual_results, expected)
def test_check_seqs_reverse_primers(self):
"""check_seqs handles truncating reverse primers """
# Initial test, should truncate all seqs
in_seqs = self.in_seqs_reverse_primers
bc_map = self.bc_map_fixed_len_bc1
primer_seq_lens = self.primer_seq_lens_fixed_len_bc1
all_primers = self.all_primers_fixed_len_bc1
expected = self.expected_in_seqs_reverse_primers
rev_primers_test = self.reverse_primers_fixed_len_bc1
out_f = open(get_tmp_filename(prefix = "sample_seqs_",
suffix = ".fna.tmp"), "w")
self._files_to_remove.append(out_f.name.replace('.tmp',''))
actual = check_seqs(
fasta_out=out_f,
fasta_files = [in_seqs],
starting_ix=0,
valid_map = bc_map,
qual_mappings={},
filters=[],
barcode_len=12,
keep_primer=False,
keep_barcode=False,
barcode_type="golay_12",
max_bc_errors=1.5,
retain_unassigned_reads=False,
attempt_bc_correction=True,
primer_seqs_lens=primer_seq_lens,
all_primers=all_primers,
max_primer_mm=0,
disable_primer_check=False,
reverse_primers = 'truncate_only',
rev_primers = rev_primers_test,
qual_out = False)
out_f = open(out_f.name.replace('.tmp',''), "U")
actual_results = '\n'.join([line.strip() for line in out_f])
self.assertEqual(actual_results, expected)
# Second test with a mismatch in seq a, should not find reverse primer
# and will write out entire sequence.
in_seqs = self.in_seqs_reverse_primers_mismatch
bc_map = self.bc_map_fixed_len_bc1
primer_seq_lens = self.primer_seq_lens_fixed_len_bc1
all_primers = self.all_primers_fixed_len_bc1
expected = self.expected_in_seqs_reverse_primers_mismatch
rev_primers_test = self.reverse_primers_fixed_len_bc1
out_f = open(get_tmp_filename(prefix = "sample_seqs_",
suffix = ".fna.tmp"), "w")
self._files_to_remove.append(out_f.name.replace('.tmp',''))
actual = check_seqs(
fasta_out=out_f,
fasta_files = [in_seqs],
starting_ix=0,
valid_map = bc_map,
qual_mappings={},
filters=[],
barcode_len=12,
keep_primer=False,
keep_barcode=False,
barcode_type="golay_12",
max_bc_errors=1.5,
retain_unassigned_reads=False,
attempt_bc_correction=True,
primer_seqs_lens=primer_seq_lens,
all_primers=all_primers,
max_primer_mm=0,
disable_primer_check=False,
reverse_primers = 'truncate_only',
rev_primers = rev_primers_test,
qual_out = False)
out_f = open(out_f.name.replace('.tmp',''), "U")
actual_results = '\n'.join([line.strip() for line in out_f])
self.assertEqual(actual_results, expected)
# With reverse_primer_mismatches allowed set to 1,
# should restore truncation.
in_seqs = self.in_seqs_reverse_primers_mismatch
bc_map = self.bc_map_fixed_len_bc1
primer_seq_lens = self.primer_seq_lens_fixed_len_bc1
all_primers = self.all_primers_fixed_len_bc1
expected = self.expected_in_seqs_reverse_primers_mismatch_allowed
rev_primers_test = self.reverse_primers_fixed_len_bc1
out_f = open(get_tmp_filename(prefix = "sample_seqs_",
suffix = ".fna.tmp"), "w")
self._files_to_remove.append(out_f.name.replace('.tmp',''))
actual = check_seqs(
fasta_out=out_f,
fasta_files = [in_seqs],
starting_ix=0,
valid_map = bc_map,
qual_mappings={},
filters=[],
barcode_len=12,
keep_primer=False,
keep_barcode=False,
barcode_type="golay_12",
max_bc_errors=1.5,
retain_unassigned_reads=False,
attempt_bc_correction=True,
primer_seqs_lens=primer_seq_lens,
all_primers=all_primers,
max_primer_mm=0,
disable_primer_check=False,
reverse_primers = 'truncate_only',
rev_primers = rev_primers_test,
qual_out = False,
reverse_primer_mismatches=1)
out_f = open(out_f.name.replace('.tmp',''), "U")
actual_results = '\n'.join([line.strip() for line in out_f])
self.assertEqual(actual_results, expected)
# Testing truncate_remove, which should not write sequences where
# the reverse primer is not found
in_seqs = self.in_seqs_reverse_primers
bc_map = self.bc_map_fixed_len_bc1
primer_seq_lens = self.primer_seq_lens_fixed_len_bc1
all_primers = self.all_primers_fixed_len_bc1
expected = self.expected_in_seqs_reverse_primers_full_remove
rev_primers_test = self.reverse_primers_fixed_len_bc1
out_f = open(get_tmp_filename(prefix = "sample_seqs_",
