1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2012 Liquidnet Holdings, Inc.
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<https://www.quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#include "toplevelfixture.hpp"
#include "utilities.hpp"
#include <ql/models/volatility/garch.hpp>
#include <ql/time/calendars/target.hpp>
#include <ql/math/optimization/levenbergmarquardt.hpp>
#include <ql/math/randomnumbers/inversecumulativerng.hpp>
#include <ql/math/randomnumbers/mt19937uniformrng.hpp>
#include <ql/math/distributions/normaldistribution.hpp>
using namespace QuantLib;
using namespace boost::unit_test_framework;
BOOST_FIXTURE_TEST_SUITE(QuantLibTests, TopLevelFixture)
BOOST_AUTO_TEST_SUITE(GARCHTests)
class DummyOptimizationMethod : public OptimizationMethod {
public:
EndCriteria::Type minimize(Problem& P, const EndCriteria& endCriteria) override {
P.setFunctionValue(P.value(P.currentValue()));
return EndCriteria::None;
}
};
struct Results {
Real alpha;
Real beta;
Real omega;
Real logLikelihood;
};
typedef InverseCumulativeRng<MersenneTwisterUniformRng,
InverseCumulativeNormal>
GaussianGenerator;
static Real expected_calc[] = {
0.452769, 0.513323, 0.530141, 0.5350841, 0.536558,
0.536999, 0.537132, 0.537171, 0.537183, 0.537187
};
void check_ts(const std::pair<Date, Volatility> &x) {
if (x.first.serialNumber() < 22835 || x.first.serialNumber() > 22844) {
BOOST_ERROR("Failed to reproduce calculated GARCH time: "
<< "\n calculated: " << x.first.serialNumber()
<< "\n expected: [22835, 22844]");
}
Real error =
std::fabs(x.second - expected_calc[x.first.serialNumber()-22835]);
if (error > 1.0e-6) {
BOOST_ERROR("Failed to reproduce calculated GARCH value at "
<< x.first.serialNumber() << ": "
<< "\n calculated: " << x.second
<< "\n expected: "
<< expected_calc[x.first.serialNumber()-22835]);
}
}
#define CHECK(results, garch, member) \
if (std::fabs(results.member - garch.member()) > 1.0e-6) { \
BOOST_ERROR("Failed to reproduce expected " #member \
<< "\n calculated: " << garch.member() \
<< "\n expected: " << results.member); \
}
BOOST_AUTO_TEST_CASE(testCalibration) {
BOOST_TEST_MESSAGE("Testing GARCH model calibration...");
Date start(7, July, 1962), d = start;
TimeSeries<Volatility> ts;
Garch11 garch(0.2, 0.3, 0.4);
GaussianGenerator rng(MersenneTwisterUniformRng(48));
Volatility r = 0.0, v = 0.0;
for (std::size_t i = 0; i < 50000; ++i, d += 1) {
v = garch.forecast(r, v);
r = rng.next().value * std::sqrt(v);
ts[d] = r;
}
// Default calibration; works fine in most cases
Garch11 cgarch1(ts);
Results calibrated = { 0.207592, 0.281979, 0.204647, -0.0217413 };
CHECK(calibrated, cgarch1, alpha);
CHECK(calibrated, cgarch1, beta);
CHECK(calibrated, cgarch1, omega);
CHECK(calibrated, cgarch1, logLikelihood);
// Type 1 initial guess - no further optimization
Garch11 cgarch2(ts, Garch11::MomentMatchingGuess);
DummyOptimizationMethod m;
cgarch2.calibrate(ts, m, EndCriteria (3, 2, 0.0, 0.0, 0.0));
Results expected1 = { 0.265749, 0.156956, 0.230964, -0.0227179 };
CHECK(expected1, cgarch2, alpha);
CHECK(expected1, cgarch2, beta);
CHECK(expected1, cgarch2, omega);
CHECK(expected1, cgarch2, logLikelihood);
// Optimization from this initial guess
cgarch2.calibrate(ts);
CHECK(calibrated, cgarch2, alpha);
CHECK(calibrated, cgarch2, beta);
CHECK(calibrated, cgarch2, omega);
CHECK(calibrated, cgarch2, logLikelihood);
// Type 2 initial guess - no further optimization
Garch11 cgarch3(ts, Garch11::GammaGuess);
cgarch3.calibrate(ts, m, EndCriteria (3, 2, 0.0, 0.0, 0.0));
Results expected2 = { 0.269896, 0.211373, 0.207534, -0.022798 };
CHECK(expected2, cgarch3, alpha);
CHECK(expected2, cgarch3, beta);
CHECK(expected2, cgarch3, omega);
CHECK(expected2, cgarch3, logLikelihood);
// Optimization from this initial guess
cgarch3.calibrate(ts);
CHECK(calibrated, cgarch3, alpha);
CHECK(calibrated, cgarch3, beta);
CHECK(calibrated, cgarch3, omega);
CHECK(calibrated, cgarch3, logLikelihood);
// Double optimization using type 1 and 2 initial guesses
Garch11 cgarch4(ts, Garch11::DoubleOptimization);
cgarch4.calibrate(ts);
CHECK(calibrated, cgarch4, alpha);
CHECK(calibrated, cgarch4, beta);
CHECK(calibrated, cgarch4, omega);
CHECK(calibrated, cgarch4, logLikelihood);
// Alternative, gradient based optimization - usually gives worse
// results than simplex
LevenbergMarquardt lm;
cgarch4.calibrate(ts, lm, EndCriteria (100000, 500, 1e-8, 1e-8, 1e-8));
Results expected3 = { 0.265196, 0.277364, 0.678812, -0.216313 };
CHECK(expected3, cgarch4, alpha);
CHECK(expected3, cgarch4, beta);
CHECK(expected3, cgarch4, omega);
CHECK(expected3, cgarch4, logLikelihood);
}
BOOST_AUTO_TEST_CASE(testCalculation) {
BOOST_TEST_MESSAGE("Testing GARCH model calculation...");
Date d(7, July, 1962);
TimeSeries<Volatility> ts;
Garch11 garch(0.2, 0.3, 0.4);
Volatility r = 0.1;
for (std::size_t i = 0; i < 10; ++i, d += 1) {
ts[d] = r;
}
TimeSeries<Volatility> tsout = garch.calculate(ts);
std::for_each(tsout.cbegin(), tsout.cend(), check_ts);
}
BOOST_AUTO_TEST_SUITE_END()
BOOST_AUTO_TEST_SUITE_END()
|