1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2008 StatPro Italia srl
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<https://www.quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#include "toplevelfixture.hpp"
#include "utilities.hpp"
#include <ql/experimental/exoticoptions/everestoption.hpp>
#include <ql/experimental/exoticoptions/mceverestengine.hpp>
#include <ql/math/randomnumbers/rngtraits.hpp>
#include <ql/time/daycounters/actual360.hpp>
#include <ql/quotes/simplequote.hpp>
using namespace QuantLib;
using namespace boost::unit_test_framework;
BOOST_FIXTURE_TEST_SUITE(QuantLibTests, TopLevelFixture)
BOOST_AUTO_TEST_SUITE(EverestOptionTests)
BOOST_AUTO_TEST_CASE(testCached) {
BOOST_TEST_MESSAGE("Testing Everest option against cached values...");
Date today = Settings::instance().evaluationDate();
DayCounter dc = Actual360();
Date exerciseDate = today+360;
ext::shared_ptr<Exercise> exercise(new EuropeanExercise(exerciseDate));
Real notional = 1.0;
Rate guarantee = 0.0;
EverestOption option(notional, guarantee, exercise);
Handle<YieldTermStructure> riskFreeRate(flatRate(today, 0.05, dc));
std::vector<ext::shared_ptr<StochasticProcess1D> > processes(4);
Handle<Quote> dummyUnderlying(ext::shared_ptr<Quote>(
new SimpleQuote(1.0)));
processes[0] = ext::shared_ptr<StochasticProcess1D>(
new BlackScholesMertonProcess(
dummyUnderlying,
Handle<YieldTermStructure>(flatRate(today, 0.01, dc)),
riskFreeRate,
Handle<BlackVolTermStructure>(flatVol(today, 0.30, dc))));
processes[1] = ext::shared_ptr<StochasticProcess1D>(
new BlackScholesMertonProcess(
dummyUnderlying,
Handle<YieldTermStructure>(flatRate(today, 0.05, dc)),
riskFreeRate,
Handle<BlackVolTermStructure>(flatVol(today, 0.35, dc))));
processes[2] = ext::shared_ptr<StochasticProcess1D>(
new BlackScholesMertonProcess(
dummyUnderlying,
Handle<YieldTermStructure>(flatRate(today, 0.04, dc)),
riskFreeRate,
Handle<BlackVolTermStructure>(flatVol(today, 0.25, dc))));
processes[3] = ext::shared_ptr<StochasticProcess1D>(
new BlackScholesMertonProcess(
dummyUnderlying,
Handle<YieldTermStructure>(flatRate(today, 0.03, dc)),
riskFreeRate,
Handle<BlackVolTermStructure>(flatVol(today, 0.20, dc))));
Matrix correlation(4,4);
correlation[0][0] = 1.00;
correlation[0][1] = 0.50;
correlation[0][2] = 0.30;
correlation[0][3] = 0.10;
correlation[1][0] = 0.50;
correlation[1][1] = 1.00;
correlation[1][2] = 0.20;
correlation[1][3] = 0.40;
correlation[2][0] = 0.30;
correlation[2][1] = 0.20;
correlation[2][2] = 1.00;
correlation[2][3] = 0.60;
correlation[3][0] = 0.10;
correlation[3][1] = 0.40;
correlation[3][2] = 0.60;
correlation[3][3] = 1.00;
BigNatural seed = 86421;
Size fixedSamples = 1023;
Real minimumTol = 1.0e-2;
ext::shared_ptr<StochasticProcessArray> process(
new StochasticProcessArray(processes, correlation));
option.setPricingEngine(MakeMCEverestEngine<PseudoRandom>(process)
.withStepsPerYear(1)
.withSamples(fixedSamples)
.withSeed(seed));
Real value = option.NPV();
Real storedValue = 0.75784944;
Real tolerance = 1.0e-8;
if (std::fabs(value-storedValue) > tolerance)
BOOST_FAIL(std::setprecision(10)
<< " calculated value: " << value << "\n"
<< " expected: " << storedValue);
tolerance = option.errorEstimate();
tolerance = std::min<Real>(tolerance/2.0, minimumTol*value);
option.setPricingEngine(MakeMCEverestEngine<PseudoRandom>(process)
.withStepsPerYear(1)
.withAbsoluteTolerance(tolerance)
.withSeed(seed));
option.NPV();
Real accuracy = option.errorEstimate();
if (accuracy > tolerance)
BOOST_FAIL(std::setprecision(10)
<< " reached accuracy: " << accuracy << "\n"
<< " expected: " << tolerance);
}
BOOST_AUTO_TEST_SUITE_END()
BOOST_AUTO_TEST_SUITE_END()
|