suffix = ".fna.tmp"), "w")
self._files_to_remove.append(out_f.name.replace('.tmp',''))
actual = check_seqs(
fasta_out=out_f,
fasta_files = [in_seqs],
starting_ix=0,
valid_map = bc_map,
qual_mappings={},
filters=[],
barcode_len=12,
keep_primer=False,
keep_barcode=False,
barcode_type="golay_12",
max_bc_errors=1.5,
retain_unassigned_reads=False,
attempt_bc_correction=True,
primer_seqs_lens=primer_seq_lens,
all_primers=all_primers,
max_primer_mm=0,
disable_primer_check=False,
reverse_primers = 'truncate_remove',
rev_primers = rev_primers_test,
qual_out = False)
out_f = open(out_f.name.replace('.tmp',''), "U")
actual_results = '\n'.join([line.strip() for line in out_f])
self.assertEqual(actual_results, expected)
# Testing truncate_remove, with reverse_primer_mismatches set to 1
# should allow all 4 sequences to be written, truncated
in_seqs = self.in_seqs_reverse_primers_mismatch
bc_map = self.bc_map_fixed_len_bc1
primer_seq_lens = self.primer_seq_lens_fixed_len_bc1
all_primers = self.all_primers_fixed_len_bc1
expected = self.expected_in_seqs_reverse_primers_mismatch_allowed
rev_primers_test = self.reverse_primers_fixed_len_bc1
out_f = open(get_tmp_filename(prefix = "sample_seqs_",
suffix = ".fna.tmp"), "w")
self._files_to_remove.append(out_f.name.replace('.tmp',''))
actual = check_seqs(
fasta_out=out_f,
fasta_files = [in_seqs],
starting_ix=0,
valid_map = bc_map,
qual_mappings={},
filters=[],
barcode_len=12,
keep_primer=False,
keep_barcode=False,
barcode_type="golay_12",
max_bc_errors=1.5,
retain_unassigned_reads=False,
attempt_bc_correction=True,
primer_seqs_lens=primer_seq_lens,
all_primers=all_primers,
max_primer_mm=1,
disable_primer_check=False,
reverse_primers = 'truncate_remove',
rev_primers = rev_primers_test,
qual_out = False,
reverse_primer_mismatches=1)
out_f = open(out_f.name.replace('.tmp',''), "U")
actual_results = '\n'.join([line.strip() for line in out_f])
self.assertEqual(actual_results, expected)
def test_check_seqs_qual_out(self):
""" check_seqs handles optional quality output file """
in_seqs = self.in_seqs_fixed_len_bc1
bc_map = self.bc_map_fixed_len_bc1
primer_seq_lens = self.primer_seq_lens_fixed_len_bc1
all_primers = self.all_primers_fixed_len_bc1
expected = expected_qual_fixed_len_bc1
out_f = open(get_tmp_filename(prefix = "sample_seqs_",
suffix = ".fna.tmp"), "w")
self._files_to_remove.append(out_f.name.replace('.tmp',''))
qual_out_f = FakeOutFile()
actual = check_seqs(
fasta_out=out_f,
fasta_files = [in_seqs],
starting_ix=0,
valid_map = bc_map,
qual_mappings=parse_qual_score(self.in_seqs_fixed_len_bc1_qual_scores),
filters=[],
barcode_len=12,
keep_primer=False,
keep_barcode=False,
barcode_type="golay_12",
max_bc_errors=1.5,
retain_unassigned_reads=False,
attempt_bc_correction=True,
primer_seqs_lens=primer_seq_lens,
all_primers=all_primers,
max_primer_mm=0,
disable_primer_check=False,
reverse_primers = 'disable',
rev_primers = {},
qual_out = qual_out_f)
self.assertEqual(qual_out_f.data,expected)
def test_check_seqs_retain_unassigned_reads(self):
""" check_seqs handles retaining Unassigned reads """
in_seqs = self.in_seqs_fixed_len_extra_bc
bc_map = self.bc_map_fixed_len_bc1
primer_seq_lens = self.primer_seq_lens_fixed_len_bc1
all_primers = self.all_primers_fixed_len_bc1
expected = self.expected_fasta_extra_bc
out_f = open(get_tmp_filename(prefix = "sample_seqs_",
suffix = ".fna.tmp"), "w")
self._files_to_remove.append(out_f.name.replace('.tmp',''))
actual = check_seqs(
fasta_out=out_f,
fasta_files = [in_seqs],
starting_ix=0,
valid_map = bc_map,
qual_mappings={},
filters=[],
barcode_len=12,
keep_primer=False,
keep_barcode=False,
barcode_type="golay_12",
max_bc_errors=1.5,
retain_unassigned_reads=True,
attempt_bc_correction=True,
primer_seqs_lens=primer_seq_lens,
all_primers=all_primers,
max_primer_mm=0,
disable_primer_check=False,
reverse_primers = 'disable',
rev_primers = {},
qual_out = False)
out_f = open(out_f.name.replace('.tmp',''), "U")
actual_results = '\n'.join([line.strip() for line in out_f])
self.assertEqual(actual_results, expected)
def test_check_seqs_median_abs_dev(self):
""" check_seqs handles median absolute deviation calculations """
in_seqs = self.in_seqs_fixed_len_bc1
bc_map = self.bc_map_fixed_len_bc1
primer_seq_lens = self.primer_seq_lens_fixed_len_bc1
all_primers = self.all_primers_fixed_len_bc1
expected = self.expected_fasta_mad
out_f = open(get_tmp_filename(prefix = "sample_seqs_",
suffix = ".fna.tmp"), "w")
self._files_to_remove.append(out_f.name.replace('.tmp',''))
actual = check_seqs(
fasta_out=out_f,
fasta_files = [in_seqs],
starting_ix=0,
valid_map = bc_map,
qual_mappings={},
filters=[],
barcode_len=12,
keep_primer=False,
keep_barcode=False,
barcode_type="golay_12",
max_bc_errors=1.5,
retain_unassigned_reads=False,
attempt_bc_correction=True,
primer_seqs_lens=primer_seq_lens,
all_primers=all_primers,
max_primer_mm=0,
disable_primer_check=False,
reverse_primers = 'disable',
rev_primers = {},
qual_out = False,
median_length_filtering=2.0)
out_f = open(out_f.name.replace('.tmp',''), "U")
actual_results = '\n'.join([line.strip() for line in out_f])
self.assertEqual(actual_results, expected)
def test_check_seqs_added_demultiplex(self):
"""check_seqs handles added demultiplex field"""
# Test added demultiplex for the run_prefix
in_seqs = self.in_seqs_added_demultiplex
bc_map = self.bc_map_added_demultiplex
primer_seq_lens = self.primer_seq_lens_fixed_len_bc1
all_primers = self.all_primers_fixed_len_bc1
expected = self.expected_fasta_fixed_added_demultiplex
out_f = open(get_tmp_filename(prefix = "sample_seqs_",
suffix = ".fna.tmp"), "w")
self._files_to_remove.append(out_f.name.replace('.tmp',''))
actual = check_seqs(
fasta_out=out_f,
fasta_files = [in_seqs],
starting_ix=0,
valid_map = bc_map,
qual_mappings={},
filters=[],
barcode_len=12,
keep_primer=False,
keep_barcode=False,
barcode_type="golay_12",
max_bc_errors=1.5,
retain_unassigned_reads=False,
attempt_bc_correction=True,
primer_seqs_lens=primer_seq_lens,
all_primers=all_primers,
max_primer_mm=0,
disable_primer_check=False,
reverse_primers = 'disable',
rev_primers = {},
qual_out = False,
added_demultiplex_field='run_prefix')
out_f = open(out_f.name.replace('.tmp',''), "U")
actual_results = '\n'.join([line.strip() for line in out_f])
self.assertEqual(actual_results, expected)
# Demultiplex by the 'group' in the fasta label
in_seqs = self.in_seqs_added_demultiplex
bc_map = self.bc_map_added_demultiplex_group
primer_seq_lens = self.primer_seq_lens_fixed_len_bc1
all_primers = self.all_primers_fixed_len_bc1
expected = self.expected_fasta_added_demultiplex_group
out_f = open(get_tmp_filename(prefix = "sample_seqs_",
suffix = ".fna.tmp"), "w")
self._files_to_remove.append(out_f.name.replace('.tmp',''))
actual = check_seqs(
fasta_out=out_f,
fasta_files = [in_seqs],
starting_ix=0,
valid_map = bc_map,
qual_mappings={},
filters=[],
barcode_len=12,
keep_primer=False,
keep_barcode=False,
barcode_type="golay_12",
max_bc_errors=1.5,
retain_unassigned_reads=False,
attempt_bc_correction=True,
primer_seqs_lens=primer_seq_lens,
all_primers=all_primers,
max_primer_mm=0,
disable_primer_check=False,
reverse_primers = 'disable',
rev_primers = {},
qual_out = False,
added_demultiplex_field='group')
out_f = open(out_f.name.replace('.tmp',''), "U")
actual_results = '\n'.join([line.strip() for line in out_f])
self.assertEqual(actual_results, expected)
def test_preprocess(self):
""" Overall module functionality test """
# Should discard all reads due to sequence length being too short
fasta_files = [self.sample_fasta_file]
qual_files = [self.sample_qual_file]
mapping_file = self.sample_mapping_file
barcode_type="golay_12"
min_seq_len=200
max_seq_len=1000
min_qual_score=25
starting_ix=1
keep_primer=False
max_ambig=0
max_primer_mm=1
trim_seq_len=True
dir_prefix=self.output_dir
max_bc_errors=2
max_homopolymer=4
retain_unassigned_reads=False
keep_barcode=False
attempt_bc_correction=True
qual_score_window=0
disable_primer_check=False
reverse_primers='disable'
record_qual_scores=False
discard_bad_windows=False
median_length_filtering=None
added_demultiplex_field=None
preprocess(fasta_files,
qual_files,
mapping_file,
barcode_type,
min_seq_len,
max_seq_len,
min_qual_score,
starting_ix,
keep_primer,
max_ambig,
max_primer_mm,
trim_seq_len,
dir_prefix,
max_bc_errors,
max_homopolymer,
retain_unassigned_reads,
keep_barcode,
attempt_bc_correction,
qual_score_window,
disable_primer_check,
reverse_primers,
record_qual_scores,
discard_bad_windows,
median_length_filtering,
added_demultiplex_field)
output_seqs = open(dir_prefix + "seqs.fna", "U")
output_log = open(dir_prefix + "split_library_log.txt", "U")
output_histograms = open(dir_prefix + "histograms.txt", "U")
actual_seqs = [line for line in output_seqs]
actual_log = [line for line in output_log]
actual_histograms = [line for line in output_histograms]
expected_seqs = []
expected_log = ['Number raw input seqs\t6\n', '\n', 'Length outside bounds of 200 and 1000\t6\n', 'Num ambiguous bases exceeds limit of 0\t0\n', 'Missing Qual Score\t0\n', 'Mean qual score below minimum of 25\t0\n', 'Max homopolymer run exceeds limit of 4\t0\n', 'Num mismatches in primer exceeds limit of 1: 0\n', '\n', 'Raw len min/max/avg\t25.0/35.0/31.2\n', '\n', 'Barcodes corrected/not\t0/0\n', 'Uncorrected barcodes will not be written to the output fasta file.\n', 'Corrected barcodes will be written with the appropriate barcode category.\n', 'Corrected but unassigned sequences will not be written unless --retain_unassigned_reads is enabled.\n', '\n', 'Total valid barcodes that are not in mapping file\t0\n', 'Sequences associated with valid barcodes that are not in the mapping file will not be written.\n', '\n', 'Barcodes in mapping file\n', 'Sample\tSequence Count\tBarcode\n', 's2\t0\tAGAGTCCTGAGC\n', 's1\t0\tACACATGTCTAC\n', 's3\t0\tAACTGTGCGTAC\n', '\n', 'Total number seqs written\t0']
expected_histograms = ['Length\tBefore\tAfter\n', '20\t2\t0\n', '30\t4\t0']
self.assertEqual(actual_seqs, expected_seqs)
self.assertEqual(actual_log, expected_log)
self.assertEqual(actual_histograms, expected_histograms)
# With minimal length at 5, should retain 4 sequences
fasta_files = [self.sample_fasta_file]
qual_files = [self.sample_qual_file]
mapping_file = self.sample_mapping_file
barcode_type="golay_12"
min_seq_len=5
max_seq_len=1000
min_qual_score=25
starting_ix=1
keep_primer=False
max_ambig=0
max_primer_mm=0
trim_seq_len=False
dir_prefix=self.output_dir
max_bc_errors=2
max_homopolymer=4
retain_unassigned_reads=False
keep_barcode=False
attempt_bc_correction=True
qual_score_window=0
disable_primer_check=False
reverse_primers='disable'
record_qual_scores=False
discard_bad_windows=False
median_length_filtering=None
added_demultiplex_field=None
preprocess(fasta_files,
qual_files,
mapping_file,
barcode_type,
min_seq_len,
max_seq_len,
min_qual_score,
starting_ix,
keep_primer,
max_ambig,
max_primer_mm,
trim_seq_len,
dir_prefix,
max_bc_errors,
max_homopolymer,
retain_unassigned_reads,
keep_barcode,
attempt_bc_correction,
qual_score_window,
disable_primer_check,
reverse_primers,
record_qual_scores,
discard_bad_windows,
median_length_filtering,
added_demultiplex_field)
output_seqs = open(dir_prefix + "seqs.fna", "U")
output_log = open(dir_prefix + "split_library_log.txt", "U")
output_histograms = open(dir_prefix + "histograms.txt", "U")
actual_seqs = [line for line in output_seqs]
actual_log = [line for line in output_log]
actual_histograms = [line for line in output_histograms]
expected_seqs = ['>s1_1 a orig_bc=ACACATGTCTAC new_bc=ACACATGTCTAC bc_diffs=0\n', 'CCCTTATATATATAT\n', '>s2_2 b orig_bc=AGAGTCCTGAGC new_bc=AGAGTCCTGAGC bc_diffs=0\n', 'CCCTTTCCA\n', '>s3_3 c orig_bc=AACTGTGCGTAC new_bc=AACTGTGCGTAC bc_diffs=0\n', 'AACCGGCCGGTT\n', '>s1_4 d orig_bc=ACTCATGTCTAC new_bc=ACACATGTCTAC bc_diffs=1\n', 'CCCTTACTATATAT\n']
expected_log = ['Number raw input seqs\t6\n', '\n', 'Length outside bounds of 5 and 1000\t0\n', 'Num ambiguous bases exceeds limit of 0\t0\n', 'Missing Qual Score\t0\n', 'Mean qual score below minimum of 25\t0\n', 'Max homopolymer run exceeds limit of 4\t0\n', 'Num mismatches in primer exceeds limit of 0: 2\n', '\n', 'Raw len min/max/avg\t25.0/35.0/31.2\n', 'Wrote len min/max/avg\t29.0/35.0/32.5\n', '\n', 'Barcodes corrected/not\t1/0\n', 'Uncorrected barcodes will not be written to the output fasta file.\n', 'Corrected barcodes will be written with the appropriate barcode category.\n', 'Corrected but unassigned sequences will not be written unless --retain_unassigned_reads is enabled.\n', '\n', 'Total valid barcodes that are not in mapping file\t0\n', 'Sequences associated with valid barcodes that are not in the mapping file will not be written.\n', '\n', 'Barcodes in mapping file\n', 'Num Samples\t3\n', 'Sample ct min/max/mean: 1 / 2 / 1.33\n', 'Sample\tSequence Count\tBarcode\n', 's1\t2\tACACATGTCTAC\n', 's2\t1\tAGAGTCCTGAGC\n', 's3\t1\tAACTGTGCGTAC\n', '\n', 'Total number seqs written\t4']
expected_histograms = ['Length\tBefore\tAfter\n', '20\t2\t1\n', '30\t4\t3']
self.assertEqual(actual_seqs, expected_seqs)
self.assertEqual(actual_log, expected_log)
self.assertEqual(actual_histograms, expected_histograms)
# Added sliding window should discard read "b"
fasta_files = [self.sample_fasta_file]
qual_files = [self.sample_qual_file]
mapping_file = self.sample_mapping_file
barcode_type="golay_12"
min_seq_len=5
max_seq_len=1000
min_qual_score=22
starting_ix=1
keep_primer=False
max_ambig=0
max_primer_mm=0
trim_seq_len=False
dir_prefix=self.output_dir
max_bc_errors=2
max_homopolymer=4
retain_unassigned_reads=False
keep_barcode=False
attempt_bc_correction=True
qual_score_window=3
disable_primer_check=False
reverse_primers='disable'
record_qual_scores=False
discard_bad_windows=True
median_length_filtering=None
added_demultiplex_field=None
reverse_primer_mismatches=0
preprocess(fasta_files,
qual_files,
mapping_file,
barcode_type,
min_seq_len,
max_seq_len,
min_qual_score,
starting_ix,
keep_primer,
max_ambig,
max_primer_mm,
trim_seq_len,
dir_prefix,
max_bc_errors,
max_homopolymer,
retain_unassigned_reads,
keep_barcode,
attempt_bc_correction,
qual_score_window,
disable_primer_check,
reverse_primers,
reverse_primer_mismatches,
record_qual_scores,
discard_bad_windows,
median_length_filtering,
added_demultiplex_field)
output_seqs = open(dir_prefix + "seqs.fna", "U")
output_log = open(dir_prefix + "split_library_log.txt", "U")
output_histograms = open(dir_prefix + "histograms.txt", "U")
actual_seqs = [line for line in output_seqs]
actual_log = [line for line in output_log]
actual_histograms = [line for line in output_histograms]
expected_seqs = ['>s1_1 a orig_bc=ACACATGTCTAC new_bc=ACACATGTCTAC bc_diffs=0\n', 'CCCTTATATATATAT\n', '>s3_2 c orig_bc=AACTGTGCGTAC new_bc=AACTGTGCGTAC bc_diffs=0\n', 'AACCGGCCGGTT\n', '>s1_3 d orig_bc=ACTCATGTCTAC new_bc=ACACATGTCTAC bc_diffs=1\n', 'CCCTTACTATATAT\n']
expected_log = ['Number raw input seqs\t6\n', '\n', 'Length outside bounds of 5 and 1000\t0\n', 'Num ambiguous bases exceeds limit of 0\t0\n', 'Missing Qual Score\t0\n', 'Mean qual score below minimum of 22\t0\n', 'Max homopolymer run exceeds limit of 4\t0\n', 'Num mismatches in primer exceeds limit of 0: 2\n', '\n', 'Size of quality score window, in base pairs: 3\n', 'Number of sequences where a low quality score window was detected: 1\n', 'Sequences with a low quality score were not written, -g option enabled.\n', '\n', 'Raw len min/max/avg\t25.0/35.0/31.2\n', 'Wrote len min/max/avg\t32.0/35.0/33.7\n', '\n', 'Barcodes corrected/not\t1/0\n', 'Uncorrected barcodes will not be written to the output fasta file.\n', 'Corrected barcodes will be written with the appropriate barcode category.\n', 'Corrected but unassigned sequences will not be written unless --retain_unassigned_reads is enabled.\n', '\n', 'Total valid barcodes that are not in mapping file\t0\n', 'Sequences associated with valid barcodes that are not in the mapping file will not be written.\n', '\n', 'Barcodes in mapping file\n', 'Num Samples\t2\n', 'Sample ct min/max/mean: 1 / 2 / 1.50\n', 'Sample\tSequence Count\tBarcode\n', 's1\t2\tACACATGTCTAC\n', 's3\t1\tAACTGTGCGTAC\n', 's2\t0\tAGAGTCCTGAGC\n', '\n', 'Total number seqs written\t3']
expected_histograms = ['Length\tBefore\tAfter\n', '20\t2\t0\n', '30\t4\t3']
self.assertEqual(actual_seqs, expected_seqs)
self.assertEqual(actual_log, expected_log)
self.assertEqual(actual_histograms, expected_histograms)
in_seqs_variable_len_bc1 = """>a
ACCGGTCCGGACCCTTATATATATAT
>b
AGGAGTCCGGACCCTTTCCA
>c
ATTAACCCGGAAACCGGCCGGTT
>d
ACCGGTCCGGACCCTTACTATATAT
>e
TTTTGTCCGGACCCTTACTATATAT
>d_primer_error
ACCTGGTCCGGACCCTTACTATATAT
""".split()
bc_map_variable_len_bc1 = {'ACC':'s1','AGGA':'s2','ATTA':'s3'}
primer_seq_lens_variable_len_bc1 = {'ACC':{'GGTCCGGA':8},
'AGGA':{'GTCCGGA':7},
'ATTA':{'ACCCGGA':7}}
all_primers_variable_len_bc1 = {'GGTCCGGA':8,'GTCCGGA':7,'ACCCGGA':7}
expected_fasta_variable_len_bc1 = """>s1_0 a orig_bc=ACC new_bc=ACC bc_diffs=0
CCCTTATATATATAT
>s2_1 b orig_bc=AGGA new_bc=AGGA bc_diffs=0
CCCTTTCCA
>s3_2 c orig_bc=ATTA new_bc=ATTA bc_diffs=0
AACCGGCCGGTT
>s1_3 d orig_bc=ACC new_bc=ACC bc_diffs=0
CCCTTACTATATAT"""
bc_map_variable_len_bc2 = {'ACC':'s1','AGGA':'s2','ATTA':'s3','AGG':'s4'}
primer_seq_lens_variable_len_bc2 = {'ACC':{'GGTCCGGA':8},
'AGGA':{'GTCCGGA':7},
'ATTA':{'ACCCGGA':7},
'AGG':{'AGTCCGGA':8}}
all_primers_variable_len_bc2 = {'GGTCCGGA':8,'GTCCGGA':7,'ACCCGGA':7,
'AGTCCGGA':8}
# Fixed barcode test data
in_seqs_fixed_len_bc1 = """>a
ACACATGTCTACGGTCCGGACCCTTATATATATAT
>b
AGAGTCCTGAGCGGTCCGGACCCTTTCCA
>c
AATCGTGACTCGGGTCTGGAAACCGGCCGGTT
>d
ACTCATGTCTACGGTCCGGACCCTTACTATATAT
>e_no_barcode_match
TTTTGTCCGGACCCTTACTATATAT
>d_primer_error
AGAGTCCTGAGCGGTCCGGTACGTTTACTGGA
""".split('\n')
sample_mapping = """#SampleID\tBarcodeSequence\tLinkerPrimerSequence\tTreatment\tDescription
# Test mapping for split_libraries.py unit tests
s1\tACACATGTCTAC\tGGTCCGGA\tControl\ts1_mouse
s2\tAGAGTCCTGAGC\tGGTCCGGA\tControl\ts2_mouse
s3\tAACTGTGCGTAC\tGGTCYGGA\tFasted\ts3_mouse
"""
# Fixed barcode test data, with one valid BC not in mapping data
in_seqs_fixed_len_extra_bc = """>a
ACACATGTCTACGGTCCGGACCCTTATATATATAT
>b
AGAGTCCTGAGCGGTCCGGACCCTTTCCA
>c
AACTGTGCGTACGGTCTGGAAACCGGCCGGTT
>d
ACTCATGTCTACGGTCCGGACCCTTACTATATAT
>e_no_barcode_match
TTTTGTCCGGACCCTTACTATATAT
>d_primer_error
AGAGTCCTGAGCGGTCCGGTACGTTTACTGGA
""".split('\n')
expected_fasta_extra_bc = """>s1_0 a orig_bc=ACACATGTCTAC new_bc=ACACATGTCTAC bc_diffs=0\nCCCTTATATATATAT\n>s2_1 b orig_bc=AGAGTCCTGAGC new_bc=AGAGTCCTGAGC bc_diffs=0\nCCCTTTCCA\n>Unassigned_2 c orig_bc=AACTGTGCGTAC new_bc=AACTGTGCGTAC bc_diffs=0\nAACCGGCCGGTT\n>s1_3 d orig_bc=ACTCATGTCTAC new_bc=ACACATGTCTAC bc_diffs=1\nCCCTTACTATATAT"""
in_seqs_fixed_len_bc1_qual_scores = """>a
37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 36 36 33 33 33 36 37 37 37 37 37 37 40 40 40 39 39 38
>b
35 31 31 23 23 23 31 21 21 21 35 35 37 37 37 36 36 36 36 36 36 37 37 37 37 37 37 37 37
>c
37 37 37 37 37 37 37 37 37 37 37 37 37 37 36 32 32 32 36 37 35 32 32 32 32 32 32 32 32 36 37 37
>d
36 36 36 37 37 37 37 37 37 37 37 37 37 37 37 36 36 36 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37
>e_no_barcode_match
23 23 23 31 21 21 21 35 35 37 37 37 36 36 36 36 36 36 37 37 37 37 37 37 37
>d_primer_error
31 31 23 23 23 31 21 21 21 35 35 37 37 37 36 36 36 36 36 36 37 37 37 37 37 37 37 37 37 37 37 37""".split('\n')
# These test data have equal length barcodes, one degenerate primer
bc_map_fixed_len_bc1 = {'ACACATGTCTAC':'s1','AGAGTCCTGAGC':'s2',
'AATCGTGACTCG':'s3'}
primer_seq_lens_fixed_len_bc1 = {'ACACATGTCTAC':{'GGTCCGGA':8},
'AGAGTCCTGAGC':{'GGTCCGGA':8},
'AATCGTGACTCG':{'GGTCCGGA':8,'GGTCTGGA':8}}
all_primers_fixed_len_bc1 = {'GGTCCGGA':8,'GGTCTGGA':8}
# added_demultiplex barcode test data
in_seqs_added_demultiplex = """>mintberrycrunch group=coonandfriends
AATCGTGACTCGGGTCCGGACCCTTATATATATAT
>mysterion group=coonandfriends
AGAGTCCTGAGCGGTCCGGACCCTTTCCA
>mansquito group=professorchaos
AATCGTGACTCGGGTCTGGAAACCGGCCGGTT
>mintberrycrunch group=coonandfriends
AATCGTGACTTGGGTCCGGACCCTTACTATATAT
>e_no_barcode_match group=professorchaos
TTTTGTCCGGACCCTTACTATATAT
>d_primer_error group=coonandfriends
AGAGTCCTGAGCGGTCCGGTACGTTTACTGGA
""".split('\n')
# Modified barcode map to test added_demultiplex option
bc_map_added_demultiplex = {'AATCGTGACTCG,mintberry':'s1',
'AGAGTCCTGAGC,myst':'s2', 'AATCGTGACTCG,mansq':'s3'}
# Modified barcode map to test added_demultiplex from 'group' in label
bc_map_added_demultiplex_group = {'AATCGTGACTCG,coonandfriends':'s1',
'AGAGTCCTGAGC,coonandfriends':'s2', 'AATCGTGACTCG,coonandfriends':'s3'}
expected_fasta_fixed_len_bc1 = """>s1_0 a orig_bc=ACACATGTCTAC new_bc=ACACATGTCTAC bc_diffs=0
CCCTTATATATATAT
>s2_1 b orig_bc=AGAGTCCTGAGC new_bc=AGAGTCCTGAGC bc_diffs=0
CCCTTTCCA
>s3_2 c orig_bc=AATCGTGACTCG new_bc=AATCGTGACTCG bc_diffs=0
AACCGGCCGGTT
>s1_3 d orig_bc=ACTCATGTCTAC new_bc=ACACATGTCTAC bc_diffs=1
CCCTTACTATATAT"""
# Added demultiplex options
expected_fasta_fixed_added_demultiplex = """>s1_0 mintberrycrunch orig_bc=AATCGTGACTCG new_bc=AATCGTGACTCG,mintberry bc_diffs=0\nCCCTTATATATATAT\n>s2_1 mysterion orig_bc=AGAGTCCTGAGC new_bc=AGAGTCCTGAGC,myst bc_diffs=0\nCCCTTTCCA\n>s3_2 mansquito orig_bc=AATCGTGACTCG new_bc=AATCGTGACTCG,mansq bc_diffs=0\nAACCGGCCGGTT\n>s1_3 mintberrycrunch orig_bc=AATCGTGACTTG new_bc=AATCGTGACTCG,mintberry bc_diffs=1\nCCCTTACTATATAT"""
expected_fasta_added_demultiplex_group = """>s3_0 mintberrycrunch orig_bc=AATCGTGACTCG new_bc=AATCGTGACTCG,coonandfriends bc_diffs=0\nCCCTTATATATATAT\n>s2_1 mysterion orig_bc=AGAGTCCTGAGC new_bc=AGAGTCCTGAGC,coonandfriends bc_diffs=0\nCCCTTTCCA\n>s3_2 mintberrycrunch orig_bc=AATCGTGACTTG new_bc=AATCGTGACTCG,coonandfriends bc_diffs=1\nCCCTTACTATATAT"""
# Poor quality window results in second sequence being removed
expected_fasta_fixed_len_bc1_sliding_window = """>s1_0 a orig_bc=ACACATGTCTAC new_bc=ACACATGTCTAC bc_diffs=0
CCCTTATATATATAT
>s3_1 c orig_bc=AATCGTGACTCG new_bc=AATCGTGACTCG bc_diffs=0
AACCGGCCGGTT
>s1_2 d orig_bc=ACTCATGTCTAC new_bc=ACACATGTCTAC bc_diffs=1
CCCTTACTATATAT"""
expected_qual_fixed_len_bc1 = """>s1_0 a orig_bc=ACACATGTCTAC new_bc=ACACATGTCTAC bc_diffs=0
33 33 36 37 37 37 37 37 37 40 40 40 39 39 38
>s2_1 b orig_bc=AGAGTCCTGAGC new_bc=AGAGTCCTGAGC bc_diffs=0
36 37 37 37 37 37 37 37 37
>s3_2 c orig_bc=AATCGTGACTCG new_bc=AATCGTGACTCG bc_diffs=0
35 32 32 32 32 32 32 32 32 36 37 37
>s1_3 d orig_bc=ACTCATGTCTAC new_bc=ACACATGTCTAC bc_diffs=1
37 37 37 37 37 37 37 37 37 37 37 37 37 37
"""
# Will be longer because primers are no longer sliced off or checked for
# mismatches
expected_fasta_fixed_len_bc1_no_primers = """>s1_0 a orig_bc=ACACATGTCTAC new_bc=ACACATGTCTAC bc_diffs=0
GGTCCGGACCCTTATATATATAT
>s2_1 b orig_bc=AGAGTCCTGAGC new_bc=AGAGTCCTGAGC bc_diffs=0
GGTCCGGACCCTTTCCA
>s3_2 c orig_bc=AATCGTGACTCG new_bc=AATCGTGACTCG bc_diffs=0
GGTCTGGAAACCGGCCGGTT
>s1_3 d orig_bc=ACTCATGTCTAC new_bc=ACACATGTCTAC bc_diffs=1
GGTCCGGACCCTTACTATATAT
>s2_4 d_primer_error orig_bc=AGAGTCCTGAGC new_bc=AGAGTCCTGAGC bc_diffs=0
GGTCCGGTACGTTTACTGGA"""
# Equal length barcodes, primers, should give different results
# Due to parameter changes regarding barcode changes, primer mismatches
expected_fasta_fixed_len_bc2 = """>s1_0 a orig_bc=ACACATGTCTAC new_bc=ACACATGTCTAC bc_diffs=0
CCCTTATATATATAT
>s2_1 b orig_bc=AGAGTCCTGAGC new_bc=AGAGTCCTGAGC bc_diffs=0
CCCTTTCCA
>s3_2 c orig_bc=AATCGTGACTCG new_bc=AATCGTGACTCG bc_diffs=0
AACCGGCCGGTT
>s2_3 d_primer_error orig_bc=AGAGTCCTGAGC new_bc=AGAGTCCTGAGC bc_diffs=0
ACGTTTACTGGA"""
# These test data have equal length barcodes
reverse_primers_fixed_len_bc1 = {'ACACATGTCTAC':'CTTATAT',
'AGAGTCCTGAGC':'GCCCTTT',
'AATCGTGACTCG':'AGTACC'}
# Fixed barcode, reverse primers test data
in_seqs_reverse_primers = """>a
ACACATGTCTACGGTCCGGAGTACCATGATCGGCCCTTATATATATAT
>b
AGAGTCCTGAGCGGTCCGGAACCGTCGGATCAGCCCTTTCCA
>c
AATCGTGACTCGGGTCTGGAAACCGATCGACCATAGTACCGGCCGGTT
>d
ACTCATGTCTACGGTCCGGAATACGTTACGTCCCTTACTATATAT
>e_no_barcode_match
TTTTGTCCGGACCCTTACTATATAT
>d_primer_error
AGAGTCCTGAGCGGGGAGGTACGTTTACTGGA
""".split()
# expected to find the reverse rprimers for seqs a, b, and c, but does not
# find the reverse primer for d so writes out whole sequence following forward
# primer.
expected_in_seqs_reverse_primers = '>s1_0 a orig_bc=ACACATGTCTAC new_bc=ACACATGTCTAC bc_diffs=0\nGTACCATGATCGGCC\n>s2_1 b orig_bc=AGAGTCCTGAGC new_bc=AGAGTCCTGAGC bc_diffs=0\nACCGTCGGATCA\n>s3_2 c orig_bc=AATCGTGACTCG new_bc=AATCGTGACTCG bc_diffs=0\nAACCGATCGACCAT\n>s1_3 d orig_bc=ACTCATGTCTAC new_bc=ACACATGTCTAC bc_diffs=1\nATACGTTACGTCCCTTACTATATAT'
# Will truncate sequence d properly if mismatch in primer allowed
expected_in_seqs_reverse_primers_mismatch_allowed = '>s1_0 a orig_bc=ACACATGTCTAC new_bc=ACACATGTCTAC bc_diffs=0\nGTACCATGATCGGCC\n>s2_1 b orig_bc=AGAGTCCTGAGC new_bc=AGAGTCCTGAGC bc_diffs=0\nACCGTCGGATCA\n>s3_2 c orig_bc=AATCGTGACTCG new_bc=AATCGTGACTCG bc_diffs=0\nAACCGATCGACCAT\n>s1_3 d orig_bc=ACTCATGTCTAC new_bc=ACACATGTCTAC bc_diffs=1\nATACGTTACGTCC'
# Fixed barcode, reverse primers test data
in_seqs_reverse_primers_mismatch = """>a
ACACATGTCTACGGTCCGGAGTACCATGATCGGCCCCTATATATATAT
>b
AGAGTCCTGAGCGGTCCGGAACCGTCGGATCAGCCCTTTCCA
>c
AATCGTGACTCGGGTCTGGAAACCGATCGACCATAGTACCGGCCGGTT
>d
ACTCATGTCTACGGTCCGGAATACGTTACGTCCCTTACATATCCAT
>e_no_barcode_match
TTTTGTCCGGACCCTTACTATATAT
>d_primer_error
AGAGTCCTGAGCGGTCCTTTACGCCCACTGGA
""".split()
# expected to find the reverse rprimers for seqs b, and c, will not find
# seq a's reverse primer due to mismatch and will write the whole sequence
expected_in_seqs_reverse_primers_mismatch = '>s1_0 a orig_bc=ACACATGTCTAC new_bc=ACACATGTCTAC bc_diffs=0\nGTACCATGATCGGCCCCTATATATATAT\n>s2_1 b orig_bc=AGAGTCCTGAGC new_bc=AGAGTCCTGAGC bc_diffs=0\nACCGTCGGATCA\n>s3_2 c orig_bc=AATCGTGACTCG new_bc=AATCGTGACTCG bc_diffs=0\nAACCGATCGACCAT\n>s1_3 d orig_bc=ACTCATGTCTAC new_bc=ACACATGTCTAC bc_diffs=1\nATACGTTACGTCCCTTACATATCCAT'
# Will not write the d sequence, as the primer mismatches.
expected_in_seqs_reverse_primers_full_remove = '>s1_0 a orig_bc=ACACATGTCTAC new_bc=ACACATGTCTAC bc_diffs=0\nGTACCATGATCGGCC\n>s2_1 b orig_bc=AGAGTCCTGAGC new_bc=AGAGTCCTGAGC bc_diffs=0\nACCGTCGGATCA\n>s3_2 c orig_bc=AATCGTGACTCG new_bc=AATCGTGACTCG bc_diffs=0\nAACCGATCGACCAT'
# Sample seqs.fna output file
sample_seqs_fna_file = """>a1 testing
ACACATGTCTACGGTCCGGAACGACGACGAGCGAGGGTAGC
>b2 testing more
AGAGTCCTGAGCGGTCCGGAACAGACAGGGAGAGACAGAA
>a3 testing
ACAACAGACGAGTTAGACCAA
>d4
AATCGTGACTCGGGTCTGGACAGACGAGAACGAGTTACAGACCAGA"""
expected_fasta_mad = """>s1_0 a orig_bc=ACACATGTCTAC new_bc=ACACATGTCTAC bc_diffs=0\nCCCTTATATATATAT\n>s3_2 c orig_bc=AATCGTGACTCG new_bc=AATCGTGACTCG bc_diffs=0\nAACCGGCCGGTT\n>s1_3 d orig_bc=ACTCATGTCTAC new_bc=ACACATGTCTAC bc_diffs=1\nCCCTTACTATATAT"""
class SeqQualBadTests(TestCase):
"""Tests of the SeqQualBad class"""
def test_init(self):
"""SeqQualBad should init OK"""
sq = SeqQualBad('Q', None)
self.assertEqual(sq.Name, 'Q')
self.assertEqual(sq.F, None)
self.assertEqual(sq.FailedIds, [])
def test_call(self):
"""SeqQualBad should apply correct function"""
f = lambda id_, seq, qual: len(seq) > 3
s1 = 'aa'
s2 = 'aaaa'
sq = SeqQualBad('Q', f)
self.assertEqual(sq('x',s1, [1,2,3]), False)
self.assertEqual(sq('y',s2, [1,2,3]), True)
self.assertEqual(sq.FailedIds, ['y'])
def test_str(self):
"""SeqQualBad should apply correct function"""
f = lambda id_, seq, qual: len(seq) > 3
s1 = 'aa'
s2 = 'aaaa'
sq = SeqQualBad('Q', f)
self.assertEqual(sq('x',s1, [1,2,3]), False)
self.assertEqual(str(sq), 'Q\t0')
self.assertEqual(sq('y',s2, [1,2,3]), True)
self.assertEqual(str(sq), 'Q\t1')
if __name__ =='__main__':
main()
|